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Abstract 
Grouping the users and assigning them to vehicles is one of the most complex and relevant 
problems in on-demand ridepooling systems. One of the main challenges is that as decisions are taken 
on-demand, there is a lack of knowledge about future users. In this paper, we anal- yse the benefits of 
getting some information shortly in advance, namely, having a percentage of the users requiring their 
trips some minutes (between 5-20) before their desired pickup. To this end, we modify the 
assignment algorithm by Alonso Mora et al. (2017) to admit passengers revealed shortly in 
advance, and propose a number of heuristics to deal with the increased complexity. We show that 
this little extra information can have a significant pos- itive impact on the system’s KPIs, e.g., 
increasing the service rate from 86% to 92% in our simulations in Manhattan, without increasing 
the fleet size or vehicles-kilometres-travelled. Moreover, we show that this information is also 
beneficial even if i) Users that reserve in advance are prioritised when deciding whom to serve and 
ii) We consider an adversarial set of requests making the reservations. These results imply a 
relevant managerial conclusion for on-demand ridepooling: companies would be benefited if asking 
users to reveal their trips shortly in advance, in exchange for being prioritised. 

 
1. Introduction 
With increasing urbanisation and a need for reducing greenhouse gas emissions, new forms of urban 
mobility are being implemented and studied worldwide. Particularly, on-demand ride- hailing 
companies, such as Uber or Cabify, have become popular in many cities, but often increasing 
congestion by attracting users from more sustainable modes (Erhardt et al. 2019; Tirachini 2020). Its 
pooled counterpart (that receives different names in the literature, and we use “on-demand 
ridepooling” or just “ridepooling”), where people can share parts of rides with other passengers 
travelling in a similar direction in the same car, can be a promising mode to offer the virtues of on-
demand mobility in a sustainable way. Ridepooling has been offered by some of the ride-hailing 
companies, but still in limited numbers, increasing the relevance to study how to improve their 
operational aspects. With current technology, large numbers of passengers can be efficiently 
allocated for ridepooling (Santi et al. 2014). For instance, if taxis were shared in Manhattan, 98% 
of their demand could be served with just 30% of the number of taxis, while staying within 
reasonable constraints on delays (Alonso- Mora et al. 2017a)1. The advantages of ridepooling 
could potentially be amplified by the 

 

1Assuming that all taxi users are willing to share their vehicles is actually a strong and optimistic assumption. When mode choice is included in 
the models, the environmental benefits of ridepooling are less clear (Zwick et al. 2021). This aspect of the 
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adoption of autonomous vehicles (AVs), thanks to the decreased operational costs (Fielbaum 2020). 
A key challenge for an efficient operation of ridepooling is deciding how to group the users 

and assign them to vehicles. One of the most popular algorithms to do this is the one by Alonso-
Mora et al. (2017a), which accumulates batches of requests during a pre-defined interval (e.g. 30 
seconds) and assigns them all together in an anytime optimal way. However, here the word “optimal” 
refers to the best possible decision given the current information; in other words, this is a myopic 
approach, that does not take the unknown future into account, which suggests that the assignment 
decisions could be improved if the future was known (at least partially), as exemplified in Figure 1. 

 
Figure 1: Two passengers are waiting and two vehicles are to be assigned. Without future information (top 
row), the system assigns v1 to p1 and v2 to p2, rejecting p3 when he emerges. If p3 was known in advance, the 
assignment would be modified and everyone would be served 

No future knowledge 
p1      p2             p3 (future) 

 
v2 

With future knowledge 
p1 

 
 
 

p3 (future) 
 
 
 

To overcome this issue, researchers have proposed anticipatory methods (e.g. Fielbaum et al. 
2022; Alonso-Mora et al. 2017b; Li et al. 2020), i.e., techniques to try to somehow predict the 
future demand and incorporate those predictions into the assignment decisions. Such studies have 
confirmed that having better information bears the potential to make ridepooling more efficient, 
but are limited by the quality of their predictions. In this paper, we go one step further and analyse 
what are the potential gains if we had (partial) real information about the future. Concretely: 
Would it be possible to improve the system if some of the users requested their trips shortly 
before their desired pickup time? By this means, we are able to quantify what is the relevance of 
this (lack of) information. 

We also identify an important trade-off: it is reasonable to assume passengers will only make 
reservations if doing so is associated with benefits, such as prioritising to serve the users that 
revealed their information in advance. These benefits impose constraints on the solution space and 
thus potentially reduce the quality of the passenger assignments. We quantify the trade-off and 
show that the gains of the extra information outweigh the costs of such benefits. 

From a methodological perspective, the introduction of reservations can increase the com- plexity of 
the problem greatly. This happens because the number of feasible groups is usually limited by 
ensuring a given quality of service to all the users (e.g., capping the maximum waiting time or 
the detour); however, future requests can be easily combined with cur- rent requests respecting 
the corresponding constraints. Therefore, we introduce a number of heuristics to face this issue, 
and also show that this complexity imposes a limit on the benefits of reservations. 

Our methods and conclusions are not only theoretical. They could easily be applied in an on-
demand ridepooling system where passengers can indicate whether they want to be served as soon 
as possible, or intend to leave in the near future (e.g., in 10 minutes). 

 

problem is beyond the scope of this paper, as increasing the efficiency of ridepooling is desirable regardless of the underlying users’ behaviour. 
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This paper is structured as follows. In Section 2, relevant background literature is dis- cussed. 
The proposed methodology is described in Section 3. Section 4 explains the ex- perimental setup 
for the research and the obtained results: here the potential benefits and trade-offs concerning 
reservations are analyzed. Finally, Section 5 consists of conclusions, discussions and 
recommendations for further research. 

 
2. Related literature 
On-demand ridepooling systems have been extensively studied in the last few years. One of the 
main aspects is the proposal of new algorithms to decide how to group the users and to route the 
vehicles to serve them. For surveys on this topic, see Mourad et al. (2019), Danassis et al. (2022), 
and Zardini et al. (2022). The assignment of passengers to vehicles can be performed statically (i.e., 
assuming the demand to be known in advance) or dynamically (i.e., users are served as they 
emerge). 

In a static assignment, all decisions are made beforehand, which allows for additional 
computation time available and predictable service, avoiding the relevant unreliability-related issues 

that emerge when the assignment is not static (Fielbaum & Alonso-Mora 2020; Alonso- González et 
al. 2020). This version of the problem is usually called “dial-a-ride”, and has been studied since 

decades ago (Ho et al. 2018). However, the massive emergence of dy- namic on-demand mobility 
has highlighted the attractiveness of systems where users can request the vehicle just when they 

need it. The dynamic nature of the problem demands efficient algorithms as large problems have 
to be computed in reasonable time to allow for re-assignment as new information becomes 

available. The assignment is usually performed in batches to allow for better matching between 
requests and vehicles (Yan et al. 2020). The method proposed by Alonso-Mora et al. (2017a), 

used in the methodology of this paper, combines requests into groups that are collectively assigned 
to vehicles. The method allows for anytime optimal assignment in large-scale ridesharing systems. 

A modification is made by Simonetto et al. (2019), where requests are assigned individually to 
vehicles in shorter batch times. This allows for a speedup in computation time but offers a lower level 
of service. One of the main problems of dynamic assignments is that decisions must be made without 
knowing the future demand. Significant research has been done to estimate future demand and use it 
to improve assignment decisions. These predictions can be used in two different ways: i) To instruct 
idle vehicles to move towards areas where more vehicles are expected to be required (a step usually 

called rebalancing in the literature), as done by Vosooghi et al. (2019), Sayarshad & Chow (2017), 
Liu & Samaranayake (2020), and Tsao et al. (2019), or 

ii) To modify the way vehicles are routed and assigned to the users, in order to leave them better 
prepared for the expected future demand (Fielbaum et al. 2022; Alonso-Mora et al. 2017b; Huang 
& Peng 2018; Van Engelen et al. 2018). These methods differ in how do they predict the 
demand, such as using historical demand (Alonso-Mora et al. 2017b) or considering the current 
demand as a proxy for the future one (Fielbaum et al. 2022), and in the specific ways these 
predictions are leveraged. However, the overall result is consistent, namely that including some 
anticipatory ideas improves the results. 

The incorporation of reservations in an on-demand ridesharing system is, to the best of our 
knowledge, only studied by Engelhardt et al. (2022). In their method, reservations are placed a day 
ahead and confirmed or rejected directly. Acceptance of a reservation is considered binding to the 
operator. Oppositely, this paper focuses on reservations that are made shortly in advance, which 
implies a significant difference from the users’ perspective, as these short- term reservations still 
enable the users to enjoy the flexibility of on-demand systems; from a methodological perspective, 
while Engelhardt et al. (2022) deal with reservations in a static way, for us they are dynamic 
because the short times involved imply that they might get 
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combined immediately with passengers currently being served by the system. 
 
3. Methodology 

3.1. Problem description 
We now describe briefly the problem and the method proposed by Alonso-Mora et al. (2017a) that we 
use as a basis. The goal of on-demand ridepooling is to assign a set of travel requests R to a set of 
vehicles V with minimal overall costs and within predetermined constraints. The problem takes 
place on a directed graph G = (N, E). The edges are weighted based on the required travel time 
of the road segment it represents. Every r ∈ R is a triplette r = (or, dr, tr), representing its 
origin, destination (which we assumed to be nodes in the graph), and emerging time, 
respectively. Crucially, in the original problem the requests become known exactly when they 
emerge, and want to be picked up as soon as possible. 

In the method proposed by Alonso-Mora et al. (2017a), requests are collected in batches during 
∆ (we use ∆ = 30 seconds) and assigned collectively. Let us now explain how one batch is 
assigned, denoting by Rt the set of requests waiting to be assigned. The objective of the assignment 
is to serve as many requests as possible, offering the best possible quality of service, measured by the 
waiting time and the detour experienced by each user. The waiting time for request r, denoted wr, is 
the time between it emerges tr and when it is picked up pur 

 
wr = pur − tr (1) 

The detour time is the extra in-vehicle time experienced by request r to a non-shared vehicle. 
The detour time of request r, denoted detr, is given by the drop off time dor minus the pickup time 
(which gives the in-vehicle time), minus the minimum travel time between or and dr denoted tv(or, 
dr), hence 

detr = dor − pur − tv(or, dr) (2) 

The waiting time and detour time combined give the total delay time for a request δr, 
δr = wr + detr. The goal of the assignment is to minimize Equation (3). In this equation, the first 
term represents the extra detour for all passengers that were already being transported by the system 
(Pv are the users currently in vehicle v), the second term is the total delay δr for all requests that 
get assigned Rok and the third one is fixed a rejection penalty Π for all requests that are not 
assigned Rno. Note that Rok ∪ Rno = Rt. 

     
detr +

 
 δr +

 
 Π (3) 

v∈V r∈Pv r∈Rok r∈Rno 

Assignment of requests to vehicles is done via an integer linear program (ILP) method 
explained below. To do this, requests are first combined into trips. A trip T ⊂ Rt is a group of 
requests that can be assigned together to the same vehicle. 

 
Trips computation A trip-vehicle (T, v) combination is feasible if it is possible to serve all the 
requests in that trip within waiting and detour time constraints for passengers in T and in Pv, i.e., 
every request has to wait less than Ωw and face a detour lower than Ωd (in our simulations, we 
use Ωw = Ωd = 5 minutes). Furthermore, the vehicle capacity ηv can not be exceeded at any time 
during the trip. 

The cost of adding a trip to a vehicle is given by Equation (4). If multiple feasible routes 
(sequence of pick up and drop off actions) are found for a trip, the one with the lowest cost is 
selected. 
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cost(T, v) =
   

dr +
   

δr (4) 
r∈Pv r∈T 

 

As the number of feasible trip-vehicle combinations can be very large, they are computed for trips 
of increasing size, leveraging the property that for the combination (T, v) to be feasible, all (T ′, v) 
with T ′ ⊂ T have to be feasible as well. To include reservations in this framework, they are 
simply added to the set of requests to be assigned Rt. The set of feasible (T, v) assignments is 
denoted T . 

 
ILP assignment: Once all the feasible trip-vehicle combinations have been identified, we need to 
decide which of them are taking place. The actual assignment is decided via an ILP, which has two 
sets of binary variables. First, ϵT,v for every feasible combination between a trip T and a vehicle 
v, which takes the value 1 if this combination takes place. Second, variables Xr, defined ∀r ∈ Rt, 
take the value 1 if the request r is not assigned. 

The constraints in the ILP formulation ensure that i) each vehicle will have at most one trip 
assigned (Equation 6), and ii) each request is either assigned to one vehicle or ignored (Equation 
7). Three subsets are used in the ILP formulation: Tv=j is the set of trips that can be served by 
vehicle j; TR=r is the set of trips that contain request r; VT =i is the set of vehicles that can serve 
trip i. 

 
min 
ϵ,X 

  

(T,v)∈T 

cost(T, v) · ϵT,v +
   

Π · Xr (5) 
r∈R 

s.t.
 
 

i∈Tv=j 
ϵi,j ≤ 1∀j ∈ V (6) 

 

ϵi,j + Xr = 1∀r ∈ R (7) 
i∈TR=r j∈VT =i 

Once the assignment procedure is done, it is communicated to the vehicles and they update 
their itinerary. If a request is not picked up before the next time step, it is put back into the set of 
requests to be assigned, which enables the system to perform reassignments when this improves 
overall efficiency (which is crucial when dealing with reservations). Note that this implies that some 
requests can be first assigned to a vehicle but then become rejected in a subsequent iteration 
before being picked up. 

 
Rebalancing: The only non-myopic step in the original method is as follows: those vehicles that are 
idle (i.e., that had no passengers before the assignment and received none through the ILP) are sent 
towards the origins of the requests that were rejected. We do this exactly as in the original method, 
so we refer the reader to Alonso-Mora et al. (2017a) for the details. 

 
3.2. Including short-term reservations 
As discussed above, including reservations in this method might be straightforward, as it is possible 
to just include them in the set of requests to be assigned. In this subsection, we explain the two 
main modifications we need to incorporate: 

1. First, we explain the benefits for users that reserve. This is not required by the method per se, 
as the assignments can be decided just as in the no-reservations scenario. How- ever, if a 
ridepooling company is to expect some users to provide their information some minutes in 
advance, it is reasonable to expect that they need to stimulate this through some sort of 
benefit. 
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2. Second, we show that the inclusion of reservations can imply a great increase in the 
required computational time, and propose some heuristics to tackle this. 

Benefits: We study two alternative ways to provide benefits to reservations. The first and simplest 
one is to increase the rejection penalty Π for reservations: in our simulations, we use Π = 50 
minutes for normal requests, and we double its value for reservations. 

The second one is called “Pledged service”: We modify the ILP by including an additional 
constraint that states that any request that has been assigned to a vehicle before, and thus expect to 
be served, cannot be rejected. This constraint will only be applied to reservations and has two main 
implications: 

1. Each user that makes a reservation receives an immediate response on whether she is going to 
be serviced. Although this could be desirable for everybody, it is much more important in the 
case of reservations, as it is unlikely that someone would be willing to make a reservation to 
find out that she is being rejected just before the desired pickup time. 

2. In practice, this implies that the chances of being served increase significantly for reser- vations. 
In fact, the first time a reservation r appears it is usually simple to find a feasible 
combination to serve her, as a vehicle could arrive at the pickup point even before tr yielding 
zero waiting time. Therefore, most reservations are assigned to some vehicle the first time they 
appear, and then the pledged service constraint ensures that they are never rejected. This 
argument only fails if there are too many reservations so that vehicles are not enough for 
everybody. All of this will be verified in the numerical experiments (Section 4.2). 

For this purpose, an additional subset Rrb is defined for all reservations that have been assigned 
before, and the following constraint is added to the ILP: 

Xr = 0 ∀r ∈ Rrb (8) 

Extra computational time: The computational load from the inclusion of reservations into the set 
of requests to be assigned can grow exponentially if no provisions are taken. 

First of all, reservations could, in the worst case, be available for each feasible trip-vehicle 
combination. This phenomenon is shown for one reservation in Figure 2, where a blue 
reservation is added. This implies that the number of feasible trips might get multiplied by 2Res 
where Res stands for the number of reservations. We remark that this worst-case analysis is also 
valid for on-demand requests, but in practice, the hard constraints on waiting and detour time prune 
many more combinations that in the reservations case. 

 

Second, reservations stay in the request pool longer than on-demand requests. This means that 
every time an assignment is decided, the pool of requests to assign is larger than in the pure on-
demand case. 

Third, not only are there more trips, but the trips also have more requests on average. Finding 
the optimal route requires much more computational time when the size of the trip increases, as the 
number of feasible routes for a trip with k requests might be as large as k!/2k. 

Because of the scaling effects from reservations, countermeasures are required. First, and similar to 
Alonso-Mora et al. (2017a), an insertion heuristic is applied when searching for the optimal route. The 
insertion heuristic locks the order in which passengers already on board are dropped off. Two 
additional heuristics are considered: First, to limit the maximum trip size to a parameter κ1 (we use 
κ1 = 3), i.e., we do not assign more than κ1 users to the same vehicle in the same iteration. Second 
(and similar to Fielbaum et al. 2021), for every request 
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Figure 2: Worst case growth in the number of feasible trips if a blue reservation is added 

 

we consider only the κ2 less costly vehicles in each iteration (we use κ2 = 20); note that the 
accumulated effect is significant, because for a group of k users to be feasibly assigned to the same 
vehicle v, all those users need to have v among its best κ2 vehicles. 

 
4. Experiments 

4.1. Experimental setup 
The network for the experiments represents Manhattan, New York City. The graph describ- ing the 
network consists of 4,091 nodes and 9,454 weighted directional edges. A thousand vehicles with a 
capacity of four passengers are used for the simulation. The shortest route and distance between 
each pair of points in the graph are calculated beforehand using the Dijkstra algorithm and stored 
in a lookup table. A set of 10,548 requests are taken from actual data for taxi demand in 
Manhattan from 12 AM till 1 PM, on January 15th, 2013. 

The standard test scenario consists of a warm-up phase and a “real” part. In the warm-up phase, 
5250 requests are added to the system over the first half an hour. The set of warm-up requests is 
randomly drawn without redraw from all possible requests and equally spaced over the available 
time for warm-up. The service for the warm-up set is not considered in the KPIs evaluated. 

To understand the impact of reservations, we study different cases where we vary the number 
of reservations and how long in advance they are placed. Crucially, we consider two scenarios 
regarding which users are placing reservations: 

1. Random: A random sample of all the requests is selected to be used as reservations. 

2. Adversarial: We first simulate the whole sample without reservations. The users that are 
rejected in those simulations are taken as reservations to re-simulate. We remark those users 
are in general more difficult to be served (e.g., because they are located far from the high-
demand zones), so having to prioritize them makes an adversarial scenario for our model; 
moreover, it is reasonable to expect that the users that will be more interested in making a 
reservation are the ones that know their chances of being served are lower than the average. 

How long in advance reservations are placed can sharpen the two effects discussed above: on the 
one hand, earlier reservations entail better information to make decisions, but on the other hand, they 
increase the required computational time. This is why we run experiments modifying this parameter 
to be equal to 5, 10, 15, or 20 minutes in advance. 
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To examine the sensitivity towards the underlying request data, a second set of requests from 
Manhattan is used, taken from the morning peak, and which presents a significant difference in 
origin/destination distribution compared to the original test case. The distri- butions for both 
scenarios are shown in Figure 3. The morning request set consists of 28,030 requests. To be 
comparable with the noon data set, 10,548 unique samples are randomly drawn from this morning 
hour. As shown by Soza-Parra et al. (2022), different spatial de- mand patterns can have a strong 
impact on the efficiency of on-demand ridepooling, so this sensitivity analysis is meant to determine 
whether this is also the case when reservations are included. 
Figure 3: Origin and destination distribution for the test case and the sensitivity analysis 

 
 
 
 
4.2. Results 
In this section, we show the results of our model, by comparing the scenarios with and without 
reservations, and also measuring the effect of the benefits. We take the service rate (i.e., the 
percentage of users that are served) as the main KPI to be analyzed. 

First, the results are shown without heuristics in scenarios where it is possible to run the 
simulations to optimality. Second, we study the effects of the proposed heuristics. Third, the 
results for scenarios with both pledged service and the heuristics are evaluated. Last, the 
sensitivity of the results to the requests’ data is analyzed. 

 
4.2.1. Quantifying the trade-off 

The main results of the model are shown in Figure 4. For now we focus on the Random 
Reservations scenario, and we depict the service rate both overall (solid lines) and for reser- vations 
(dotted lines). The experiments are performed with reservations revealed only 5 minutes in 
advance. 

 

Figure 4 shows the following: 

• The extra information provided by reservations does improve the service rate. This can 
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Figure 4: Effects on service rate if benefits are assigned to reservations 

 
 

be seen as the three solid curves increase. In the most extreme case (60% of reservations with no 
benefits) the service rate increases from approx. 86% to 91%. 

• The trade-off between having more information but less freedom to assign is real, as 
revealed by the fact that the solid blue and orange curves are below the green one, i.e., the 
service rate decreases when there are benefits. Crucially, the overall effect is always 
positive, that is, the service rate increases when there are reservations even if they receive 
benefits. 

 
Figure 5: Effects on total delay time if benefits are assigned to reservations 

 
 

• The increase in service rate comes at the cost of increasing the average delay by about 40 
seconds, as shown in Figure 5. This increase is expected as we are now serving more passengers 
with the same fleet, and has also been found in previous papers that leverage 
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predictive techniques to increase service rate (Fielbaum et al. 2022). Users that reserve face a 
lower total delay than the rest, which is expected as vehicles can be sent towards them before 
the minimum pickup time. 

• We remark that vehicles run continuously with or without reservations. In other words, the extra 
information enables serving more people without increasing vehicles-hours- travelled, 
effectively making the system more sustainable as discussed in Section 1. 

• It is better to utilise the Pledged service as a benefit, rather than the Increased rejection penalty. 
The overall effect is similar, but the Pledged service is better for reservations: not only it gives 
an immediate response, but also provides a better service rate for reservations, which actually 
reaches 1 unless the percentage of reservations is too large. In the following sections, we 
assume that the Pledge service benefit is provided. 

 
4.2.2. Heuristics 

We now study the impact of utilising the heuristics proposed in section 3. The effect of more 
information on the service rate is shown in Figure 6a. The orange line shows the results without 
heuristics, and the blue line with them. In this experiment, all reservations are revealed to the 
system 5 minutes in advance. Crucially, we apply a time limit to the ILP as sometimes it is not 
possible to obtain the optimal solution. 

Figure 6: Effects of the heuristics 

 

(a) Service rate with random reservations 
revealed 5 minutes in advance 

(b) Computational time with random reservations 
revealed 5 minutes in advance 

 
Initially, a steady increase in service rate is reached with more reservations. The reason behind 

the drop in performance of the orange line is given in Figure 6b, where the compu- tational time is 
shown with and without the heuristics. When the number of reservations is large, the experiment 
without heuristics reaches the computational time limits and de- teriorates in performance as a 
consequence. Before that drop, the heuristics reduce significantly the computational time 
and obtain a similar service rate as the optimal solution. Therefore, the heuristics will be 
used in the following results in this paper. 

 
4.2.3. Different times revealed in advance 

We summarize the results for different percentages of reservations, and different minutes in advance, 
in Table 1. We also show the results in the adversarial case. The results are with the described 
heuristics and the pledged service constraint. Each cell in the table shows the overall service rate, 
the service rate for reservations, and the computational time used for the simulation. 
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Table 1: Results from the incorporation of reservations in an on-demand ridepooling system for different 
percentages of random reservations revealed a certain time in advance 

Time revealed in advance 
[minutes] 

5 10 15 20 
 
 
 

Overall service rate (SR) 
Reservations’ SR Simulation 
time [seconds] 

 
 
 
 
 
 
 
 
 
 
 
 

Adversarial 
reservations 

 
 
 

Results follow the trend of the two previous subsections. Reservations do help the system, even 
when providing benefits to the users that reserve. However, if reservations are placed too much in 
advance, they can be harmful due to the computational limits. Crucially, if reservations are 
done little in advance (5 minutes in our simulations2), the service rate can always be increased 
significantly; results are also positive in the adversarial scenario, but worse than in the random 
one, as expected. 

 
4.2.4. Sensitivity analysis 

In Figure 7 we compare the results in the original scenario (midday) and in the morning peak. 
All reservations are revealed 5 minutes in advance. 

The service rate is slightly higher in the morning peak as there is a bit more overlap in desired 
trajectories for passengers. Trends in performance are similar and more reservations revealed shortly 
in advance increase the service rate significantly in both scenarios. In both scenarios, it becomes 
eventually unfeasible to serve all the reservations, so the dotted lines begin to decrease, but the 
solid lines (overall service rate) always increase. These results show that the merits of oure 
method do not depend on the spatial demand pattern. 

 
5. Conclusion 
One of the main difficulties when operating a ridepooling system, particularly when deciding how to 
group the users and assign them to the vehicles, stems from the lack of information about future 
demand. In this paper, we have analyzed and measured the benefits gained by 

 

2As explained by Alonso-Mora et al. (2017a), the assignment algorithm can be easily distributed. For instance, each vehicle could compute all 
the feasible trips that involve it. The only centralised aspect of the algorithm is the solution of the ILP, which is not usually the bottleneck of the 
method. From a practical point of view, this means that some minutes of computational time are acceptable even if assignments are computed 
every 30 seconds. 
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Figure 7: Simulations for sensitivity data set compared to the test set. Requests are all revealed 5 minutes in 
advance 

 
 

on-demand ridepooling systems if the said lack of information is somehow reduced, by some users 
making reservations shortly in advance. 

To do this, we have identified a relevant trade-off: users would need some incentive (benefit) 
in order to place their requests in advance, and those benefits can indirectly harm the quality of 
service. We have proposed how to modify a state-of-the-art routing algorithm, in order to admit 
reservations and incorporate the said benefits. The inclusion of future demand increases greatly 
the computational burden of the algorithm, so we have proposed a number of heuristics. 

We have run experiments considering the real-life network from Manhattan, and utilising a dataset 
containing the actual taxi trips occuring there. Considering the service rate as the main KPI, our 
results are promising: we have shown that reservations do improve the operation of the system, 
even when considering the benefits for the reserving users - namely, a better probability of being 
served. This increase in service rate is achieved without increasing the fleet size or the vehicles-
kilometres-travelled, implying that the additional information provided by the reservations, and our 
method to handle it, make the system more sustainable and can help relieve congestion. 

Moreover, the heuristics barely affect the service rate and reduce the computational time 
significantly. However, we have also shown that if too many users reserve, or if they do it too much in 
advance, the additional complexity precludes finding good solutions and the system degrades. 

As ridepooling is an emerging topic, there are plenty of directions for future research related 
to the inclusion of reservations. The most direct one emerging from our results is the need for 
stronger heuristics, or additional tailored methods, to deal with situations when the number of 
reservations is too large. Additionally, some users might want to ensure getting serviced by 
requesting long in-advance, so how to combine long-term and short- term reservations is a 
relevant methodological question, that would probably need to mix traditional dial-a-ride-related 
techniques with the ones presented here. Finally, ridepooling system present relevant issues related 
to unreliability, as the travelling times get constantly updated: utilising the future information to 
provide better predictions to the users is yet another promising direction to further investigate. 
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