
Australasian Transport Research Forum 2023 Proceedings
29 November – 1 December, Perth, Australia

Publication website: http://www.atrf.info

1

Transport planning network and services extraction:

PLANit open-source toolkit

Mark P.H. Raadsen*, Michiel C.J. Bliemer

Institute of Transport and Logistics Studies, The University of Sydney

Email for correspondence (presenting author*): mark.raadsen@sydney.edu.au

1. Introduction
Transport modelling requires a plethora of data/inputs before the actual modelling can take
place. Travel demands, transport infrastructure networks, public transport services, zonings, all
need to be ingested, processed, and made fit for purpose beforehand. This is a laborious task,
often taking more time than the modelling itself. In this work, we contribute to reducing the
efforts required for this task, with a focus on the supply side inputs of transport modelling, e.g.,
infrastructure networks and public transport services. We introduce an Australian developed
open-source tool to extract infrastructure and (public transport) services in an easy, yet
comprehensive, and highly configurable manner. While in this work we focus on leveraging
Open Street Map (OSM) and GTFS data sources, the general purpose and architecture aids any
data from which network and/or public transport information can be extracted. This work has
been carried out as part of the Australian Transport Research Cloud initiative (ATRC, n.d.),
with the aim to let researchers and practitioners focus more on their actual applications and
modelling tasks by reducing the complexity of setting up their model inputs.
There exist various tools to extract information from OSM. However, simply isolating the road
infrastructure from OSM data does not suffice in a planning context. To create routable
networks suitable for multi-modal transport planning OSM networks need additional effort;
they require additional configuration to attach, for example, link capacities, deal with tagging
errors, and/or supplement missing information on lanes and speeds, etc. A few of such parsers
do exist. However, they are generally designed to produce something specifically suitable to a
single modelling environment, e.g., output for Aimsun (Aimsun, n.d.), VISSIM, or MATSim
networks (Horni et. al., 2022). These might not be open-source, and if they are, they are often
cumbersome to setup, especially for researchers, students, or professionals who do not have a
computer science background. Lastly, these parsers are focused on vehicular traffic and rarely
allow for flexible extraction of for example pedestrian, bicycle, and/or public transport
services/infrastructure information.
In this work we address existing limitations in two ways: (i) Provide flexible open-source tools
that are transport model agnostic, with various configurable data format conversions. (ii)
Demonstrate the capabilities of these tools via an example application in the context of the
ATRC project. The presented case study demonstrates extracting MATSim networks combined
with public transport schedules from OSM/GTFS data sources. Note however that the tooling
and underlying data format supports pedestrian, bicycle, and other mode extractions as well.

2. Approach
The conversions supported by the presented work are based on the notion of a “converter”. It
asks the user to choose a reader, e.g., OSM network reader, as well as a writer, e.g., MATSim

http://www.atrf.info/

ATRF 2023 Proceedings

2

network writer, see Figure 1. Readers and writers have user configurable settings to fine-tune
the process without the need for complex programming. Each reader outputs a memory model
in the PLANit intermediate format, which remains unseen by the end user. This memory model
is then passed on to the chosen writer which, in turn, produces the result in the desired format.
An end user will not notice this 2-tiered approach, but by having an intermediate layer,
additional readers/writers will be easier to create and maintain. For example, one can choose to
create a writer for their own data format while reusing the existing OSM reader. The
intermediate format is transport planning centric, unlike GTFS or OSM, and is therefore much
easier to handle.
The tools are available in Java but also have a Python interface. Documentation, examples, and
other resources on the project can be found on the PLANit website (PLANit, n.d.). It should be
noted that network conversions are just one part of this project, which has a wider objective to
provide a variety of open-source tools regarding (supply side) transport planning and
simulation. In the remainder of this short paper, we will focus on the capabilities of our OSM
and GTFS readers combined with the MATSim network/public transport schedule writer.

3. Open Street Map parser
The objective of the OSM parser is to be generally applicable across a range of transport
planning applications, avoiding assumptions on how these networks will be used. Default
configurations are provided while allowing users to apply overrides if needed. The parser
constructs physical infrastructure networks (when modes are non-stationary, e.g. road, rail) as
well as physical public transport infrastructure (when modes are stationary, e.g., poles
platforms). Services are not supported, these are parsed via a compatible GTFS parser, see
Section 4.
Network parser
Notable configurable features for OSM network parsing are listed in Table 1. Some of the listed
features allow users to address possible tagging errors that inevitably occur in OSM.
Comprehensive logging is provided to identify such cases and users can act in case the default
solution is not desired or cannot be derived from the context automatically.

Figure 1: (a) Conversion architecture from source to sink format via intermediate format, (b) various
types of converters are available, such as for networks and services (or a combination (not depicted).

Network Converter

Converter
data source

Reader Memory model Writer

data sink

network

NetworkReader Network Memory model NetworkWriter

network

Services Converterservices

ServicesReader Services Memory model ServicesWriter

services

Intermediate formatSource format Sink format

(a)

(b)

ATRF 2023 Proceedings

3

Table 1: configurable features of OSM network parser.

Feature Notes Example

Mode mapping Default mode mapping is provided, but users can
override this

One can map light-rail, tram, subway all
to a single train mode, or keep them
separate

Road mode support
identification

Identify which modes are accessible to OSM ways,
including bike lanes, bus lanes, and complex
directional tagging information

A one-way street with an opposite
direction bus lane also allowing bicycles,
will result in two uni-directional links with
the correct modes attached

Speed limit and lane
grouping

Automatic grouping of roads by type based on
speed limit, lanes, etc. Defaults applied if absent
(by type) which can be overridden

Override default speed limit and/or
number of lanes for any OSM way types
when not tagged

Removal of
unconnected
subnetworks

Any dangling subnetworks in the result can be
removed and size of what is considered dangling
can be configured

For example, remove all dangling network
with less than 10/20/100 nodes

Overwrite mode
access on specific
OSM ways, exclude
specific OSM ways

Explicit overwrites for mode access can be
provided, OSM ways that are to be removed for
scenario testing, or otherwise can be listed

Remove OSM ways that are under
construction, or not yet finished, allow
buses on private roads where appropriate
etc.

Railway and road
way type
(de)activation
overrides

Default configurations for which OSM way types
and rail types are parsed, used and logged. These
can be overwritten when required

Extract only the miniature railways for
children in New south Wales by switching
off all rail types except miniature railways
(default is that these are excluded)

For example, it might happen that a bus stop resides on a road without bus access, or a bus stop
is located on the wrong side of the road, such situations will be logged and can then be addressed
by for example adding mode bus to this road or attaching specific stops to specific OSM ways.
There is also support for country specific defaults. Mode access for example is governed by the
type of OSM road, e.g., no pedestrians on motorways. This logic is applied when explicit tags
are absent. A similar approach exists for speed limits which also have defaults by OSM road
types. However, these defaults differ per country and are not part of the OSM data but are
disseminated on OSM’s wiki pages. The parser has embedded country specific mappings
conforming to theses OSM specifications for Australia and The Netherlands, while others can
be provided via configuration files. If the OSM data originates from a not yet supported country,
global defaults will be applied. This holds for railways as well as for roads.
Public transport infrastructure parser
The OSM parser is also capable of parsing public transport stops. The benefit of OSM based
stop/platform data over GTFS stops is the fact they can contain information on how the stop
attaches to the road network via specialist tags. GTFS stop information only provides a location
of the pole/platform and requires algorithmic based snapping to the network which is inevitably
more error prone. By matching GTFS stops to OSM stops, when present, and then using the
OSM mapping to the network, the quality of the mapping can be improved, see Figure 2.
Public transport services, however, are not sourced from OSM because quality and availability
is inferior to GTFS. Table 2 lists the main configurable features of the public transport
infrastructure parser aspect of the presented approach.
Besides configurable options, the parser supports flexible geometries for stop locations, e.g.,
poles are parsed as points, platforms as lines, or polygons, and for complex platforms with
escalators, we extract the outer geometry. In case the output format does not support this level
of detail, e.g., MATSim, these geometries will collapse to points.

ATRF 2023 Proceedings

4

Figure 2: Schematic impression of how leveraging OSM stop locations can help snapping of GTFS stops to
the physical network.

OSM has various ways of supporting train stations, ranging from a single “station” node, to
intricate platform configurations. In the former case, the parser will infer platforms by searching
for the closest by track and then places platforms on all tracks running parallel to the reference
track within a reasonable distance. As an end user this means that the result always provides a
platform per rail track per station, even if the platform is not explicitly coded in OSM. These
types of “salvaging”, or intelligent parsing options, have been applied throughout to minimise
the need for manual adjustments after the fact.

4. GTFS parser
The GTFS parser comprises three main aspects: (i) generic file parsers for the various GTFS
files, (ii) conversion from raw GTFS entities to the intermediate format, (iii) integration with
existing public transport infrastructure available in the intermediate format, e.g., fuse with a
network and infrastructure obtained via the OSM parser.
(i) Generic file parsers
In case a user just wants to parse GTFS files, or a subset, the provided collection of parsers can
be used without any need to adopt the PLANit intermediate format at all. They parse raw CSVs
and provide in memory versions of the GTFS data in a convenient way. The user can configure
which columns to extract or leave out.

Table 2: Configurable features of OSM public transport infrastructure parser.

Feature Notes Example

Configurable search
radii

Defaults are applied when snapping poles and
platforms to OSM ways (roads/tracks), these can
be overwritten

When no explicit mapping to a road/rail is
provided, the parser will search around the
pole/platform – up to the distance threshold
– to find the closest mode matching road

Exclude stops, stations,
platforms by node or
way ids

Allow user to exclude certain stops, platforms, or
stations from parsing if they are problematic,
outdated, or for other reasons

OSM contains stops that are under
construction, in the wrong location, and/or
not accessible to the public, on the wrong
side of the road etc. These can be excluded
(or mapped differently)

Overwrite stop location
on road to waiting area
(pole/platform)
mapping

The stop location is the location on the network
where a transit vehicle services a waiting area
(pole/platform). Sometimes there is a tagging error
in this mapping. Using this override, the user can
force the mapping to which waiting area this stop
location is matched, without issuing a warning.

A stop location might be located on the
wrong side of the road in a complex bus
station with many platforms, if upon
inspection the mapping between pole and
location is valid (but the pole cannot be
moved), this can be used to avoid this
warning and indicate their relation as valid)

Overwrite waiting area
(pole/platform) OSM
way (stop location)
mapping

Inverse of the above, when no stop location is
tagged on a waiting area (pole/platform), the
algorithm might identify a problem in identifying
a valid stop location on a nearby road, this option
allows the user to inspect and force where the
parser should place the stop location

This might be needed when the stop is placed
too far from the road it services, or it is
matched incorrectly to a minor road that is
spatially closer (but would trigger a warning
with the stop being on the wrong side)

OSM way OSM stop

OSM stop location

GTFS stop

mapping GTFS route(s)

ATRF 2023 Proceedings

5

(ii) GTFS parser to intermediate format
Built on top of the generic parser are GTFS readers that process the GTFS data and produce
stops and platforms, a service network, and the routed services in the intermediate format. This
format preserves the schedule information and contains detailed geometries of the stops and
platforms. It also creates an additional service network on top of the physical network
representing the legs between stops as a graph, where each leg comprises one or more physical
link segments. The GTFS routes and trips then are routed on the service network (rather than
the physical network), based on the shortest paths between used stops.
(iii) Mapping of GTFS stops to physical/service network
In case the user has parsed public transport stops and platforms from OSM (or elsewhere), then
they are available in the intermediate format when commencing the parsing of the GTFS. In
that case, the parser will attempt to map the GTFS stops to existing stops whenever this makes
sense (utilising contextual information such as platform names, locations, etc.). If no viable
match is available, a new stop/stop location will be created. Hence, in absence of any public
transport infrastructure the parser will just create new ones. When the mode at hand is bus, it
will create the stops on the correct side of the road depending on the driving rule of the country,
while for rail-based modes it is assumed both directions of the tracks will be served by the same
stop.
Any GTFS data that is parsed but falls outside the area of the underlying physical network, will
be automatically cropped to the portion that overlaps with the chosen underlying network. In
case services exit and re-enter the network, they will be split into separate routes such that they
are not lost.

4. Case study/ATRC integration
The current version of the OSM/GTFS parser is showcased in the ATRC project, with the
particular purpose of converting OSM/GTFS networks/schedules into MATSim
networks/schedules with minimal configuration required by the user. It exposes high-level
configuration options such as the preferred fidelity of the network, a chosen bounding box (to
limit the area to parse), and options such as include/exclude rail and/or public transport
infrastructure. Figure 3 provides an impression of a high and lower fidelity example of a
MATSim network extracted from OSM using this method.
In this context, it is provided as a cloud-ready Docker image which can be run in stand-alone
fashion either locally or remotely, i.e., via github actions, or some other cloud-based system.

Figure 3: (a) high fidelity result of parsing OSM network of Melbourne in MATSim format, (b) lower
fidelity result of same network conversion.

(a) (b)

ATRF 2023 Proceedings

6

Figure 4: (a) Sydney CBD road/rail network in MATSim format, (b) with rail/light-rail and pt
infrastructure, (c) same network with GTFS attached.

(a) (b) (c)

When PT infrastructure is enabled, the produced networks will include rail/light-rail/tram/metro
infrastructure as well as the waiting areas, i.e., bus poles, train platforms, etc. In case a group
of platforms form a station, these will be captured in a group in the intermediate format. An
example of the Sydney CBD with stops is provided in Figure 4(b), while Figure 4(c) shows an
example result with the GTFS services based on the presented fusing of OSM pt infrastructure
with GTFS stop and schedule information.

5. Discussion and future work
In this work we presented a new generic open-source OSM/GTFS parser for transport planning
purposes. Unlike existing parsers, it can leverage OSM public transport information to improve
the GTFS parsing accuracy. It is not dedicated to a particular data format for its input or output.
Based on its 2-tiered conversion approach it allows for easy extensions where only part of a
converter, e.g., only a reader, or only a writer, needs to be implemented, after which all existing
readers/writers can be reused to create new converter combinations. An example application –
part of the ATRC initiative – demonstrated the OSM/GTFS readers and MATSim writer.
Additional readers and writers supporting shape files and geopackages are planned to be added
in the near future.

Acknowledgments
The Australian Transport Research Cloud project received investment
(https://doi.org/10.47486/PL104) from the Australian Research Data Commons (ARDC), and
technical support from AURIN. The ARDC and AURIN are funded by the National
Collaborative Research Infrastructure Strategy (NCRIS).

References
Aimsun, n.d.. User manual,

https://docs.aimsun.com/next/22.0.1/UsersManual/OSMImporter.html
ATRC, n.d., Australian Transport Research Cloud project, https://doi.org/10.47486/PL104
Horni, A, Nagel, K and Axhausen, K W (eds.) 2016 The Multi-Agent Transport Simulation

MATSim. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw
PLANit, n.d. Planning Assignment, Networks, Integrated Toolkit open-source initiative,

http://www.goplanit.org.

https://protect-au.mimecast.com/s/rvavCnx1jniXl16V7SZAazS?domain=doi.org
https://docs.aimsun.com/next/22.0.1/UsersManual/OSMImporter.html
https://doi.org/10.47486/PL104
http://dx.doi.org/10.5334/baw
http://www.goplanit.org/

