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1. Introduction 
In recent years, the proliferation of GPS-enabled devices has led to an explosion of data, 
including vast amounts of trajectory data capturing user mobility and travel behavior. One 
important area of research in this field is trajectory user linking, which involves analyzing 
patterns of behavior to identify anonymous trajectories with the users who generated them. 
Trajectory user linking has a wide range of applications. For instance, by linking check-in 
trajectories on points of interest (POI) to specific users, advertisers can better understand users' 
preferences and interests and deliver more targeted and personalized recommendations. 
Trajectory user linking can also be used to identify and detect criminal/terrorist behavior or 
track the transmission of pandemics by mapping suspicious trajectories to potential suspects in 
the database system. Furthermore, trajectory user linking can also help improve transportation 
planning and traffic management by providing insights of the user's mobility patterns, including 
their commuting routes, their favorite leisure spots, and their travel habits. 

Traditional methods for trajectory user linking involve measuring the similarity between 
unknown trajectories and known trajectories. However, such methods are usually time-
consuming and more sensitive to data quality issues. Trajectories with inconsistent sampling 
rates or different lengths generally induce poor linking performance. To overcome these 
limitations, in recent years, plenty of studies have been developed for trajectory user linking, 
making use of deep learning techniques that attempt to learn the nonlinear correlations of users' 
behaviors from the data. Most of the existing work (Gao et al., 2017; Miao et al., 2020; Zhou 
et al., 2018) attempt to mine the sequential transition patterns from the trajectories based on 
Recurrent Neural Network (RNN) models and mainly focus on the POI check-in data. Some of 
them consider the GPS trajectTraories. Generally, the performance of trajectory-user linking 
depends on several factors, such as the type of trajectory data, the length of the trajectories, and 
the sampling rate. For instance, POI check-in data, which typically consists of short and sparse 
trajectories, may perform differently than GPS data, which provides more continuous and dense 
trajectories. Additionally, the length of the trajectories and the sampling rate can affect the 
accuracy of trajectory user linking. Longer trajectories may contain more diverse 
spatiotemporal information but may also be more challenging to analyze due to their 
complexity. Similarly, trajectories with inconsistent sampling rates may introduce noise and 
affect the linking performance. 

To address these challenges, our work proposes a deep learning model that combines the power 
of GNN and RNN to capture the spatiotemporal information of different types of trajectories. 
The GNN-based point embedding module allows us to transform each point of the trajectory 
into a more feasible format, such as a vector, that captures the complex relationships between 
different points. The RNN-based trajectory embedding module then takes these embeddings as 
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input and learns sequential correlations to generate a trajectory representation that captures the 
overall behavior of the user. Finally, the user linking module maps the trajectory representation 
to the corresponding user, which typically works as a classification task. We conducted 
experiments to evaluate the effectiveness of our proposed model on three distinct categories of 
data: POI check-in data, Bluetooth data, and GPS data. Our results demonstrate that our model 
exhibits promising performance in solving the trajectory-user linking problem. Notably, our 
model shows an ability to handle the sparsity of POI check-in data and the noise in Bluetooth 
data while still capturing the richness of GPS trajectories. However, what is particularly 
interesting is that our experiments reveal varying performance across the different datasets. 
Specifically, we found that data with different characteristics exhibit different performance 
when applying our proposed methods with different submodules. Overall, our experiments 
highlight the importance of selecting appropriate submodules for different data characteristics 
in order to achieve optimal performance in trajectory-user linking. 

2. Problem statement 
In this section, we provide a formal definition on the trajectory-user linking problem. 

Definition 1 (Trajectory): A trajectory 𝑇𝑇𝑢𝑢 generated by the user 𝑢𝑢 is denoted by a sequence of 
spatiotemporal points 𝑇𝑇𝑢𝑢 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝|𝑇𝑇𝑢𝑢|}  organized chronologically, where each point 
𝑝𝑝𝑖𝑖 = (𝑙𝑙𝑖𝑖, 𝑡𝑡𝑖𝑖) consists of a geographic coordinates 𝑙𝑙𝑖𝑖  (e.g., longitude and latitude) and a 
timestamp 𝑡𝑡𝑖𝑖. 

An unlinked trajectory 𝑇𝑇�  is anonymous whose corresponding user is unknown yet. And the 
trajectory-user linking problem tries to map each unknown trajectory to its corresponding user 
from a candidate set of users. Thus, we assume that all the unlinked trajectories are generated 
by one of user in the pre-defined candidate set. Coorespondingly, we define the trajectory-user 
linking problem as follow. 

Definition 2 (Trajectory-user Linking): Given a set of unlinked trajectories 𝛤𝛤�and a set of 
candidate users 𝑈𝑈, we aim to learn a mapping function 𝑓𝑓:𝛤𝛤� → 𝑈𝑈 that links every unlinked 
trajectory 𝑇𝑇� ∈ 𝛤𝛤�  to its corresponding user 𝑢𝑢 ∈ 𝑈𝑈. 

3. Methodology 
In this section, we give an overview of our model, which contains three components as shown 
in Figure 1. In the following, we present the details of each sub-module individually. 

Point-level representation learning: Given a sequence of trajectory, the first component aims 
to generate a low-dimensional vector for each point of the trajectory, as the input for the 
sequential neural network to learn the correlation between trajectories and users. The goal of 
this process is not only to mitigate the problem of the curse of dimensionality, but also to 
incorporate rich information from different types of features for further process. For instance, 
TULER (Gao et al., 2017) and TULVAE (Zhou et al., 2018) apply a technique usually used in 
natural language process (NLP) for word embedding, name Word2Vec (Mikolov et al., 2013), 
which is a semi-supervised method for point embedding. In general, a trajectory contains 
location, timestamp, and semantic information such as POI category. The initial representations 
for different features are usually one-hot encoding. Rather than directly taking this format as 
input, most of the existing work tend to convert the one-hot format into a dense vector with 
lower dimension. A straightforward way is to augment one layer of perceptron before the main 
network. Specifically, we develop a transformation matrix 𝐸𝐸 ∈ ℝ|𝑓𝑓|×𝑑𝑑 such that each category 
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of features can be represented by a vector format, i.e., 𝑣𝑣 =  𝑓𝑓 ∙  𝐸𝐸, where 𝑓𝑓 indicate the feature 
vector and 𝑑𝑑 is the targeted dimension of the output representation. In implementation, this can 
be easily achieved by adding a linear layer where 𝐸𝐸 is made up by the parameter matrix. Then 
we apply a graph neural network on top of the linear layer for feature embedding. Recently, 
many research studies working on spatiotemporal data explore the trend of applying GNNs for 
representation learning, which we refer to as graph-based embedding (Wu et al., 2019). The 
intuition of applying GNN for trajectory-user linking is that the location points with similar 
features ideally should have similar representation, which can be achieve by message sharing 
among neighbors in the GNNs. In this case, the construction of the underlying conceptual graph 
is critical since the information propagation from node to node is based on the topological 
structure such that the correlations of features from not only this node, but also other nearby 
nodes are captured. In our work, we build the graph structure based on two categories of 
connections: spatial connection and mobility connection. We construct a spatial graph based 
the location information, where an edge is added to two nodes, if the distance of their locations 
is within a certain threshold. In terms of the mobility connection, a visit graph is built according 
to the sequential moving pattern, where each edge represents a visiting/traveling behavior from 
one point to another by one user. Afterwards, two graphs are consolidated into one global graph 
and for the point-level representation learning. By considering the mobility connections 
between two points, our GNN-based point embedding module can identify and amplify 
meaningful patterns while dampening the influence of noise. 

 

Figure 1: Framework of trajectory-user linking model. 
Trajectory-level representation learning: The trajectory-level representation learning 
module is a crucial component in the trajectory-user linking model. Its main objective is to 
transform the sequence of point-level embeddings obtained from the previous module into a 
fixed-length representation for the entire trajectory. This representation should capture not only 
the features of individual points but also the sequential correlations between them. In the field 
of deep learning, RNN and its variants such as LSTM and GRU have been widely used for 
learning patterns in sequential data (Miao et al., 2020; Yu et al., 2019). To provide more detail, 
the bidirectional LSTM model takes as input a sequence of trajectory 𝑇𝑇𝑢𝑢 = {𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝|𝑇𝑇𝑢𝑢|} 
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where each point 𝑝𝑝𝑖𝑖 is represented by a vector. The model contains a sequence of LSTM units, 
each of which takes a point vector as input. The hidden state of the previous unit is used as the 
input to the consecutive unit for the next time step, which enables the model to capture longer 
dependencies from the trajectory. In a bidirectional LSTM, two sequences of LSTM units are 
used, one processing the input sequence in its original order and the other processing it in 
reverse order. This allows the model to capture not only the past context of each point but also 
its future context. The outputs of the two LSTM sequences are then combined to form the final 
representation of the trajectory. Figure 1 shows the architecture of our trajectory-level 
representation learning module. As illustrated, the bidirectional LSTM model takes a sequence 
of point-level embeddings as input and outputs a fixed-length trajectory representation, which 
is used for the subsequent trajectory-user linking task. 

User linking: After the trajectory-level representation learning, the final step is to link the 
trajectory to its corresponding user. This is usually done by a classification task, where the 
model predicts the user label of the trajectory based on its representation. We use a SoftMax 
function to compute the probability distribution over all users, and the predicted user is the one 
with the highest probability, as shown in Figure 1. 

4. Experimental study 

In this section, we present an experimental study for the proposed model on three different data 
sets. We first provide a description of our data sets, followed by the experiment setting and 
performance results. Finally, we discuss the insights that we observe based on the performance 
results and point out the potential future direction of this research topic. 

4.1 Data description 

Foursquare includes 227,428 Foursquare check-ins with 38,333 distinct POIs generated by 
1083 users in New York City (NYC) over 5 months in 2012. Each check-in contains a few 
attributes, including time stamp, GPS coordinates, and semantic meaning (represented by venue 
ID, venue categories, and venue category ID). The overall sampling rate of this dataset is quite 
low (e.g., hourly). 

Bluetooth (Xu et al., 2020) data are captured by road-side Bluetooth Media Access Control 
(MAC) Scanners (BMSs) around the city of Brisbane, Australia. It contains 192 millions of 
BMS readings for 683, 000 distinct objects captured by 1,028 BMSs over a period of one month. 
The sampling rates for the Bluetooth are various from seconds to hours depending on the 
locations among the BMSs. 

Geolife (Zheng et al., 2009) GPS trajectory dataset was collected in (Microsoft Research Asia) 
Geolife project by 182 users in a period of over five years (from April 2007 to October 2012). 
This dataset recorded a broad range of users’ outdoor movements with different travel modes. 
A large proportion of trajectories are logged in a dense representation with a high sampling rate 
(every 1-5 seconds). We resample the GPS points with a sampling rate of 5 minutes to reduce 
the redundancy. 

4.2 Experiment settings 

When analyzing user mobility and travel behavior using trajectory data, grouping 
spatiotemporal points of a user into one trajectory can result in a long sequence containing 
multiple trips with different purposes. However, in real-world scenarios, linking a user based 
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on one purposeful trip is more meaningful than a long sequence with historical points. 
Additionally, training a neural network model to map long sequences of trajectories to a specific 
user can be computationally expensive due to the required neurons. Therefore, it is necessary 
to divide a long trajectory sequence into shorter segments. We conducted preliminary studies 
on different trajectory segmentation methods and found that a straightforward, yet efficient way 
is to split the trajectory into segments with equal lengths of time span. Specifically, each sub-
trajectory has a fixed duration of, for example, 6 hours. To test the performance of our 
trajectory-user linking model, we extracted data from three datasets, each containing 112 users 
with 13180, 3620, and 11050 trajectories for Foursquare, Bluetooth, and Geolife, respectively. 
We split each dataset into 80% for training and 20% for testing, and optimized our model with 
the Adam optimizer, minimizing the cross-entropy between the ground truth user label and the 
linked one. To evaluate the model's performance, we predict the top-k candidate users for each 
testing trajectory and use accuracy at k (ACC@K) and macro-F1 as performance metrics, which 
are defined as follows, where 𝑃𝑃∗and 𝑅𝑅∗ are precision and recall averaged across all classes. 

ACC@K =  # correctly identified trajectories @ K
# trajectories

 ,        macro − F1 =  2 × P∗×R∗

P∗+R∗
 

4.3 Performance study 

We conducted an experimental study to evaluate the effectiveness of our model on three 
different datasets, and compared its performance with models that remove certain components. 
As the RNN-based trajectory-level embedding is a crucial submodule for trajectory-user 
linking, we kept it as the base and examined the impact of different point-level embedding 
methods. Specifically, we investigated the effectiveness of the GNN model on point-level 
embedding by comparing it to a linear layer only. Furthermore, the underlying graph structure 
in the GNN module was built using two different connectivity approaches, and we evaluated 
the performance of the model by removing the spatial connectivity and considering only the 
visiting connectivity. It should be noted that for check-in data, spatial distances between two 
consecutive POIs can be quite large, so we cannot rely solely on spatial connectivity. 

Table 1: Performance results for different data sets. 
Models Metrics Data set 

Foursquare Bluetooth Geolife 

GNN (V+S) 
ACC@1 57.69% 62.66% 49.61% 
ACC@5 63.91% 79.23% 73.22% 
Macro-F1 53.80% 53.39% 25.92% 

GNN (V) 
ACC@1 67.75% 63.36% 48.19% 
ACC@5 81.71% 78.18% 72.17% 
Macro-F1 65.81% 54.55% 24.24% 

NN-Embed 
ACC@1 58.36% 69.50% 47.19% 
ACC@5 65.18% 85.18% 71.65% 
Macro-F1 55.28% 61.35% 23.52% 

The results of our experimental study, presented in Table 1, highlight the effectiveness of 
different point-level embedding methods for trajectory-user linking. Note that we conducted 
each experiment three times and calculated the average of the results. As shown in the table, 
Bluetooth data consistently outperforms the other two datasets, with the ACC@1 and ACC@5 
metrics achieving values of around 70% and 85%, respectively, in the best case. On the other 
hand, the Geolife dataset shows the worst performance across all methods, likely due to the 
complexity of GPS trajectories, which often contain a larger number of points with more diverse 
and frequent location updates. Importantly, our study also revealed that different point-level 
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embedding methods are more suited for different types of data. For example, check-in data from 
Foursquare performs better with the GNN module that considers only visiting connectivity. 
This is because different users might visit nearby POIs in different orders, making it challenging 
to distinguish between them when considering spatial connectivity. In contrast, Bluetooth data 
appears to perform better with the NN-embedding method, without the GNN module. Lastly, 
our results show that GPS trajectories exhibit the best performance with the GNN module and 
the worst performance with NN-embedding only for point-level embedding. Overall, these 
findings highlight the importance of carefully selecting the appropriate point-level embedding 
method based on the characteristics of different datasets, as well as the potential benefits of 
using GNN-based models for GPS trajectory data. 

5. Conclusion 

In this paper, we proposed a novel deep learning model that leverages the strengths of both 
GNN and RNN to address the challenging task of trajectory-user linking. Our model was 
evaluated on three different datasets: POI check-in data, Bluetooth data, and GPS data, and the 
results demonstrated promising performance in accurately linking trajectories to their 
corresponding users. However, we observed that the model's performance varied across the 
datasets, which highlights the importance of selecting appropriate submodules for different data 
characteristics to achieve optimal performance. Moving forward, our future work will focus on 
investigating more in-depth impact on the performance of various methods. Future research 
could involve detailed investigations into the interplay between data characteristics and the 
algorithmic approaches, as well as systematic comparisons of their capabilities across a range 
of datasets. Such analysis will be invaluable for advancing our understanding of trajectory-user 
linking and refining our algorithmic choices. 
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