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Abstract 

Traffic prediction is a crucial element in managing traffic. Its goal is to comprehend traffic 
patterns over time in order to anticipate future behavior. In recent times, many research papers 
have contributed to this area, with a focus on developing machine learning algorithms, 
particularly deep learning algorithms. Despite producing promising outcomes, real-time traffic 
prediction faces obstacles due to traffic data being a subset of big data streams that are 
continuously updated. Nonetheless, over the years, incremental learning has evolved to tackle 
real-time problems. To address this challenge, this paper evaluates an incremental deep 
learning approach using overlapping rolling window, tap delay line method and LSTM on a 
real-world traffic flow dataset collected in Melbourne. 

1. Introduction 
Intelligent transport systems (ITS) have undergone vast development and advancements, 
resulting in a large amount of data being generated continuously and in real-time at a low cost. 
One of the critical tasks of ITS is to leverage such data for various optimization tasks and 
applications. In this paper, we focus on one of the applications, namely, traffic prediction, 
which aims to predict the traffic status of a road network given recent past traffic observations.  
Traffic data often comes in the form of time series, and an important task over traffic data, i.e., 
traffic prediction, is often modelled as a time series prediction problem. A time series refers to 
a set of data with a temporal correlation. The objective of time series prediction is to anticipate 
future values by analyzing past data. Time series prediction has various applications in diverse 
fields such as transportation (Bao et al., 2023), finance (Ghanbari and Arian, 2019), (Son et al., 
2023), climate (Mudelsee, 2019), (Liu et al., 2022), and biology (Costello and Martin, 2018). 
 
In the last decade, significant efforts have been made to develop techniques for time series 
prediction, ranging from statistical approaches to advanced deep learning algorithms. 
Statistical methods are mathematical techniques used to infer variable relationships. 
Exponential Smoothing (Gardner Jr, 1985), Vector Autoregressive (Chandra and Al-Deek, 
2009), and Autoregressive Integrated Moving Average (Kumar and Hariharan, 2022) are the 
most commonly used statistical models. However, despite their popularity, they are often 
insufficient since they rely heavily on the assumption of stationary data.  
 
With the emergence of machine learning and deep learning algorithms such as Support Vector 
Regression (Nidhi and Lobiyal, 2022), Artificial Neural Network (More et al., 2016), 
Convolution Neural Network (He et al., 2019), (Li et al., 2022), Recurrent Neural Network (Li 
and Ren, 2022), (Nourmohammadi et al., 2023), and Graph Convolutional Network (Kipf and 
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Welling, 2016), (Bao et al., 2023), there has been a growing interest in deep learning-based 
traffic prediction techniques. A substantial number of studies on traffic prediction have been 
conducted in recent years as these methods can potentially fit a wide range of functions and 
have a better ability to identify patterns (Lee et al., 2021). 
However, the substantial and continuous flow of time series data presents a significant 
challenge for real-time traffic prediction, leading to a host of other difficulties. For example, 
the models used for prediction need to be updated frequently to incorporate new traffic patterns. 
Additionally, due to space constraints, it is impractical to store and analyze all data 
simultaneously, making computation infeasible (Gomes et al., 2019). To address these 
challenges, different paradigms have been introduced. One important paradigm of such is 
online learning, which refers to methods that learn dynamically from incoming data (Hoi et al., 
2021). 
In this paper, we present an attempt to evaluate the aforementioned challenges through the 
combination of LSTM, Tap Delay Line and Rolling Window techniques.  Despite the perceived 
simplicity of the solution, it is particularly effective for learning from a continuous data stream. 
The remainder of this paper is organized as follows: Section 2 describes the technical 
background. Section 3 presents the proposed method. Experimental results are discussed in 
Section 4.  Section 5 contains the discussion and Section 6 concludes the paper. 

2. Technical background 
In this section we briefly review the techniques used to form the approach. 

2.1.  Long short-term memory 
In a traditional feed-forward neural network, the error term for each layer is determined by 
multiplying the errors of all previous layers. This can lead to an issue of vanishing gradients 
when using activation functions such as the sigmoid function, which have small derivatives 
that get multiplied multiple times as the number of layers increases. This problem was 
addressed with the introduction of Long Short-Term Memory (LSTM), an artificial recurrent 
neural network (RNN) architecture that was developed by Hochreiter in 1997 (Hochreiter and 
Schmidhuber, 1997). 
 
The purpose of an LSTM recurrent unit is to retain all previous knowledge that the network 
has encountered while disregarding irrelevant data. This is achieved through the use of various 
activation function layers, known as "gates". Additionally, each unit maintains an Internal Cell 
State vector, which represents the information that was deemed important and retained by the 
previous LSTM recurrent unit. An LSTM recurrent network consists of three different gates as 
follows: 

a. Forget Gate: It determines to what extent to forget the data from the previous unit.  

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑤𝑤𝑓𝑓 . [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (1) 
b. Input Gate: It determines the extent of information to be written onto the Internal 

Cell State.  

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖 . [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
�̂�𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑐𝑐̂ . [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐̂) 

(2) 

c. Output Gate: It determines what output (next hidden state) to generate from the 
current Internal Cell State. 
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𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 ∗ 𝑖𝑖𝑡𝑡 ∗ �̂�𝐶𝑡𝑡 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑜𝑜 . [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡) 

 
(3) 

Here, 𝑥𝑥𝑡𝑡is the data sample at time 𝑡𝑡, 𝑤𝑤𝑓𝑓 ,𝑤𝑤𝑖𝑖,𝑤𝑤𝑐𝑐̂,𝑤𝑤𝑜𝑜 are the weights and 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑐𝑐̂, 𝑏𝑏𝑜𝑜 are bias, 
ℎ𝑡𝑡−1  is the previous state, 𝜎𝜎  and 𝑡𝑡𝑡𝑡𝑡𝑡ℎ  are the activation functions and ∗  is element-wise 
multiplication. Figure 1 illustrates the LSTM structure. 
 
Figure 1: The structure of LSTM model. 

 
 

2.2. Tapped delay line 

Tap Delay Line is a technique commonly used in time series data analysis to improve the 
accuracy of predictions. It involves creating a sequence of delayed versions of the original time 
series data, each with a specified time delay. These delayed versions are then used as additional 
inputs to a time series data analysis model (e.g., a prediction model), along with the original 
time series data. The technique is particularly useful for time series data that exhibits 
periodicity or seasonality, as it allows the time series data analysis model to capture the patterns 
in the data more effectively. Simply, the Tap Delay Line (TDL) is an input vector that consists 
of the current time-step and past time-step data instances. Let [𝑥𝑥1, … , 𝑥𝑥𝑁𝑁] be a univariate vector 
of a time series. Then every single input value 𝑠𝑠𝑡𝑡 to a model is converted to a vector as follows: 
 

TDL = [𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡−1. . . , 𝑥𝑥𝑡𝑡−𝑑𝑑] (4) 
 

where 𝑑𝑑 is the delay number. Likewise, if 𝐴𝐴 = [𝑋𝑋1, … ,𝑋𝑋𝑘𝑘] is a multivariate dataset with 𝑋𝑋𝑖𝑖  =
[𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑁𝑁], Then the input is enriched to be: 

TDL = [𝑥𝑥1𝑡𝑡 , … , 𝑥𝑥1𝑡𝑡−𝑑𝑑, … , 𝑥𝑥𝑖𝑖𝑡𝑡 , … , 𝑥𝑥𝑖𝑖𝑡𝑡−𝑑𝑑, … , 𝑥𝑥𝑘𝑘𝑡𝑡 , … , 𝑥𝑥𝑘𝑘𝑡𝑡−𝑑𝑑] 
 

 
(5) 

 

This equation means that the input vector consists of the current and past 𝑑𝑑  values of all 
columns of the input dataset. From a mathematical standpoint, tapped delay line relies on the 
Takens Theorem (Takens, 2006). Despite its benefits, it adds an additional hyperparameter 
(i.e., the delay number) to the model and requires the delay number to be predetermined. 
 
 



ATRF 2023 Proceedings 

 

2.3.  Rolling window 
The rolling window technique is a powerful technique to optimally feed data into a model 
(Zivot and Wang, 2006). By dividing the data into fixed-sized batches and sequentially feeding 
them into a model, this approach has shown to be effective for various time series prediction 
tasks. There are two different approaches within the rolling window technique, each with its 
own benefits. The first is the overlapping rolling window approach, where data batches are 
acquired by sequentially moving a pre-specified window with a fixed overlap size. The second 
approach is the non-overlapping rolling window, where the data is separated into independent 
batches. The rolling window technique introduces another hyper-parameter, the batch size, and 
needs to be set in advance. Figure 2 depicts the overlapping rolling window technique. 
 
 
Figure 2: Overlapping and non-overlapping rolling windows approaches. 

 
 
 

3.  Overall approach 
Suppose there is a time series of incoming data, {𝑋𝑋𝑖𝑖}𝑖𝑖=1∞ , and 𝐵𝐵1 denotes the first batch of data 
where 𝐵𝐵1 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚} with utlizing the tap delay line. At the first stage, an LSTM model 
is initialized and then 𝐵𝐵1 is fed to the model as training data. Here, the model initializes the 
parameters including weghts and biases randomly, and after training, these parameters are 
optimized based on 𝐵𝐵1. Next, the model is used to predict for 𝑝𝑝 steps ahead. After making 
prediction, the next batch of data 𝐵𝐵2 is created and then fed to the model. Here 𝐵𝐵2 is created 
based on 𝑝𝑝 new incoming real data points and the last 𝑚𝑚 − 𝑝𝑝 data points of batch 𝐵𝐵1, i.e., 𝐵𝐵2 =
�𝑋𝑋𝑚𝑚−𝑝𝑝,𝑋𝑋𝑚𝑚−𝑝𝑝+1, … ,𝑋𝑋𝑚𝑚,𝑋𝑋𝑚𝑚+1, … ,𝑋𝑋𝑚𝑚+𝑝𝑝 � where {𝑋𝑋𝑚𝑚+1, … ,𝑋𝑋𝑚𝑚+𝑝𝑝} is the receiving real dataset. 
At this step, the saved model (i.e., the one trained from B1, is loaded and is further trained on 
𝐵𝐵2. In the next step, the trained model on batch 𝐵𝐵2 is again used to make prediction. and the 
above precedure is repeated. 
 
Figure 3 illustrates the proposed method (with a fixed data size on every batch). The first 𝑚𝑚 
data points are used for training (showed in blue color) and then after that the trained model 
predicts for the next 𝑝𝑝 steps ahead (showed in purple color). Then in the next step the actual 
values of the predicted data are attached to the last training data and just as much data is 
dropped from the beginning of training data. 
 
 
 
 



ATRF 2023 Proceedings 

 

Figure 3: The overlapping rolling window combined with tap delay line method for making prediction in 
real time. 

 

4.  Experimental results 
In this section, an experiment on a real-world dataset is conducted to answer whether the 
proposed method is capable of handling streaming data. All the experiments are carried out in 
Python 3.9.7 environment using TensorFlow (Abadi et al., 2016) on a laptop with 11th Gen 
Intel(R) Core i7 and 16 GB memory.  

4.1.  Data description  
The model is evaluated on a real-world traffic dataset. Data was collected from the Victoria 
Street in Melbourne, Australia (Figure 4). The data contains the average speed and flow for 40 
days and the values are aggregated every 15 minutes. The task is traffic flow prediction. 
 
Figure 4: The location of data collection 

 
 

4.2. Measures of effectiveness 

In this study, to evaluate the accuracy of prediction, the root mean square error (RMSE) is used. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are the ground-truth and predicted values of the 𝑖𝑖th data point, respectively 
and 𝑁𝑁 is the number of samples. 
 

4.3. Numerical results 

In the experiment we test both well-known methods LSTM and CNN. The number of hidden 
inputs are set to 20 for both and one dense layer is used at the end. The mean square error is 
used as the loss function and ADAM as the optimization algorithm. We used the sigmoid 
activation function and 10 training epochs. The size of tap delay line is 8 which means it uses 



ATRF 2023 Proceedings 

 

data from the past two hours for predicting the next value(s). Also, we select 30 days (2,880 
samples) as the batch size of the window (m) to train the model and the rest for testing and 
updating. For data normalization, the min-max method was used to bring the data values into 
the range of [0, 1].  
 
Figure 5 illustrates the comparison of forecasted and actual values of traffic flow for single step 
ahead (next 15 minutes) and 4 step ahead for a period of 10 days after denormalization and 
corresponding loss history. Note that each batch of data is trained with 10 epochs. 

 
 

Figure 5: The actual and predicted values of traffic flow for 1 step (top) and 4 steps (bottom) ahead for 10 
days, and their corresponding training loss history using LSTM. 

 

 
 
Table 1 shows the cumulative RMSE values of the results for time horizon 1 and 4 for both 
LSTM and CNN model utilized in the framework. And as can be seen, the smaller the number 
of horizon steps results in better performance. Also, the LSTM outperforms the other one since 
it is capable of capturing the inherently sequential dependencies of traffic data time series. 
 
Table 1: The cumulative RMSE for different time horizon over the predictions. 

Model\ Horizon  15 mins 60 mins 
CNN 26.65 99.38 

LSTM 24.32 73.82 
 
 
 
For a better comparison, Figure 6 provides the actual and predicted values of the tested data 
for different time horizons for one day. The results and visualizations confirm that this 
approach is capable of handling huge and continuous dataset for real-time prediction.  
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Figure 6: The actual and predicted values of traffic flow for 15 mins (top) and 60 mins (bottom) for 1 day 
(96 steps) using LSTM. 

 

 
 

5.  Discussion 
A standout advantage of this approach, compared to conventional implementation of LSTM 
models for time series prediction, is the noteworthy reduction in computational time. By 
employing incremental learning, we sidestep the need for complete model retraining when new 
data arrives. Instead, we incrementally update the model using the latest data while retaining 
past knowledge. This streamlined process not only enhances real-time adaptability to evolving 
patterns but also significantly cuts down on the computational resources required. The 
computational efficiency positions this approach as a practical solution for Real-time Traffic 
prediction, demonstrating its clear advantage over traditional implementation.  
 
It is noteworthy that an essential challenge in deep learning and data-driven traffic prediction 
models is their inclination to focus on typical traffic patterns, neglecting the more crucial "tail 
end" of traffic data that holds significant value for real-time predictions. Additionally, these 
models often lack the capability to anticipate unfamiliar traffic patterns not encountered during 
training. Solutions include a real-time update by data assimilation (e.g., Kalman Filter), or fuse 
the machine learning model with a conventional traffic model that can predict irregular traffic 
patterns. Acknowledging these valid concerns, our study is centered around the evaluation of 
our existing approach within its current framework. While the integration of real-time updates 
or the fusing with conventional traffic models presents an intriguing direction for future 
research, our immediate focus lies in refining the efficacy of our model within its existing 
framework. 
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6.  Conclusion 
Real-time traffic prediction is crucial for effective traffic management. With advancements in 
communication, sensors, and data availability, accurate prediction is necessary. However, real-
time prediction presents various challenges. Recently, deep learning techniques, particularly 
the RNN, have been shown to outperform other methods due to their recursive nature. In this 
study, the LSTM algorithm is employed for traffic prediction. In this regard, the combination 
of a rolling window technique and tap delay line is used to make a tricky approach to update 
the algorithm dynamically and using it for continuous streaming time series datasets. The 
model is tested on real world traffic flow dataset collected in Melbourne, Victoria. 
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