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Abstract 
Traffic flow theory for a multiclass traffic stream is still in its infancy due to the limited 
understanding of associated chaotic traffic dynamics. The conventional theories and models do 
not consider the interactions and dynamics that occur in heterogeneous/mixed traffic 
conditions. Notably, the multi-class traffic flow consists of different vehicle types with varying 
sizes, speeds, and operational characteristics and shares the same road space without any lane 
discipline.  Owing to the existence of a variety of vehicle classes, multiclass traffic flows may 
exhibit quite unique traffic flow dynamics.  Particularly, the varying physical and dynamic 
properties of the vehicle classes lead to a gap-filling behavior, consequently violating lane 
discipline. Nevertheless, as different vehicle classes show distinct dynamic and kinematic 
characteristics, it can be postulated that there can be a class-wise fundamental diagram. Yet, 
there is no empirical evidence in the literature regarding the existence of a class-wise 
fundamental diagram. The present study critically examines the existence of a class-wise 
fundamental diagram for an urban traffic stream with a heterogeneous vehicle mix. In this 
direction, data were collected from a multiclass, no-lane-disciplined traffic stream on an urban 
midblock section in Guwahati, India. Further, the traffic stream was characterized using Area 
Density, Area Flow, and Road Space Freeing Rate (RFR). Using the empirical data, four 
existing macroscopic fundamental diagrams were calibrated considering class-wise RFR, Area 
Density, and Area Flow. The models were statistically evaluated for their goodness of fit with 
the empirical data. The findings of this study indicate the existence of the class-wise 
fundamental relationship and are capable of capturing the underlying dynamics, such as 
filtering behavior. 

1. Introduction 
Transportation in most developing countries is primarily multiclass and weakly follows the 
lane discipline. The traffic flow theory for such multiclass traffic streams is still in its infancy 
due to the limited understanding of chaotic traffic dynamics. Notably, the multi-class traffic 
flow consists of different vehicle types with varying sizes, speeds, and operational 
characteristics and shares the same road space without any lane discipline.  Owing to the 
existence of a variety of vehicle classes, multiclass traffic flows may exhibit quite unique traffic 
flow dynamics.  Particularly, the varying physical and dynamic properties of the vehicle classes 
lead to a gap-filling behavior, consequently violating lane discipline. It is to be noted that most 
of the macroscopic traffic flow models developed in the past were based on the assumption 
that the traffic is composed of homogeneous vehicles with comparable behavior and are 
essentially in the car-following condition (Jain & Coifman, 2005; May, 1994). Moreover, most 
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of the efforts in building a mathematical relationship between the speed and the volume or 
density were applicable only to an uninterrupted traffic flow condition. Unfortunately, the 
existing models could not capture the unique dynamics of the multiclass traffic stream as they 
violate the above assumptions. Perhaps the multiclass traffic flow models have recently 
achieved potential research interest due to their capability to describe the dynamics of different 
vehicle classes and their interactions. These models could describe the puzzling traffic 
phenomena, such as the two capacity conditions, hysteresis, platoon dispersion, and so on, 
which were unanswered by the conventional models. Essentially, the multiclass models 
subdivide the traffic flow into flows of different user classes and model the dynamics of each 
homogeneous subgroup and their interactions. Each class encompasses a group of driver-
vehicle entities that entitles a similar speed choice and driving behavior.  Undeniably, most 
existing multiclass traffic flow models could capture the driver differences in a homogeneous 
traffic stream that lead to different speed choices (e.g., Gupta & Katiyar, 2007; Logghe & 
Immers, 2008; Wong & Wong, 2002).  
Nevertheless, for a multiclass traffic stream prevalent in most developing countries, no 
significant research attempts have been exclusively made to investigate the possibilities of 
multiclass modeling, considering both the varying physical and dynamic properties of the 
vehicle classes. One of the difficulties in dealing with such a traffic stream is the direct 
relationship of the vehicles’ physical dimensions to the traffic concentration. As the vehicles 
compete for the same travel spaces, the driver’s speed depends on a perceived density rather 
than the homogeneous density in multi-class traffic modeling. Unfortunately, the conventional 
definitions of the traffic stream characteristics are unable to capture this aspect. Suvin & 
Mallikarjuna (2018) have redefined Edie’s generalized definitions (Edie, 1963) of the traffic 
stream characteristics by considering both the physical as well as dynamic properties of the 
vehicles. A detailed discussion of the modified definitions is given in Section 4. Notably, the 
multi-class traffic flows are often evaluated by converting them into equivalent homogeneous 
traffic using several conversions, such as passenger car units (PCUs). However, PCUs do not 
capture the dynamic properties of the vehicle classes whose operational characteristics are 
significantly different (Nair et al., 2011). Therefore, developing a multiclass fundamental 
diagram is essential for precisely analyzing and modeling a mixed traffic stream. 
One of the fundamental assumptions of multiclass traffic flow modeling is the existence of 
class-wise Fundamental Diagrams (FD). Though the multiclass traffic flow theory theoretically 
proves the existence of class-wise FD by considering the conservation of vehicle classes, the 
empirical existence of such a relationship is certainly a question. Furthermore, the multiclass 
consideration of the heterogeneous traffic stream is outside the scope of the existing framework 
of multiclass traffic modeling. Most studies base their models of heterogeneities on 
microscopic features, including temporal and spatial headways along with leader-follower 
interactions. These characteristics can only accurately represent heterogeneity if drivers of all 
vehicle classes follow the rules of the road (Bhavathrathan & Mallikarjuna, 2012). However, 
drivers compete for space on the road in developing countries such as India, where per-capita 
vehicle ownership is increasing extraordinarily, and their maximum share is two-wheelers. Due 
to the competition, two-wheeler riders use the space alongside the four-wheelers, which 
indefinite the values of flow and density. Thus, for a model to be useful in simulating Indian 
conditions, the class-wise FD must be incorporated, and the seeping behavior needs to be 
reflected in the model. The multiclass fundamental diagram for such conditions provides more 
control and management and helps adequate design and representations of the facilities. 
However, before endeavoring to adopt multiclass traffic flow theory for heterogeneous traffic 
flow conditions, it is important to critically investigate the existence of class-wise FD for a 
multiclass traffic stream. The present study hypothesizes that a class-wise fundamental diagram 
exists for a multiclass, no-lane-disciplined traffic stream and empirically investigates the 
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validity of the hypothesis. While the focus of this research centers on Guwahati, India, the 
lessons and findings from this investigation hold value for rapidly urbanizing regions across 
the globe, including parts of Australia and New Zealand. As these regions encounter more 
diverse traffic flow due to globalization and urbanization, understanding the nuances of 
multiclass traffic is increasingly crucial.  
The remainder of the paper is organized as follows. Section 2 briefly reviews the multiclass 
traffic flow theory and its advancements. In Section 3, the data collection procedure and the 
post-processing of the data are described. Section 4 discusses the methodology of the present 
study. The findings from this study are discussed in Section 5. Section 6 summarizes and 
concludes the paper. 

2. Background 
The development of traffic flow models dates back to 1950s with the introduction of the first 
dynamic traffic flow model by Lighthill & Whitham (1955), and Richards (1956) introduced 
the LWR model. The LWR model describes the traffic on a link using the conservation law, an 
equilibrium speed-density relationship, and the fundamental equations of the traffic flow. This 
equilibrium relation Qe(k) is better known as the fundamental diagram for the traffic stream 
(Leuven et al., 2000). The LWR model is known to have limitations such as; i) the equilibrium 
speed-density relationship is the only mode to measure the speed, and no fluctuations of speed 
around the equilibrium values are allowed (Gupta & Katiyar, 2007), ii) the LWR model is not 
applicable to the non-equilibrium conditions like stop and go, and multiclass traffic 
compositions (Logghe & Immers, 2008). Many efforts were made to extend the LWR model 
to capture the various empirically observed traffic dynamics. In fact, several researchers 
(Kerner et al., 1993; Payne, 1971; Phillips, 1979; H. M. Zhang, 1998) have suggested that 
higher-order traffic flow models overcome the LWR model's drawbacks. Yet, these models 
could not explain some perplexing traffic phenomena observed on the highway, such as the 
two-capacity or reversed-lambda state, hysteresis, platoon dispersion, and so on.  
In order to model the above dynamics, researchers started developing the multi-class 
continuum models considering different vehicle classes with varying dynamic properties (Fan 
& Work, 2015; Gupta & Katiyar, 2007; Hoogendoorn & Bovy, 2000; Logghe & Immers, 2008; 
Ngoduy, 2011; van Lint et al., 2008; van Wageningen-Kessels, 2016; van Wageningen-Kessels 
et al., 2014; Wong & Wong, 2002). By separating the user classes and their specific flow 
characteristics, researchers were able to improve the accuracy and the descriptive power of the 
macroscopic traffic flow models (Hoogendoorn & Bovy, 1998). However, the analyses were 
limited to a small set of specific problems, and not all the currently known models were 
included in multiclass modeling (van Wageningen-Kessels, 2016). Wong & Wong (2002) 
presented a multiclass traffic flow model by extending the LWR model for different user 
classes having different speed choices. Chanut & Buisson (2003) have contributed an approach 
in which vehicles are differentiated by their lengths and speed choices in free-flow conditions. 
Gupta & Katiyar (2007) proposed a new higher-order continuum model by extending Berg’s 
model (Berg et al., 2000) for a multiclass traffic stream. Gupta & Katiyar (2007) also 
differentiated the vehicle classes based on speed choices. van Lint et al. (2008) proposed a new 
multiclass model named “FASTLANE” that specified the heterogeneity of the traffic stream in 
a more sensible way.  FASTLANE differs from previous multiclass first-order macroscopic 
traffic models in estimating traffic characteristics in terms of state-dependent      passenger-car 
equivalents. Later, van Wageningen-Kessels et al. (2014) showed the distinctive properties of 
the FASTLANE in a simulation environment. A numerical scheme for solving the multi-class 
extension of the LWR model was proposed by Zhang et al. (2009), which was a high order 
weighted, essentially non-oscillatory (WENO) scheme. Ngoduy (2011) showed that hysteresis 
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transitions and the wide scattering could be reproduced by a multiclass first-order model with 
a stochastic setting in the model parameters. Nair et al. (2011) developed a multiclass traffic 
flow model for multiclass traffic without lane discipline based on an analogy of fluid flow 
through a porous medium. The model was able to explain the filtering behavior (a special case 
of overtaking where small vehicles will be moving even after all the larger vehicles are totally 
stopped) of the smaller vehicles through the available gaps (pores) in the congested traffic 
stream. Fan & Work (2015) presented a multi-class model to capture overtaking and filtering 
in highly multiclass traffic stream. Sreekumar et al. (2022) proposed a multi-class traffic flow 
model by quantifying both viable as well as accessible opportunities for the individual vehicle 
classes to transverse downstream. Noël et al. (2020) used the Lattice Boltzmann Method to 
model the multi-class and heterogeneity in the traffic flow. The results from the studies were 
able to replicate the results of Drake’s model (Drake & Schofer, 1966). A few studies have 
focused on multi-dimensional continuum models of traffic flow to incorporate the impact of 
the lateral influences of road edges in the multi-class traffic flow. Herty et al. (2018) proposed 
a two-dimensional continuum model of traffic flow where they used the lateral speed of the 
traffic stream and defined that as a function of density. Later, Balzotti & Göttlich (2021) 
extended this work and proposed a two-dimensional LWR-type macroscopic traffic model for 
multi-class traffic. Vikram et al. (2022) proposed a two-dimensional continuum traffic flow 
model, where they incorporated driver behavior in longitudinal and lateral directions of a road. 
Later, Mohan & Ramadurai (2021) proposed a continuum model based on a three-dimensional 
flow-concentration surface for multi class traffic. They used the variations of flow for each 
vehicles class using a three-dimensional function of class density with occupied road space by 
other vehicle classes instead of conventional flow-density relationship. 
Despite all these efforts, it is still unclear whether there exists a class-wise FD for a multiclass 
traffic stream prevalent in most developing countries. Although, an efficient and reliable traffic 
flow model is the prerequisite for developing an effective transport management system from 
a macroscopic perspective (Kotsialos & Papageorgiou, 2001). Thus, before employing a traffic 
flow model in practice, it is essential to calibrate it against real traffic data. The literature clearly 
states that, apart from the dynamic characteristics of the vehicle classes, it is important to 
consider the physical aspects of a vehicle class for a better representation of the multiclass 
traffic stream. It is also evident from the literature that the existence of a class-wise fundamental 
diagram is an important criterion for multi-class traffic flow modeling. However, no empirical 
evidence is shown in the literature for the existence of a class-wise fundamental diagram. Most 
of the above modeling attempts were theoretical or assumed a fundamental diagram exists for 
the vehicle classes. Hence there is clear scope for the research in the direction of the empirical 
investigation of the class-wise fundamental diagram after appropriately characterizing the 
multiclass traffic stream. 

3. Data collection and post-processing 
Traffic data have been collected by recording the video footage from the multiclass, no-lane-
disciplined traffic stream. An urban midblock section located at Dispur, Assam, was selected 
for the data collection. A camera was placed over a nearby foot over-bridge in such a way that 
the camera's field of view could cover the maximum road length. The video was recorded for 
a duration of 2 hours, between 2pm-4pm during which traffic was moving in both free and 
forced conditions. The weather was clear with no rain and the average temperature during this 
time was around 35 degrees Celsius. This urban midblock section was chosen as a 
representative case, reflecting common traffic conditions found in many parts of urban India. 
Such conditions, while rooted in the Indian context, exhibit patterns that parallel other Asian 
cities and even some rapidly urbanizing cities outside Asia, such as in Australasian. The vehicle 
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trajectories were extracted from the video footage using an image-processing tool, 
SAVETRAX (Suvin & Mallikarjuna, 2022; Venthuruthiyil & Chunchu, 2020). The extracted 
trajectories were reconstructed using the methodology proposed by (Venthuruthiyil & Chunchu 
(2018, 2022). Figure 1 shows a sample of the trajectory data considered in the present study. 
The average traffic composition observed during the 2-hr period was 51.6% LMV, 32.3% Bike, 
8.6% HMV, and 7.5% Auto- Rickshaw. 
Figure 1:Sample trajectory data considered in the present study 

 

4. Methodology 
This section is divided into three subsections. In the first part, a brief introduction to the 
concepts of the multiclass traffic flow theory is given. The second part discusses the process 
of the characterization of the multiclass traffic stream. In the third part, the calibration 
procedure of the fundamental diagram is explained. 

4.1. Multiclass traffic flow theory 
Multiclass traffic flow theory states that the conservation equation could be applied separately 
to different vehicle classes. Besides, the multiclass traffic flow modeling also assumes the 
distribution of speed around the equilibrium speed, corresponding to a total density, due to the 
presence of ‘M’ user classes with different speed choice behavior. It has been assumed that the 
variation of the speed around the mean speed decreases with increasing density due to the 
tighter interaction between the vehicle classes. The total density corresponding to a multiclass 
traffic stream is given by,   
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Equation 3 states that the density changes according to the balance between the inflow and 
outflow of vehicles of user class m along a topographically homogeneous highway section. 
As discussed earlier, the conventional measures of the traffic stream characteristics could not 
be applied to the multiclass traffic stream since the dimensions of the vehicle and the no-lane-
disciplined driving significantly influence the traffic characteristics. Moreover, the hindrance 
to the nearby traffic by the presence (time spent in the traffic stream) of a smaller vehicle (say, 
Bike) and a larger vehicle (say, Truck) would be significantly different. Considering this fact, 
the present study adopted the modified generalized definitions proposed by Venthuruthiyil & 
Chunchu (2018) for defining the traffic stream characteristics. A detailed discussion of the 
modified definitions is given in the following section. 
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4.2. Modified generalized definitions for heterogeneous traffic stream 
In order to capture the variability in the vehicles’ dimensions and the no-lane-disciplined 
driving actions, Suvin & Mallikarjuna (2018) gave modified Edie’s generalized definitions of 
the traffic stream characteristics by incorporating an additional dimension of the space. All the 
heterogeneous traffic dynamics were assumed to take place in a three-dimensional time-space 
continuum, which encompasses two dimensions of space and a time dimension. The width of 
the vehicle, as well as the road, has been incorporated into Edie’s generalized definition for 
capturing the vehicle dimensions and the no-lane-disciplined actions, respectively. Figure 2 
shows the three-dimensional trajectory and the time-space continuum considered in the 
definitions.  The newly defined traffic stream characteristics were named the ‘Area Density’, 
‘Area Flow’, and the ‘Road Space Freeing Rate (RFR)’. 
Figure 2: a) The path followed by a car in the time-space continuum; b) Three-dimensional trajectories and 
the time-space continuum 

a) 

 
 
 

b) 

 
 

 
The area density measures the crowdedness of the traffic and is defined as, 
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Similarly, the area flow, which is the demand for the supplied infrastructure, is defined as, 
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The ratio of the area flow to the area density is termed as the road space freeing rate (RFR) and 
is defined as, 
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Using the above definitions, the traffic stream characteristics were obtained from the extracted 
trajectories. The class-wise Area Flow, RFR, and Area Densities were also calculated by 
applying the same definitions to the class-wise data. The existing single regime models were 
calibrated using the empirical data, and the details of the calibration procedures are discussed 
in the following section. 
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4.3. Calibration of the traffic flow models 
Calibration of the mathematical models with empirical data is the process of estimating the 
model parameters as accurately as possible. Therefore, calibration is a critical process that 
decides model prediction capability. Several optimization tools have been employed as a 
calibration method to minimize the deviations between the empirical data and the model form. 
Qu et al. (2015) have stated that the inaccuracy of single-regime models arises not solely 
because of the improper functional forms but also of the bias in the collected data. It is evident 
from many of the empirical macroscopic traffic studies that the traffic data is heavily biased to 
the region below a certain density value (Gomes & Horowitz, 2009; Wu et al., 2011). 
Considering the possibility of bias in the data, Qu et al. (2015) proposed a novel calibration 
approach, the so-called Weighted Least Square Method (WLSM), that assigns certain weights 
to each data point based on the distance to the nearby points on the left and right side of the 
subject point (Figure 3). The WLS method was able to resolve the model calibration issues due 
to the selection bias in the data sample. The present study follows the WLSM for model 
calibration.  
Figure 3: General Weight Determination Method 

 
The procedure of the WLSM is as follows for all the speed-density observations (vi, ki), where 
ki and vi are the ith density and speed observations, and a weight wi is assigned based on the 
closeness of nearby observations. The step-by-step procedure followed in the weight estimation 
is shown below. 
Step 1: Rank the observations in terms of their densities. We thus have, 
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And stop. 
Apart from the above considerations, the present study utilizes a robust least squares 

approach to remove the outliers in the speed observations (Cleveland, 1979). It is usually 
assumed that the errors follow a normal distribution, and the occurrence of extreme values are 
rare. The main disadvantage of using simple least-squares fitting is its sensitivity toward the 
outliers. Outliers have a large influence on the fit because squaring the residuals magnifies the 
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effects of these extreme data points. To minimize the influence of outliers, the robust weighted 
least-squares regression was considered. This method minimizes the weighted sum of squares, 
where the weight given to each data point depends on how far the point is from the fitted line. 
Points near the line get full weight, and those farther from the line get a reduced weight. Robust 
fitting with bi-square weights uses an iteratively reweighted least-squares algorithm and 
follows this procedure: 
Step 1: Fit the model with weighted least squares. 
Step 2: Compute the adjusted residuals and standardize them. The adjusted residuals are given 
by   

1
i
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i

r
r

h
=

−  
𝑟𝑟𝑖𝑖  is the usual least-squares residual (𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 ) and ℎ𝑖𝑖  is the leverage that adjusts the 
residuals by reducing the weight of high-leverage data points. The standardized adjusted 
residuals are given by 
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‘K’ is a tuning constant equal to 4.685, and ‘s’ is the robust variance given by 𝑀𝑀𝑀𝑀𝑀𝑀

0.6745
 based on 

the idea that E[MAD] = 0.6745 for the standard normal conditions, where MAD is the median 
absolute deviation of the residuals (Holland & Roy, 1977; Seheult et al., 1989). 
Step 3: Compute the robust weights as a function of u. The bi-square weights are given by 

( )( )22 11
       

10
ii

i
i

uu
w

u

 <−=  ≥  
Step 4: If the fit converges, stop the iteration. Otherwise, perform the next iteration of the 
fitting. 
In this study, different single regime traffic flow models were calibrated against the empirical 
data using the Robust WLSM. The selection of the macroscopic traffic flow models for 
calibration was done by considering different model categories proposed by Carey & Bowers 
(2012). They reviewed different macroscopic traffic flow models and categorized them based 
on certain properties of the models. We have considered models from these different categories 
to ensure that the fit of a model with the empirical data is not only due to the functional form 
of the model. Table 1 shows the different models considered for the calibration and the 
category. Calibration was performed for each model considering the class-wise RFR and area 
density as well as the class-wise RFR and the total area density of the traffic stream. The 
calibration results and the discussions are given in the following section. 
Table 1: Macroscopic Single Regime Models Considered for Calibration 

Model Category Model Model Form 

Flow-Density functions that have 
the jam density at +∞, unless 
truncated 

Drake’s Model 2
1exp
2f

c

kv v
k

   = − ×    

 
×
  



  

Papageorgiou’s Model 
1exp

m

f
c

kv v
m k

  
 = − ×   

 
×
  


  

Flow-Density functions that have 
the jam density and a parameter for 
the gradient at jam density 

Newell’s Model 
1 exp 1j j

f
f

c k
v v

v k

   
= × − × −          

Non-classical Flow-Density 
functions 

Del Castillo’s Model 
1 exp 1 exp 1j j

f
f

c k
v v

v k

    
  = × − − × −           
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5. Results and discussions 
The calibration results support the hypothesis that there exists a class-wise fundamental 
diagram for a multiclass, no-lane-disciplined traffic stream. Figure 4 shows the calibrated 
models with the class-wise RFR and Area Density. Table 2 shows the fit statistics 
corresponding to each model calibrated with the class-wise RFR and Area Density. It is 
apparent that most of the models give a satisfactory fit to the empirical observations. It is 
evident that Del Castillo’s model is getting a better fit to the data and getting better 𝑅𝑅2 and 
RMSE for all the vehicle classes. Similarly, Figure 5 and Table 3 show the calibration results 
of the models with the class-wise RFR and the total Area Density of the traffic stream. The fit 
results are satisfactory and support the hypothesis of this study. Table 3 shows a similar trend 
as Del Castillo’s model is getting the best statistics for all the vehicle classes and total traffic. 
The 𝑅𝑅2 and RMSE in total traffic and LMVs are higher than other vehicle classes. LMV is 
getting the best 𝑅𝑅2 and RMSE values compared to the other vehicle classes show that LMVs 
best represent the total traffic. 
Figure 4: Variation of the RFR of a particular vehicle class with the area density of that particular vehicle 
class 

  

  

 
Table 2: Result of model calibration with the empirical data considering the class-wise density 

Model  Auto-Rickshaw Bike HMV LMV 

 R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Drake et al. 0.8852 1.629 0.8841 1.8340 0.8479 2.390 0.9545 2.342 

Papageorgiou  0.8895 1.605 0.8983 1.731 0.856 2.336 0.9464 2.552 

Newell 0.8975 1.546 0.8882 1.816 0.8558 2.337 0.9487 2.498 

Del Castillo 0.9012 1.5780 0.8841 1.8480 0.8650 2.261 0.9587 2.239 

 
 

a) b) 

c) d) 
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Figure 5: Variation of the RFR of a particular vehicle class with the total area density of the traffic stream 

  

  

 

 

  
Table 3: Result of model calibration with the empirical data considering the total density 

Model  Total Traffic Auto-Rickshaw Bike HMV LMV 
 R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Drake et al. 0.9586 2.369 0.8966 3.828 0.8773 3.899 0.8791 5.245 0.953 2.673 

Papageorgiou  0.9597 2.340 0.9009 3.748 0.8756 3.927 0.8831 5.157 0.9549 2.619 

Newell 0.9605 2.302 0.8948 3.844 0.8809 3.827 0.8809 5.183 0.9541 2.631 

Del Castillo 0.9611 2.296 0.9137 3.497 0.8826 3.813 0.8917 4.964 0.9529 2.666 

 
Figure 6 shows the multiclass fundamental diagram of the traffic stream calibrated with 
different macroscopic single regime models. This figure clearly shows the higher 
maneuverability of the Bike and its creeping behavior during higher-density conditions. 
Further, we have investigated the additive property of the Area Densities of vehicle classes as 
shown in Equation (1). Corresponding to a given total Area Density (𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) the class-wise 
RFR (𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚(𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ) was estimated from each of the model equations. The estimated 
𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚(𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) was applied to the class-wise model equations and estimated the class-wise 
Area Density (𝜌𝜌𝑚𝑚 ). The class-wise Area Densities were added together to get ∑𝜌𝜌𝑚𝑚 and 
compared with the 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 . The difference between ∑𝜌𝜌𝑚𝑚  and 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  was measured with the 
Mean Absolute Percentage Error (MAPE) for all the models.  
Figure 6 shows the multiclass fundamental diagram for the multiclass traffic stream calibrated 
with different models. Multiclass traffic flow theory assumes that, with an increment in the 
traffic density, the speed of all vehicle classes converges due to the higher interactions. The 

a) b) 

c) d) 

e) 
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same could be observed in the figure except for the smaller vehicles since they exhibit creeping 
behavior, which is another property of the multiclass traffic stream. Tables 4 & 5 contain the 
MAPE values of all the models for different vehicle classes for two different total area 
densities. The results show that the MAPE for Del Castillo’s model is the least among all for 
both scenarios. Therefore, it can be stated that Del Castillo’s Model shows the best results and 
the least error. 
Figure 6: Speed and flow variation for different vehicle classes in response to the total density 

 
  

  

 

 
  

  

 

 
  

  

 

 
  

  

 

 

Table 4: Error analysis between the total area density and the class-wise area densities (ρ_Total = 50 Traffic 
Units/Km/Lane) 

Model Auto-Rickshaw Bike HMV LMV MAPE 
 ( )m TotalRFR ρ   mρ   ( )m TotalRFR ρ  mρ  ( )m TotalRFR ρ  mρ   ( )m TotalRFR ρ  mρ   
Papageorgiou 34.17 7.35 35.32 14.48 40.45 6.61 35.87 27.72 12.32 
Del Castillo 35.51 7.34 36.92 10.29 42.18 6.57 37.83 27.42 3.24 
Drake et al. 33.84 6.64 35.47 10.5 39.76 6.11 35.04 34.04 14.58 
Newell  34.32 7.54 35.80 10.88 40.80 6.47 36.45 27.17 4.12 

a) 

b) 

c) 

d) 
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Table 5: Error analysis between the total area density and the class-wise area densities (ρ_Total = 180 
Traffic Units/Km/Lane) 

Model Auto-Rickshaw Bike HMV LMV MAPE 
 ( )m TotalRFR ρ   mρ   ( )m TotalRFR ρ  mρ  ( )m TotalRFR ρ  mρ   ( )m TotalRFR ρ  mρ   
Papageorgiou 3.88 26.57 6.93 39.66 5.18 18.13 4.68 114.4 10.42 
Del Castillo  7.76 24.91 10.39 40.42 8.80 16.93 7.76 104.5 3.76 
Drake et al. 5.65 26.23 6.67 45.05 6.76 18.52 5.06 106.8 9.22 
Newell  4.99 24.96 7.66 44.5 4.45 17.86 3.64 118.3 14.23 

6. Conclusion and future scope 
The present study investigates the existence of the class-wise fundamental diagram for a 
multiclass, no-lane-disciplined traffic stream. Modified generalized definitions were used for 
the traffic stream characteristics by considering both the physical and dynamic properties of 
the vehicles of different classes. These definitions capture the vehicle heterogeneity as well as 
the no-lane-disciplined actions. This study characterizes the multiclass, no-lane disciplined 
traffic stream using characteristics such as Area Density, Area Flow, and Road Space Freeing 
Rate (RFR). The traffic data used in the study was collected by recording the video footage 
from a multiclass, no-lane-disciplined traffic stream on an urban midblock section in Guwahati, 
India. The vehicle trajectories were extracted using an image-processing tool, the Traffic Data 
Extractor (TDE), and extracted trajectories were reconstructed using an approach proposed by 
Venthuruthiyil & Chunchu (2018). Various single regime traffic flow models were calibrated 
against the empirical data collected from an urban arterial. Later, the RFR of each vehicle class 
were plotted against the class-wise area density and total density in figure 4 and 5, respectively. 
The creeping behavior of two-wheelers under multi-class traffic conditions can be visible in 
the figures. Later, RFR and Flow were plotted against total density, and the models were 
calibrated using a Robust Weighted Least Square Method. The fundamental assumption of the 
multiclass traffic flow theory, i.e., the total traffic density as the summation of the densities of 
individual vehicle classes, was tested with different models. An error analysis between the 
class-wise area densities and total area densities was conducted at two different total density 
values. 
The finding from this study indicates that there exists a class-wise fundamental diagram for a 
multiclass traffic stream, and it follows the fundamental assumptions of the multiclass traffic 
flow theory. The analysis shows that Del Castillo’s model gives a better representation of the 
multiclass, no-lane-disciplined traffic stream among the studied traffic flow models. Del 
Castillo’s model produces the minimum MAPE for free and forced flow conditions. Besides, 
Del Castillo’s model captures the seeping behavior of the smaller vehicles at higher density 
levels in a comparatively better way. 
The present study on the dynamics of a multiclass, no-lane-disciplined traffic stream in 
Guwahati, India, holds relevance for the Australasian transport research community due to 
shared challenges in multiclass traffic flow dynamics despite Australia's generally good lane 
discipline. The study's insights offer valuable implications for Australasian cities, considering 
their urban traffic conditions with high density and complex dynamics. Additionally, 
considering a heterogeneous vehicle mix in the study provides lessons for managing 
interactions between different vehicle classes in Australasian cities. Even in disciplined lane 
environments, understanding multiclass behavior remains essential for optimizing traffic flow 
and safety measures in Australasia. 
While the site served as a suitable case study for investigating multiclass, no-lane-disciplined 
traffic flow, it represents the diversity of traffic conditions in Assam, India, and other regions 
in Asia. Our research methodology and approach offer opportunities for generalization and 
transferability of the findings. By considering both vehicles' physical and dynamic properties, 
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the calibration of class-wise fundamental diagrams can be adapted to study similar traffic 
conditions in other urban centers, including those in Australasia. In conclusion, while grounded 
in a specific location, our research offers a basis for exploring multiclass traffic dynamics in 
diverse urban contexts, including those in Australasia. 
The present study can be extended in multiple directions. Other macroscopic traffic models can 
be used in the step of calibration of the empirical data. A new multiple-regime model can be 
plotted based on the dataset, which can minimize the error and perform better for a specific 
dataset. A broader classification of the vehicle classes can be used in future studies. Although 
our study provides insights into the average traffic composition in the studied location, 
variations may exist in other sites in the region. We view our findings as a starting point for 
understanding multiclass traffic dynamics in similar regions rather than a definitive 
representation of all traffic conditions. However, we emphasize the need to consider each 
location's unique traffic characteristics when applying our findings.  
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