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Abstract 
Operational incidents are a significant cause of unreliability on rail transit n etworks. These incidents cause 
major delays in services, impact passenger travel time, and have knock-on effects that interrupt other public 
transport services. Consequently, the vulnerability of the rail transit network is a crucial concern for man- 
agers and operators. This paper employs network vulnerability analysis to characterise individual critical 
railway stations in the transit network. The concepts of classic graph theory, spectral graph theory, and 
person-weighted access are implemented to identify the critical nodes in the Sydney train and metro net- 
work, and the results are compared. In the first method, weighted and unweighted centrality measures are 
computed to find the most critical s tation. In the second approach, critical nodes are identified by scoring 
all nodes in the network using eigenvectors and their associated eigenvalues. In the last approach, stations 
are ranked by the reduction of access before and after an incident. Finding of this study may have implica- 
tions not only for the train operators and managers but also for the transit network planners to enhance the 
resilience of the public transport network. 

1. Introduction 
Operational incidents are one of the significant threats to the smooth running of railway systems. 
Derailments, vehicle faults, power breakdowns, signal and shunting failures, intentional shutdowns, 
and emergencies disrupt the operation of the network temporarily or permanently. These incidents 
delay services both on and off-the affected route and consequently delay many passengers. These 
direct and side-effects are more consequential when the system is operating at its capacity (during 
peak hours) and vulnerable to disruption due to operational loads. Hence, the vulnerability of the 
rail transit network is a concern of managers and operators, and identifying critical stations, links, 
or regions under major incidents is crucial. 
There is extensive research assessing network vulnerability and resilience using graph theory con- 
cepts, which abstract the physical structure of the network into links and nodes. Many of them 
study the vulnerability and resilience of road networks (Bell, Kanturska, et al., 2008; Berdica, 
2002; Jenelius, Petersen, and Mattsson, 2006; Luping and Dalin, 2012; El-Rashidy and Grant- 
Muller, 2014; Scott et al., 2006) and some assess the reduction of network access before and after 
a system failure (Cui and D. Levinson, 2018; Chen et al., 2007; Michael AP Taylor, Sekhar, and 
D’Este, 2006; Michael AP Taylor and D’Este, 2007). Some research investigates the vulnerability 
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of public transport networks (Nassir et al., 2016; Cats and Jenelius, 2012; Cats and Jenelius, 2014; 
Jiang, Lu, and Peng, 2018; Rodriguez-Nunez and Garcia-Palomares, 2014) and measures the lost 
access by transit. 
In terms of transport networks, critical components include bottlenecks and restrictions which are 
at risk of failure or degradation (Michael A.P. Taylor and Susilawati, 2012) and whose closure 
produces cascading failures. Different approaches exist to identify critical components in a transit 
network. One evident approach is to address critical nodes (or links) with or without the network’s 
demand and supply dimension (Bell, Kurauchi, et al., 2017). To identify critical nodes, topological 
measures have been introduced such as degree, betweenness, and closeness centrality, and node 
clustering by converting the system into a weighted graph (where nodes are stations and links are 
the in-between segments with travel cost weights) (Ferber et al., 2007). Other measures such as 
hub centrality are developed to identify the traffic hubs more comprehensively (Shi et al., 2019). 
An other approach is to measure the loss of access loss when certain nodes or links fail (Cui and 
D. Levinson, 2018) and rank them to find the crucial network elements. Hypothetical network 
disruption can be simulated by removing stations one at a time and, at each removal, measure the 
cumulative opportunity access before-and-after the removal. This approach considers not only the 
operational services but also the demographic layer of land use covered by the transit network. This 
implies that purely topological indices are not always a sufficient means to analyse the vulnerability 
of a network, and that other physical characteristics of the system have a crucial role to play too. 
Classic graph theory is one of the main methods to assess network vulnerability and resilience. 
For example, Cats and Jenelius (2012) considers the stochasticity of public transport network vul- 
nerability and extended the betweenness centrality to measure the importance of nodes and links 
from the perspectives of both operators and passengers. The developed measures are applied in 
a case study for the Metro network of Stockholm, Sweden. The result indicates that betweenness 
centrality may not be a good indicator of link importance and real-time information may have both 
positive and negative influence on disruption impacts. 
On the other hand, some studies applied spectral graph theory methods, employing the information 
contained in the eigenvalues and eigenvectors of a network matrix, in the vulnerability assessment 
of the transport network. Gutiérrez-Pé rez et al. (2013) used spectral graph theory to investigate 
the relative importance of regions in water supply networks. Two famous ranking algorithms, 
PageRank, and HITS were used to rank the nodes in a Laplacian graph matrix. Results indicate 
that clustering is an efficient way to identify critical points in the water supply network. Bell, 
Kurauchi, et al. (2017) study the vulnerability of the road network by capacity-weighted spectral 
analysis. They employed the Laplacian matrix of a network in order to find the best (critical) cut to 
bi-partition the network into sub-networks using the second smallest eigenvalue and corresponding 
eigenvector to identify potential capacity bottlenecks. Their method considers only the capacity, 
not the origin-destination demands. 
To date, spectral graph theory based methods have not been compared against other network index- 
based methods, or access-based methods. However, there are overlaps and inherent similarities in 
the aims and objectives of applying these methods. Specifically, spectral graph theory methods 
provide ‘global’ information on the network structure, taking into consideration the entire network 
structure while ranking a single node. On the other hand, many other network indices, such as 
centrality measures, provide ‘local’ information on the graph structure, taking into consideration a 
single node and its neighbours, for example. Access-based methods take into consideration a whole 
host of information on dynamic as well as static network structure, still in a ‘local’ way, but taking 
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into consideration not only network structure, but travel times, origin-destination properties, and 
other physical factors. Specifically, to date, no comparison has been made between the reduction 
of access, when a station collapses, and the corresponding change in station rank in spectral graph 
theory and access analyses. To bridge this gap, this paper first defines disruption in the network and 
secondly, compares these methods. This paper also considers both the network structure and op- 
erational services to identify the critical links and nodes using spectral graph theory and compares 
the importance of critical nodes with their system-wide population-weighted access loss when an 
incident occurs. 

2. Methods 
The concepts of classic graph theory, spectral graph theory, and person-weighted access are imple- 
mented to identify the critical nodes in the Sydney train and metro network. In the first method, 
weighted centrality measures are computed to find the most critical station. In the second approach, 
critical nodes are identified by scoring all nodes in the network using eigenvectors and their asso- 
ciated eigenvalues. In the last approach, stations are ranked by the reduction of access before and 
after an incident. The following subsections define the failure in train network and explain the 
proposed metrics. 

2.1. Defining service-based network, and network failure 
The railway network is a complex structure with different components including tracks, crossovers, 
and signals, and running services adds more complexity to finding the critical locations in the 
system. For example, regular and express services using the same set of tracks makes some of the 
stations more important than just taking the physical structure into account. To overcome that, this 
study uses service-based networks to define an abstracted graph (nodes and links). A service-based 
network has information about both the physical connections between stations and the scheduled 
services. Figure 1 illustrates the difference between structure-based networks and service-based 
networks. 
In a railway network, in general, failure can happen in stations (and platforms) and along the 
connected tracks. To generalize the potential failures, we assume that a station failure means a dis- 
continuity in the services (i.e., no through services) and that no trains can load/unload passengers 
at that station. In the access analysis, this has a significant impact on travel time between stations 
and thus between origins and destinations. However, the rest of the network can still operate and 
affected services can adjust to the new circumstances. This strategy can reduce the effect of cas- 
cading failures and mitigate access loss. Figure 2 displays an example of normal operation and 
adjusted operation before and after a failure in the network. 
In the adjusted operation, it is assumed that there are crossovers preceding and following the failed 
stations. Consequently, vehicles from upstream and downstream can return to their original ter- 
minal without completing their scheduled trips. In this study, a 3-minute delay is considered for 
shunting the vehicle into the opposite track route and initiating service in the opposite direction (1 
minute for going forward, 1 minute for switching, and 1 minute for vehicle return). This strategy 
will be implemented to establish new services for measuring travel time in the access calculation. 

2.2. Notation 
Variables, parameters, and coefficients that will appear throughout this article are notated in Table 1. 
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Figure 1: The difference between structure-based and service-based rail network. The service-based network 
can be used in both classic and spectral graph theory. 

 
 

 
 
 

2.3. Trip ratio index 
The ratio of arrivals to the number of platforms at a station is one of the most straightforward ways 
to identify the most vulnerable stations in a network. The ratio illustrates the average load on each 
platform (i.e., how busy a station’s platforms are) and how a disruption in one track of rails (each 
track serves a platform) could affect station arrivals. The greater the ratio, the greater the station’s 
susceptibility to network failure and diverging trips. Equation 1 formulates the trip ratio index. 

 

α = Ar,i 
i P (1) 

l,i 

where αi is the trip ratio of station i; Ar,i is the number of daily arrivals into station i; and Pl,i is 
the number of operational platforms in station i. 

2.4. Classic graph theory 
The service-based network is converted to an undirected graph representation G(V, E, W ). The 
undirected graph demonstrates a bi-directional connection between each pair of nodes which com- 
promises both single track with bi-directional services and double track with one-direction services. 
In the following, three graph-theoretic centrality measures used for evaluating the network vulnera- 
bility analysis are defined. It is important to note that the following measurements pertain to planar 
graphs (a planar graph contains edges that intersect only at their endpoints). 
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Figure 2: Comparison between normal and adjusted operation. In the access analysis, the person-weighted 
access for the adjusted operation will be compared against the normal operation. 

 
 
 

 
 
 
 
2.4.1. Degree Centrality 

The degree centrality of a station represents the number of connections with other stations, and 
thus illustrates the connectivity and the importance of a station in the network. The higher the 
degree, the more central the station is (Golbeck, 2013; Scheurer and Porta, 2006). Degree centrality 
(normalized by dividing by the maximum possible degree) can be formally defined as Equation 2. 

Deg(vi) 
 
2.4.2. Betweenness Centrality 

di = |V | − 1 ∀i ∈ V (2) 

Betweenness centrality measures how important a station is to the shortest paths through the rail 
network. It is the fraction of length (or number of links) of those shortest paths that include station 
i and all the other paths (Cats, 2017). The higher the betweenness, the more important a station is 
in travelling on the network. The betweenness centrality is written as Equation 3. 

 

bi = 
j̸=k∈V 

nj,k(i) 
ni,j 

∀i ∈ V (3) 
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Table 1: Notation 
 

Symbol Description Unit/Type 

αi trip ratio index of station i – 
φ eigenvector – 
λ eigen value – 

bi betweenness centrality of station i – 
ci closeness centrality of station i – 
di degree centrality of station i – 
ni,j length of shortest path between node i and node j links or km 
xi spectral centrality score of station i – 

A locational access ppl 
Ar 
A′ 

number of train arrivals 
adjacency matrix 

# 
– 

C generalized travel cost minutes 
D diagonal matrix of node degrees – 
E edges (links) # 
G a graph including links and nodes – 
L Laplacian matrix – 
Pl number of platforms # 
P population ppl 
T travel time threshold minutes 
V vertices (nodes) # 
W graph weights # trips 

 
2.4.3. Closeness Centrality 

Closeness centrality of a station is the average length of the shortest path between the station and 
all other stations in the graph. Thus the more central a station is, the closer it is to all other 
nodes (stations). The shortest path length can be measured in number of links or unit of distance. 
Equation 4 shows the formal definition of closeness centrality. 

 
 
2.5. Spectral graph theory 

 
ci = 

i̸=j∈V 

 1  
ni,j 

 
∀i ∈ V (4) 

A transit network with the geographic structure and operational services can be demonstrated as 
a graph with weight attributes (there may be some levels of abstraction). Thus, the system is a 
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weighted network G = (V, E, W ) where V is set of nodes (transit stations), E is set of links, and 
W the associated weight values such as distance or the number of arrivals. 
The adjacency matrix for network G can be described as A′ = (auv)N×N where N = |V |. The 
elements of the adjacency matrix (A′ ) are: 

 

 
auv = we if e = (u, v) ∈ E 

0 otherwise 

where we ∈ W , nodes u, v ∈ V and link e = (u, v) ∈ E. The Laplacian graph is the difference 
between the diagonal and the adjacency matrix: 

 
L = D − A′ 

where D is the diagonal matrix of node degrees. In the Laplacian matrix, the off-diagonal elements 
are the negative of the corresponding off-diagonal elements of the adjacency matrix. 
The eigenvalues and the associated eigenvectors (spectra) of the Laplacian matrix can be formulated 
as Equation 5. 

 
Lφ = λφ (5) 

where, φ is the eigenvector and λ is their associated values. Eigenvectors are mutually orthogonal 
and unit vectors. 

2.5.1. Eigenvector centrality 

Eigenvector centrality indicates that a station’s (node’s) importance depends on both the degree and 
importance of its neighbouring stations. PageRank and HITS are eigenvector centrality measure 
derivatives. The relative centrality score of node i can be defined as Equation 6. 

 

N 
 xi =  aij λ′ 

j=1 

 
xj′ (6) 

Where λ′ is a constant. The computation of eigenvector centrality is an iterative procedure until a 
stable value is reached. 

2.6. Person-weighted access 
Calculating the access is a way to measure the number of opportunities reachable in a specific time 
threshold. A person-weighted access measure is the number of opportunities (i.e. population in 
this study) at destinations reachable to the population at each origin. This index allows comparing 
the system-wide access by transit (D. M. Levinson, Giacomin, and Badsey-Ellis, 2016). 
The cumulative opportunities of block i is represented in Equation 7. 

 

J 

Ai,T = Pjf (Cij) (7) 
j=1 

where Pj is the population of region j, Cij is the generalised travel cost from region i to region j, 
and f (Cij) is the impedance function which: 
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f (Cij ) = 1 if Cij ≤ T 
0 otherwise 

Person-weighted access could be formulated as the Equation 8. 
 

I 

Apw,T = Ai,T Pi (8) 
i=1 

where Ai is the cumulative opportunities of block i to every other blocks reachable in time T , and 
Pi is the population within region i. 
The advantage of using person-weighted access is considering not only the physical structure of 
the train network at a large scale but also the covered land use layer. 

2.7. Summary of measures 
This study uses four methods to evaluate and compare the critical nodes in a transit network: (I) 
service characteristics: the ratio of arrivals per number of platforms; (II) classic graph theory: tra- 
ditional centrality measures of a planar graph to identify critical nodes; (III) spectral graph theory: 
eigenvectors and associated eigenvalues of a network’s Laplacian matrix to identify critical nodes 
using spectral graph theory. (IV) access: the person-weighted access measure to rank the stations 
based on their access loss during a disruption. These measures are calculated for the Sydney train 
and metro network provided in the standard GTFS format. 

3. Results 
For calculating the graph centrality measures, the Sydney train has been transformed into a weighted 
graph. The weights represents the number of trips between each node pair. Then, the importance 
(rank) and centrality measures are calculated for each station on the network. Figure 3 demon- 
strates the four centrality indexes of each station, including degree, betweenness, closeness, and 
eigenvector centrality. The relative measures are illuminated with different shades of red. The 
analysis shows the stations in the city regions and inner west have high degrees of centrality, while 
stations with less centrality are farther out. The closeness centrality is higher for stations between 
transfers, and on the other hand, transfer stations have a higher betweenness than stations serving 
single lines. 
The access analysis considers the normal operation and failure of each node (before and after an 
incident). The assumption is that the network will adjust the trips in the upstream and downstream 
of the failure location as outlined in Figure 2. Tevaluates the system failure of a multimodal transit 
network by comparing 30- and 45-minute transit access times. i.e other modes of transport continue 
to operate, and passengers can transfer between modes (where applicable) if their desired trips are 
disrupted. The stations are ranked by the person-weighted access loss (both 30- and 45-minute), 
and results indicate that Town Hall, Wynyard, Museum, Circular Quay, St James, and Strathfield 
Stations are the most vulnerable stations. Figure 4 depicts the transit access for two time thresholds 
during normal operation (before the incident) and failure (after the incident) at Town Hall station. 
Table 2 ranks Sydney train stations based on seven proposed measures, namely trip ratio, de- 
gree centrality, betweenness centrality, closeness centrality, eigenvector centrality, 30-min person 
weighted access loss, and 45-min person weighted access loss. The ranking in the last column is 

https://opendata.transport.nsw.gov.au/dataset/timetables-complete-gtfs
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(a) Degree centrality (b) Betweenness centrality 

(c) Closeness centrality (d) Eigenvector centrality 

 

Figure 3: Centrality measures of Sydney train network. The network is weighted by the number of arrivals 
(trips) at each station. 

 

 

 
 

based on the average score of all methods. The rankings vary significantly based on the employed 
metric. For instance, St James ranks first in terms of trip ratio, whereas Circular Quay ranks first in 
terms of average score. Central, Redfern, and Strathfield are, based on the average score, the top 
three stations. These stations have high rankings across most measures, indicating their importance 
in the transport network. 
Table 2: Station ranks with different criteria. Number in the parentheses are the measures value. 

 
Rank Trip ratio Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality 30-min PWA loss 45-min PWA loss Average score 

1 St James(264.5) Wolli Creek(0.035) Central(0.627) Central(0.655) Central(6.39E-3) Town Hall(3063) Town Hall(22364) Strathfield 
2 Museum(263.5) Redfern(0.032) Glenfield(0.559) Redfern(0.515) Glenfield(6.383E-3) Wynyard(2657) Wynyard(18245) Redfern 
3 Circular Quay(262) Strathfield(0.032) Strathfield(0.495) Town Hall(0.428) Liverpool(6.332E-3) Museum(2441) Museum(15960) Central 
4 Wynyard(252.3) Sydenham(0.029) Hornsby(0.445) Wynyard(0.179) Campbelltown(6.32E-3) Circular Quay(2384) Circular Quay(15710) Hornsby 
5 Milsons Point(241) Hornsby(0.027) Cabramatta(0.409) Museum(0.17) Parramatta(6.316E-3) St James(2383) St James(15691) Parramatta 
6 Town Hall(238.7) Parramatta(0.024) Liverpool(0.408) Strathfield(0.14) Penrith(6.289E-3) Strathfield(1331) Strathfield(13472) Wolli Creek 
7 St Leonards(232.5) Central(0.024) Chester Hill(0.392) Sydenham(0.091) Cabramatta(6.281E-3) Burwood(911) Redfern(10411) Town Hall 
8 Wollstonecraft(212) Sutherland(0.024) Bankstown(0.378) Green Square(0.087) Chester Hill(6.263E-3) Redfern(849) Wolli Creek(9317) Wynyard 
9 Waverton(212) Lidcombe(0.021) Leightonfield(0.375) Martin Place(0.076) Fairfield(6.242E-3) Auburn(810) Lidcombe(7709) Museum 

10 Artarmon(211.5) Lidcombe(0.021) Campsie(0.363) Burwood(0.073) Carramar(6.224E-3) Lidcombe(808) Burwood(6635) Sydenham 

 
Degree centrality and betweenness centrality measures provide similar rankings, with Central and 
Strathfield consistently ranking high. In contrast, closeness centrality provides a different ranking, 
with stations such as Town Hall and Wynyard ranking high. Eigenvector centrality measures the 
importance of a station based on its connections to other important stations, and its rankings are 
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Figure 4: 30- and 45-minute access by transit; normal operation and failure in Town Hall 
Station. The person-weighted access represents the multi-modal performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Normal operation 30-minute access (b) Normal operation 45-minute access 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Adjusted operation 30-minute access (d) Adjusted operation 45-minute access 
 
 
similar to closeness centrality. The 30-min PWA loss and 45-min PWA loss measures provide 
information on the impact of a station’s closure on the train network. These measures do not 
correspond to the rankings provided by the other measures and provide unique insights into the 
transport network’s resilience. 

4. Conclusion 
Operational incidents are one of the significant causes of unreliability on rail transit networks. 
These incidents cause major delays in services, impact passenger travel time, and have knock-on 
effects that interrupt other public transport services. Consequently, the vulnerability of the rail 
transit network is a crucial concern for managers and operators. This paper employs network vul- 
nerability analysis to characterise individual critical railway stations in the transit network. The 
concepts of classic graph theory, spectral graph theory, and person-weighted access are imple- 
mented to identify the critical nodes in the Sydney train and metro network, and the results are 
compared. 
Results from the evaluations highlight the importance of considering multiple measures when 
analysing and ranking transport networks. Different measures provide different insights into the 
network’s structure and resilience, and a comprehensive analysis requires considering multiple 
measures simultaneously. It also highlights the importance of stations such as Central, Redfern, 
and Strathfield, which consistently rank high across most measures, indicating their crucial role in 
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the Sydney transport network. 
The findings of this study may have implications not only for train operators and managers but 
also for transit network planners seeking to enhance the resilience of public transport networks. 
Additionally, the study’s results could be useful for authorities who design land-use development 
schemes around rail stations. Moreover, the vulnerability of other rail networks can be assessed, 
and necessary actions can be taken to minimise potential consequences. 
There are several research suggestions that need to be discussed. First, in this study, the graph 
is weighted by the number of trips on each link. Other weights, such as those based on distance 
and inverse distance, may offer additional insights into the network’s topology and lead to dif- 
ferent rankings. Second, this study only considers a daily service-based network. Defining peak 
and off-peak service-based networks may provide temporal insights into the rankings. Moreover, 
measuring the Cheeger constant would serve as a valuable reference point for future investigations, 
particularly when undertaking comparative analyses of analogous studies with transit networks 
(Bell, Kurauchi, et al., 2017). Additionally, the access analysis was conducted for only one de- 
parture time. Conducting the analysis for an average access time of 15 minutes could increase the 
accuracy of the rankings for stations. Finally, in this study, the PWA ranks were developed based 
on access to the population. However, measuring access to employment opportunities may enhance 
the indicator’s performance in identifying critical stations. 
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