
Australasian Transport Research Forum 2023 Proceedings
29 November – 1 December, Perth, Australia

Publication website: http://www.atrf.info

1

Delaunay-triangulation-based algorithm for

demand-responsive transport services

Ronny Kutadinata1, Lele Zhang2, Aidan Hadwick-Guthrie3

1 National Transport Research Organisation / Australian Road Research Board, Port Melbourne
2 School of Mathematics & Statistics, The University of Melbourne, Parkville

3 Mechatronics Engineering, Deakin University, Waurn Ponds
Email for correspondence (presenting author): ronny.kutadinata@arrb.com.au

Abstract

Demand-responsive service is an effective, emerging means to improve mobility levels in
urban and rural areas while addressing issues such as traffic congestion, rising transportation
costs, and environmental concerns. In this paper, we investigate a dial-a-ride problem (DARP),
which deals with planning transit vehicle routes that satisfy passenger transportation requests
while minimising the total cost and the customer inconvenience (due to early pick-up or late
drop-off). We propose a Delaunay-triangulation-based algorithm, which decomposes the
problem into two hierarchical subproblems and solves it iteratively. Numerical experiments on
a real road network in Melbourne demonstrate that the proposed algorithm is capable to
produce comparable solutions to the established neighbourhood search algorithm and with a
significantly lower computational requirement.

1. Introduction
On-demand transit (a.k.a. demand-responsive transit) services have attracted increasing
attention from both academia and industry, as a complementary transportation means to
traditional scheduled bus/subway services. Passengers can book a trip, specifying the pick-up
and drop-off locations and times. The service is more flexible as on-demand vehicles do not
have fixed routes or timetables to follow and are scheduled based on requests. Compared to
taxi services and driving private cars, on-demand transit services, as an important part of shared
economy, specifically, shared mobility, provide great opportunities in addressing
transportation challenges, such as rising traffic congestion, emissions, and transportation costs.
They are particularly useful in accommodating mobility needs in rural areas, in regions where
public transport is underutilised, and for the elderly and disabled.
The rapid development in technologies, such as autonomous vehicles, GPS, and the Internet of
Things (IoT) has boosted the trial implementations of on-demand transit services in real life.
In Australia, on-demand bus services have been put into trials in Sydney (Kaufman, 2020),
Melbourne (PTV, 2023), and Gold Coast (Translink, 2023). In Wales, UK, passengers can
“book a shuttle minibus from ‘floating bus stops’ near their homes directly to their destination”
via an app (Kaufman, 2020). Moreover, autonomous buses have been deployed for on-demand
services as part of the existing public transport networks in more than 5 countries in Europe
(CORDIS, 2020). On-demand public transport has also been trialled in Japan and the US. Based
on the data provided by the Queensland Department of Transport and Main Roads, there is a
large rise in the on-demand transit services and ridership in Australia (see Figure 1).

http://www.atrf.info/

ATRF 2023 Proceedings

2

Figure 1: Rise in on-demand transit services and ridership in Australia (Kaufman, 2020)

A Dial-a-Ride problem (DARP) is to address an important component of on-demand
transportation systems, that is, investigating the planning and optimisation of ride
arrangements. As the DARP is motivated from the real world, there are various features to
consider, such as origins and destinations of passengers, time windows for pick-up/drop-off,
vehicle capacity, fleet type, and passenger special requirements, which make it complex to
model and solve. Current pilot projects of DAR are limited to trials in relatively small regions,
for example, 11 locations in Wales (Laker, 2022), and several remote suburbs in Melbourne
(FlexiRide, 2023). For large implementations, the algorithm for solving the DARP needs to be
efficient and scalable in order to deal with a large number of requests and plan routes and stops
in real time.
This study aims to develop an efficient algorithm based on Delaunay triangulation to solve the
routing problem of a DAR service. Its performance is evaluated via extensive numerical
experiments conducted on the Port Melbourne network in Melbourne. The results show that
the proposed algorithm is able to achieve, on average, a 63.4% computation time saving while
only experiencing a 0.88% decrease in the “optimality score”.
This paper is organised as follows. Section 2 briefly reviews the literature on the dial-a-ride
problems, the solution approaches, and the Delaunay-triangulation method. Section 3 states the
studied problem and the mathematical model, while Section 4 explains the proposed algorithm.
Numerical results are discussed in Section 5, followed by a short conclusion in Section 6.

2. Literature review
The first DAR service dates to the 1970s in the US. The emergence of shared mobility and the
concern for the development of sustainable transportation systems have provided the impetus
for the investigations into the DARPs. In a DARP, passengers (users) book their trips on an
app, on the internet or via phone for transport from origins to destinations, which could be
physical addresses, bus stops, etc. They may nominate time windows for their pick-up and/or
drop-off, and preferences in terms of vehicle type and service type (shared or private). The
service provider is responsible for arranging vehicles and planning routes to fulfil all requests.
The DARPs have a lot of applications in various areas, including health care, large

ATRF 2023 Proceedings

3

transportation terminals and public transport. There are two recent reviews on the DARPs (Ho
et al., 2018; Molenbruch et al, 2017a). Ho et al. (2018) reviewed 86 papers published between
2007 and 2017 and presented a detailed taxonomy of the variants of DARPs, based on the
planning and scheduling procedures (static or dynamic) and uncertainty in the information
received (deterministic or stochastic). The literature on the DARPs has been growing
significantly since 2017, and the topic has attracted at least 200 publications, which further
demonstrates the popularity of the DARP studies in the academic community.
There are many DARP variants. In terms of vehicle types, recent studies have investigated
using electric vehicles (EVs) (Su et al, 2023), autonomous vehicles (Johnsen and Meisel, 2022;
Liang et al., 2020), and heterogeneous fleet (Malheiros et al., 2021). The research of the DAR
services has been extended to goods transportation, for example, container transportation
(Kuźmicz et al., 2022). New features considered in the problems lead to extra constraints, such
as driving ranges and minimum battery levels for EVs (Su et al., 2023), and objectives like
environmental cost minimisation and assortment optimisation (Azadeh et al., 2022) in addition
to classic profit maximisation (Liang et al., 2020), ride-time minimisation, and customer
satisfaction maximisation (Johnsen and Meisel, 2022).
The solution approaches for the DARPs can be generally classified into two categories: exact
methods, such as branch and bound (B&B) and its variants (Qu and Bard, 2015; Liu et al.,
2015), and (meta-)heuristics, such as Tabu search (Detti et al., 2017), simulating annealing
(Braekers et al., 2014), genetic algorithm (Cubillos et al., 2009), and various neighbourhood
search algorithms (Su et al, 2023; Molenbruch et al., 2017b). Whilst the exact approaches are
limited to small and medium instances, meta-heuristics and hybrid algorithms (Pimenta et al.,
2017; Ritzinger et al., 2016) which combine multiple meta-heuristics, are more popular for
large instances.
Since the DAR services receive real-time information and require real-time planning and
scheduling, the computational efficiency of solution algorithms is crucial. For algorithms that
are developed for solving the static, deterministic version of the DARP, that is, decisions are
made once off with full knowledge, if they are sufficiently fast, they can be adapted for re-
optimisation and be implemented “on-the-go”. Nevertheless, the meta-heuristics, like
neighbourhood search algorithms, could be time-consuming, in particular when evaluating the
neighbourhood. The current study is motivated by the goal of devising fast (on-line) algorithms.
One of the possible approaches to improve the computation time of DARP algorithms is to
reduce the search space by introducing some “filters” or “guidance” scheme. In this study, the
focus is to use Delaunay Triangulation (DT) for this purpose. Given a set of nodes, the
Delaunay triangles are formed such that the given nodes do not lie within the circumcircle of
any of the Delaunay triangles. A Delaunay triangulation is the dual graph of a corresponding
Voronoi diagram, where it is formed by partitioning a plane into regions around the given nodes
(Delaunay, 1934). As such, the DT edges connect adjacent nodes to each other and can provide
useful information to determine the next “closest” stops when being applied to DARPs.
Over the years, DT has been used as the basis of routing algorithms, where the paths are
selected to lie on the DT edges (Beasley and Christofides, 1997). Originally, DT is applied to
help solve the travelling salesman problem (TSP) (Krasnogor et al., 1995; Lau and Shue, 2001).
Although it has been proven that the solution to TSP does not always fully lies on the DT edges
(Kantabura, 1983), Krasnogor et al. (1995) pointed out that there is a large portion of the
solution that agrees with the DT edges. More recently, DT has been used on multi-depot
delivery problems (Tu et al., 2014; Sazonov et al., 2018). In terms of the algorithms, DT is
typically used as part of a Tabu neighbourhood search to restrict the search space of the
neighbourhood operations (Krasnogor et al., 1995; Lau and Shue, 2001). However, there are

ATRF 2023 Proceedings

4

other ways to incorporate the DT into routing algorithms, such as the approach by Tu et al.
(2014) (bi-level DT with simulated annealing) and Sazanov et al. (2018) (DT as the
communication graph among multi-agents, each performing greedy insertion algorithm).
Therefore, the review has established the need to develop sufficiently fast DARP algorithms
for real-life implementation. While DT is a promising approach, previous works have not
addressed the method to handle the sequencing requirements of a pick-up and the
corresponding drop-off. In light of this, this paper proposes a novel DT-based algorithm that
considers the pick-up/drop-off order, as well as the time window by extending the DT into 3D
space. Furthermore, the proposed algorithm also eliminates part of the search space by utilising
a “non-search” heuristic that results in a significant reduction of the computation time.

3. Problem formulation
3.1. Problem statement
This study considers a fleet (heterogeneous or homogeneous) of capacitated vehicles to service
customers, who nominate pick-up and drop-off locations and time windows. Let 𝒫𝒫 denote the
set of customers, that is, 𝒫𝒫 = {1,2, … ,𝑛𝑛} . Each customer 𝑖𝑖 ∈ 𝒫𝒫 specifies a time window
[𝐸𝐸𝑖𝑖, 𝐿𝐿𝑖𝑖] and the customer is ready to be picked up at time 𝐸𝐸𝑖𝑖 and should be dropped off by time
𝐿𝐿𝑖𝑖. Here, the customer may refer to a group of passengers, and the number of passengers in this
customer group is represented by 𝑄𝑄𝑖𝑖. The fleet of vehicles is denoted by 𝒦𝒦, and each vehicle
𝑘𝑘 ∈ 𝒦𝒦 has capacity 𝐶𝐶𝑘𝑘 in terms of the maximum number of passengers in the vehicle.

The transport network can be described by a graph 𝐺𝐺 = (𝒱𝒱,𝒜𝒜) with a node set 𝒱𝒱 and an arc
set 𝒜𝒜 = {𝑉𝑉𝑖𝑖𝑉𝑉𝑗𝑗:𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 ∈ 𝒱𝒱, 𝑖𝑖 ≠ 𝑗𝑗}. The set 𝒱𝒱 contains 2𝑛𝑛 + 1 nodes, node 𝑉𝑉0 is the depot of
vehicles, and nodes 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑖𝑖+𝑛𝑛, respectively, represent the pick-up and drop-off locations of
customer 𝑖𝑖 ∈ 𝒫𝒫. For simplicity, we shall write node 𝑖𝑖 ∈ 𝒱𝒱 rather than 𝑉𝑉𝑖𝑖 ∈ 𝒱𝒱.
Following the classification by Ho et al. (2018), the studied problem is a capacitated, static,
and deterministic DARP with a heterogeneous fleet, time windows and a single objective.

3.2. Model
The DARP in this study has two classes of decisions to make, the assignment of customers to
vehicles and the route design of each vehicle. Our model defines a binary decision variable 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘
to represent if vehicle 𝑘𝑘 ∈ 𝒦𝒦 traverses the path from node 𝑖𝑖 ∈ 𝒱𝒱 to 𝑗𝑗 ∈ 𝒱𝒱. If for 𝑖𝑖 ≤ 𝑛𝑛, 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 =
1, then node 𝑗𝑗 is assigned to be serviced by vehicle 𝑘𝑘.

We consider a soft constraint for the service time window [𝐸𝐸𝑖𝑖 , 𝐿𝐿𝑖𝑖] for 𝑖𝑖 ∈ 𝒫𝒫. Consider that
customer 𝑖𝑖 is serviced by vehicle 𝑘𝑘. If the vehicle arrives at the origin node 𝑖𝑖 earlier than the
earliest pick-up time 𝐸𝐸𝑖𝑖 , the vehicle will wait at the node until time 𝐸𝐸𝑖𝑖 and then load the
passenger(s). If the vehicle reaches the destination node 𝑛𝑛 + 𝑖𝑖 later than the latest drop-off time
𝐿𝐿𝑖𝑖 , it incurs a penalty, which will be included in the objective function to be minimised.
Additionally, the pick-up wait time is limited to 𝛿𝛿, beyond which will incur a penalty. For ease
of presentation, we extend some attributes of customers to nodes. Specifically, for node 𝑖𝑖 =
1,2, … ,2𝑛𝑛, the time window is given by [𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖] with

𝑒𝑒𝑖𝑖 = �
𝐸𝐸𝑖𝑖 if 𝑖𝑖 ≤ 𝑛𝑛,

𝐸𝐸𝑖𝑖−𝑛𝑛 + 𝑠𝑠𝑖𝑖−𝑛𝑛 + 𝑡𝑡𝑖𝑖,𝑖𝑖+𝑛𝑛 otherwise, 𝑙𝑙𝑖𝑖 = �𝐸𝐸𝑖𝑖 + 𝛿𝛿 if 𝑖𝑖 ≤ 𝑛𝑛,
𝐿𝐿𝑖𝑖−𝑛𝑛 otherwise, (1)

where 𝑠𝑠𝑖𝑖 denotes the dwell time (for loading and unloading passengers) and 𝑡𝑡𝑖𝑖,𝑗𝑗 is the travel
time between nodes 𝑖𝑖 and 𝑗𝑗. Moreover, the number of loading/unloading passengers is

ATRF 2023 Proceedings

5

𝑞𝑞𝑖𝑖 = �𝑄𝑄𝑖𝑖 if 𝑖𝑖 ≤ 𝑛𝑛,
−𝑄𝑄𝑖𝑖 otherwise. (2)

At the depot node, we have 𝑒𝑒0 = 0, 𝑙𝑙0 = ∞ and 𝑞𝑞0 = 0.

Let 𝑢𝑢𝑗𝑗𝑘𝑘 denote the effective arrival time of vehicle 𝑘𝑘 at node 𝑗𝑗 ∈ 𝒱𝒱. This variable is constrained
by the effective arrival time at the previous node (say 𝑖𝑖 ∈ 𝒱𝒱), the dwell time (for
loading/unloading passengers) at the previous node, denoted by parameter 𝑠𝑠𝑖𝑖, the travel time
between nodes 𝑖𝑖 and 𝑗𝑗, denoted by parameter 𝑡𝑡𝑖𝑖,𝑗𝑗, and the earliest available time of the customer
at node 𝑗𝑗, that is, 𝑒𝑒𝑗𝑗. The following inequality constraint defines 𝑢𝑢𝑖𝑖𝑘𝑘.

𝑢𝑢𝑗𝑗𝑘𝑘 ≥ max�𝑢𝑢𝑖𝑖𝑘𝑘 + 𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑗𝑗, 𝑒𝑒𝑗𝑗� 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 (3)

If 𝑗𝑗 is a destination node, that is, 𝑗𝑗 > 𝑛𝑛, then 𝑢𝑢𝑗𝑗𝑘𝑘 is simply the arrival time of vehicle 𝑘𝑘, since
𝑒𝑒𝑗𝑗 = 0. Otherwise, if 𝑗𝑗 is an origin node, that is, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 𝑢𝑢𝑗𝑗𝑘𝑘 is the time when customer 𝑗𝑗 is
picked up by the vehicle.

To impose the capacity constraint, we let 𝑤𝑤𝑖𝑖
𝑘𝑘 denote the load of vehicle 𝑘𝑘, that is, the number

of passengers that it carries when travelling from node 𝑖𝑖 to 𝑗𝑗. Given there are 𝑞𝑞𝑗𝑗 passengers
boarding/alighting the vehicle at node 𝑗𝑗, we have

𝑤𝑤𝑗𝑗𝑘𝑘 = �𝑤𝑤𝑖𝑖
𝑘𝑘 + 𝑞𝑞𝑗𝑗�𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 . (4)

The objective function consists of the following components:

• Vehicle cost consists of two parts: (a) ∑ 𝑐𝑐𝑑𝑑 𝑑𝑑𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑖𝑖,𝑗𝑗∈𝒱𝒱 , where 𝑑𝑑𝑖𝑖,𝑗𝑗 is the distance
between nodes 𝑖𝑖 and 𝑗𝑗, 𝑐𝑐𝑑𝑑 is the coefficient that evaluates the vehicle travel cost per km
travelled; and (b) 𝑐𝑐𝑣𝑣sgn�𝑢𝑢0𝑘𝑘� is the vehicle capital cost, where sgn(∙) is a function that
returns 1 if 𝑢𝑢0𝑘𝑘 > 0, and 0 otherwise.

• Penalty for late pick-up and/or drop-off: 𝑐𝑐𝑤𝑤 max�𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑒𝑒𝑖𝑖, 0�
𝛼𝛼𝑤𝑤 + 𝑐𝑐𝑙𝑙 max�𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑙𝑙𝑖𝑖, 0�

𝛼𝛼𝑙𝑙 ,
where 𝑐𝑐𝑤𝑤, 𝛼𝛼𝑤𝑤, 𝑐𝑐𝑙𝑙, and 𝛼𝛼𝑙𝑙 are coefficients for evaluating the costs for customer 𝑖𝑖 ∈ 𝒫𝒫
waiting at the origin node 𝑖𝑖 for pick-up, the detour time, as well as any late time (beyond
the time window).

min∑ �∑ 𝑐𝑐𝑑𝑑 𝑑𝑑𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑖𝑖,𝑗𝑗∈𝒱𝒱 + 𝑐𝑐𝑣𝑣sgn�𝑢𝑢0𝑘𝑘��𝑘𝑘∈𝒦𝒦 +∑ �𝑐𝑐𝑤𝑤 max�𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑒𝑒𝑖𝑖, 0�
𝛼𝛼𝑤𝑤 +𝑖𝑖∈𝒱𝒱

𝑐𝑐𝑙𝑙 max�𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑙𝑙𝑖𝑖, 0��.
(5)

s.t. ∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒱𝒱𝑘𝑘∈𝒦𝒦 = 1, ∀𝑖𝑖 ∈ 𝒱𝒱 (6)

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒱𝒱 = ∑ 𝑥𝑥𝑛𝑛+𝑖𝑖,𝑗𝑗𝑘𝑘
𝑗𝑗∈𝒱𝒱 , ∀𝑖𝑖 ∈ 𝒱𝒱,𝑘𝑘 ∈ 𝒦𝒦 (7)

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝒱𝒱 = ∑ 𝑥𝑥𝑗𝑗,0
𝑘𝑘

𝑗𝑗∈𝒱𝒱 = 1, ∀𝑘𝑘 ∈ 𝒦𝒦 (8)

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒱𝒱 = ∑ 𝑥𝑥𝑗𝑗,𝑖𝑖
𝑘𝑘

𝑗𝑗∈𝒱𝒱 , ∀𝑖𝑖 ∈ 𝒱𝒱 ∪ {0},𝑘𝑘 ∈ 𝒦𝒦 (9)

𝑢𝑢𝑛𝑛+𝑖𝑖𝑘𝑘 ≥ 𝑢𝑢𝑖𝑖𝑘𝑘, ∀𝑖𝑖 ∈ 𝒱𝒱,𝑘𝑘 ∈ 𝒦𝒦 (10)

𝑢𝑢𝑗𝑗𝑘𝑘 ≥ max�𝑢𝑢𝑖𝑖𝑘𝑘 + 𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑗𝑗 , 𝑒𝑒𝑗𝑗� 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 , ∀𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱, 𝑘𝑘 ∈ 𝒦𝒦 (11)

𝑤𝑤𝑗𝑗𝑘𝑘 = �𝑤𝑤𝑖𝑖
𝑘𝑘 + 𝑞𝑞𝑗𝑗�𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 , ∀𝑖𝑖, 𝑗𝑗 ∈ 𝒫𝒫,𝑘𝑘 ∈ 𝒦𝒦 (12)

𝑤𝑤𝑖𝑖
𝑘𝑘 ≤ 𝐶𝐶𝑘𝑘, ∀𝑖𝑖 ∈ 𝒱𝒱,𝑘𝑘 ∈ 𝒦𝒦 (13)

𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 ∈ {0,1},𝑢𝑢𝑖𝑖𝑘𝑘,𝑤𝑤𝑖𝑖
𝑘𝑘 ≥ 0, ∀𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱,𝑘𝑘 ∈ 𝒦𝒦 (14)

ATRF 2023 Proceedings

6

Constraint (6) specifies that each customer is served (picked up) by one vehicle exactly once.
Constraint (7) guarantees that if a customer 𝑖𝑖 is (or not) picked up by vehicle 𝑘𝑘 from their origin
node 𝑖𝑖, the vehicle must (or must not) drop them off at their destination node 𝑛𝑛 + 𝑖𝑖. Constraint
(8) ensures that every vehicle departs from its depot and returns to it. The flow conservation is
guaranteed by (9) together with (8). Constraint (10) ensures that a customer is picked up before
getting dropped off, while (11) constrains the effective arrival times of vehicles at nodes.
Constraint (12) defines the vehicle load. The vehicle capacity is respected by (13). Constraint
(14) defines the domains of the variables.

4. The proposed algorithm
This section outlines the proposed solution for the DARP. The main approach is to decompose
the problem into two hierarchical subproblems (as shown in Figure 2):

• the trip allocation problem at the top layer, which is solved by neighbourhood search,
and

• multiple instances of the single-vehicle pickup-and-delivery problem with time
windows (PDPTW) at the bottom, which is solved by the Delaunay-triangulation based
algorithm.

Figure 2: Workflow

The following subsections will detail the algorithm at each layer.

4.1. Neighbourhood search for passenger allocation
At this layer, the algorithm employs the neighbourhood search technique to optimise the trip
allocation to vehicles, as detailed in Algorithm 1 below.

Algorithm 1 Trip allocation neighbourhood search
Input:
ℛ𝑘𝑘 ⊳ where ℛ𝑘𝑘 is the route of vehicle 𝑘𝑘
Θ𝑘𝑘 ≔ {𝜏𝜏𝑖𝑖} ⊳ where 𝜏𝜏𝑖𝑖 represents trip 𝑖𝑖 and Θ𝑘𝑘 is the set of all trips assigned to vehicle 𝑘𝑘
Output:
ℛbest
𝑘𝑘

Θbest
𝑘𝑘

1. procedure TRIPALLOCATIONNEIGHBOURHOODSEARCH(ℛ𝑘𝑘,Θ𝑘𝑘)
2. Θbest

𝑘𝑘 ← Θ𝑘𝑘 ,  ∀𝑘𝑘.
3. ℛbest

𝑘𝑘 ← ℛ𝑘𝑘,  ∀𝑘𝑘.
4. for a pre-specified number of operations do
5. Θbest

neighbour,𝑘𝑘 ← Θ𝑘𝑘,  ∀𝑘𝑘 .

ATRF 2023 Proceedings

7

6. ℛbest
neighbour,𝑘𝑘 ← ℛ𝑘𝑘,  ∀𝑘𝑘 .

7. for 𝛾𝛾 ∈ {1,2, … ,neighbourhood size} do
8. Randomly choose a trip 𝜏𝜏𝑖𝑖 ∈ ⋃ Θ𝑘𝑘 

𝑘𝑘 .
9. 𝑘𝑘 ← 𝜂𝜂1 ⊳ 𝜂𝜂1 is the vehicle index of the chosen trip.
10. 𝛽𝛽 ← {𝑘𝑘 | Θ𝑘𝑘 ≠ ∅} ∖ {𝜂𝜂1} ∪ min{𝑘𝑘 | Θ𝑘𝑘 = ∅} .
11. Reinsert the trip to a random vehicle 𝑘𝑘 ∈ 𝛽𝛽. ⊳ greedy insertion
12. 𝑘𝑘 ← 𝜂𝜂2 ⊳ 𝜂𝜂2 is the vehicle index being inserted.

13. Θ𝛾𝛾
neighbour,𝑘𝑘 ← the new trip allocation after reinsertion, ∀𝑘𝑘 .

14. ℛ𝛾𝛾
neighbour,𝑘𝑘 ← ℛ𝑘𝑘,  ∀𝑘𝑘 ∉ {𝜂𝜂1, 𝜂𝜂2}

15. Re-optimise ℛ𝜂𝜂1 and ℛ𝜂𝜂2 using Algorithm 2.

16. ℛ𝛾𝛾
neighbour,𝜂𝜂1 ← ℛ𝜂𝜂1

17. ℛ𝛾𝛾
neighbour,𝜂𝜂2 ← ℛ𝜂𝜂2

18. if the objective function value (5) of ℛ𝛾𝛾
neighbour is lower than that of ℛbest

neighbour then

19. Θbest
neighbour,𝑘𝑘 ← Θ𝛾𝛾

neighbour,𝑘𝑘,  ∀𝑘𝑘 .
20. ℛbest

neighbour,𝑘𝑘 ← ℛ𝛾𝛾
neighbour,𝑘𝑘,  ∀𝑘𝑘 .

21. end if
22. end for
23. if the objective function value (5) of ℛbest

neighbour is lower than that of ℛbest then

24. Θbest
𝑘𝑘 ← Θbest

neighbour,𝑘𝑘,  ∀𝑘𝑘
25. ℛbest

𝑘𝑘 ← ℛbest
neighbour,𝑘𝑘,  ∀𝑘𝑘

26. end if
27. Θ𝑘𝑘 ← Θbest

neighbour,𝑘𝑘,  ∀𝑘𝑘
28. ℛ𝑘𝑘 ← ℛbest

neighbour,𝑘𝑘,  ∀𝑘𝑘
29. end for
30. return Θ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 ,ℛ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑘𝑘
31. end procedure

The algorithm requires an initial solution estimate as an input, which can be generated by any
means, such as greedy insertion. At each iteration (of the for-loop at Line 4), the algorithm will
generate and evaluate multiple neighbour solutions by slightly modifying the “base solution”
of the current iteration 𝑘𝑘 , i.e., Θ𝑘𝑘 and ℛ𝑘𝑘 (Lines 7–22). If the best neighbor solution
(Θbest

neighbour,𝑘𝑘 and ℛbest
neighbour,𝑘𝑘) is better than the current solution estimate (Θbest

𝑘𝑘 and ℛbest
𝑘𝑘), the

algorithm will update the solution estimate accordingly (Lines 23–26). Finally, the algorithm
will update the base solution (Lines 27–28) and move on to the next iteration. The algorithm
produces the solution estimate at the end of the iteration as an output (Line 30).
To generate a neighbour solution, the algorithm randomly chooses a trip (Line 8) and moves it
to another vehicle randomly selected from a feasible set 𝛽𝛽 (Lines 8–12). Note that the feasible
set includes a single empty vehicle to allow the possibility to “procure” more vehicles when
needed (Line 10). Then, the routes of the modified vehicles (Vehicles 𝜂𝜂1 and 𝜂𝜂2) are re-
optimised (Line 15) and the generated neighbour solution is stored (Lines 13–14, 16–17).

4.2. Delaunay-triangulation-based algorithm for single-vehicle PDPTW
At the bottom layer, the newly developed Delaunay-triangulation based algorithm is employed.
The algorithm solves the single-vehicle PDPTW inherited from Algorithm 1 (Line 15). This
algorithm maps the pick-up and drop-off stops into a 3D spatiotemporal space (two

ATRF 2023 Proceedings

8

“horizontal” axis for location coordinates and the “vertical” axis for time) and iteratively
generates a DT structure created from an appropriate subset of these stops to help generate the
route solution.

Algorithm 2 Delaunay-triangulation lowest vertices (DTLV)
Input:
𝒟𝒟 ≔ {(𝑝𝑝𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖)} ⊳ where 𝒟𝒟 is the set of 𝑁𝑁 demand, each with a pick-up node 𝑝𝑝𝑖𝑖 , drop-off node 𝑑𝑑𝑖𝑖, and

request time 𝑡𝑡𝑖𝑖
𝒩𝒩 ⊳ where 𝒩𝒩 is the corresponding set of all nodes (both pick-ups and drop-offs)

Output:
ℛ ≔ (𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠2𝑛𝑛) ⊳ where ℛ is a sequence of stops; 𝑠𝑠𝑖𝑖 representing the generated route for the

vehicle serving all trip demands

1. procedure DTLV(𝒟𝒟,𝒩𝒩)
2. 𝛼𝛼 ← {𝑝𝑝𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} ⊳ the set of all available nodes that can be feasibly visited; in this instance

aa consists of all the possible pick-up nodes only
3. Denote the index 𝑒𝑒 as the demand with the earliest pick-up request, i.e., 𝑡𝑡𝑒𝑒 ≤ 𝑡𝑡𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛.
4. 𝑠𝑠1 ← 𝑝𝑝𝑒𝑒 ⊳ set the earliest pick-up node as the first stop
5. 𝛼𝛼 ← 𝛼𝛼 ∪ {𝑑𝑑𝑒𝑒} ⊳ add 𝑑𝑑𝑒𝑒 to 𝛼𝛼
6. 𝑘𝑘 ← 1
7. for 2𝑛𝑛 − 4 times do
8. 𝑘𝑘 ← 𝑘𝑘 + 1
9. 𝛾𝛾 ≔ {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)} ← the set of the nodes in 𝛼𝛼 mapped into a 3D space

⊳ The x and y axes denote the node’s locations, while the z-axis indicate the node’s service time
(i.e. the start of the pick-up/drop-off time window).

10. Generate a DT using 𝛾𝛾.
11. if a DT cannot be generated then
12. Denote the index 𝑒𝑒 as the node with the lowest z-value, i.e., 𝑧𝑧𝑒𝑒 < 𝑧𝑧𝑖𝑖 ,∀𝑖𝑖 ∈ 𝛾𝛾 ∖ {𝑒𝑒}.
13. 𝜖𝜖 ← find the trip demand index that corresponds to node 𝑒𝑒.
14. 𝑔𝑔𝜖𝜖 ← store the stop that corresponds to node 𝑒𝑒, this can either be 𝑝𝑝𝜖𝜖 or 𝑑𝑑𝜖𝜖
15. else
16. 𝒞𝒞 ← the set of the 𝑁𝑁𝑐𝑐 nodes that are connected to the current node by DT edges with the

extraordinary lowest z-values; these nodes become the candidate for the next stop
17. 𝒮𝒮 ← the set of the scores of each candidate evaluated by (15)
18. Denote the index 𝑒𝑒 as the node in 𝒞𝒞 with the best score in 𝒮𝒮.
19. 𝜖𝜖 ← find the trip demand index that corresponds to node 𝑒𝑒.
20. 𝑔𝑔𝜖𝜖 ← store the stop that corresponds to node 𝑒𝑒, this can either be 𝑝𝑝𝜖𝜖 or 𝑑𝑑𝜖𝜖
21. end if
22. 𝑠𝑠𝑘𝑘 ← 𝑔𝑔𝜖𝜖 ⊳ select the node 𝑔𝑔𝜖𝜖 as the next stop
23. 𝛼𝛼 ← 𝛼𝛼 ∖ {𝑠𝑠𝑘𝑘−1} ⊳ remove the previous stop from the available node set 𝛼𝛼
24. if 𝑔𝑔𝜖𝜖 is a pick-up then
25. 𝛼𝛼 ← 𝛼𝛼 ∪ {𝑑𝑑𝜖𝜖} ⊳ add the corresponding drop-off 𝑑𝑑𝜖𝜖 to the available node set
26. end if
27. end for
28. 𝜎𝜎best ← ∞
29. for each possible permutation of the remaining 3 nodes (𝑔𝑔1final,𝑔𝑔2final,𝑔𝑔3final) do
30. 𝜎𝜎 ←Using this permutation, evaluate the score of the complete route based on (5)
31. if 𝜎𝜎 < 𝜎𝜎best then
32. �𝑠𝑠1final, 𝑠𝑠2final, 𝑠𝑠3final� ← the current permutation of (𝑔𝑔1final,𝑔𝑔2final,𝑔𝑔3final)
33. end if
34. end for
35. (𝑠𝑠2𝑛𝑛−2, 𝑠𝑠2𝑛𝑛−1, 𝑠𝑠2𝑛𝑛) ← �𝑠𝑠1final, 𝑠𝑠2final, 𝑠𝑠3final�
36. return ℛ
37. end procedure

ATRF 2023 Proceedings

9

The algorithm selects the earliest stop as a starting point (Line 4) and sequentially builds the
route by selecting the next “best” stop (Lines 7–27). At each iteration sequence, the algorithm
creates a DT structure from the available stops, i.e., the current stop, the remaining pick-up
stops, and the drop-off stops of passengers on board (Lines 9–10). If a DT cannot be created,
then the algorithm simply chooses the next earliest node as the next stop (Lines 11–14). On the
other hand, if a DT structure is created, the algorithm focuses on analysing several “lowest”
vertices (meaning the stops with the closest time deadlines) to be selected as the next stop
(Lines 16–20). Once there are only three nodes remaining, the algorithm simply computes the
costs of all six possible permutations of the stops and selects the best one (Lines 29–35).
When investigating the next stop candidates (Lines 16–20), the logic of limiting the analysis to
only several of the lowest vertices was derived from the authors’ observations on the optimal
solutions of numerous self-generated sample problems. It was noted that the optimal solution
to the single-vehicle PDPTW often selects the lowest vertex as the next stop, and almost never
goes beyond the third lowest vertex. Hence, in this algorithm, the analysis is limited to the four
lowest vertices.

Denote 𝑠𝑠𝑘𝑘 as the current stop and 𝑠̂𝑠𝑘𝑘+1 as a candidate for the next stop. The score of 𝑠̂𝑠𝑘𝑘+1 for
the purpose of the selection of the vertex as the next stop is governed by the following equation.

𝐹𝐹score = 𝐹𝐹grad + 𝐹𝐹future + 𝑅𝑅nextstop + 𝑅𝑅distance + 𝑅𝑅horizontal + 𝑅𝑅timewindow (15)

with details as follows.

• 𝐹𝐹grad =

⎩
⎨

⎧
𝑓𝑓low
𝑓𝑓med
𝑓𝑓high
𝑓𝑓neg

if 0 ≤ ∇≤ 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑low
if 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑low < ∇ ≤ 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑med
if 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑high < ∇ ≤ 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑high
if ∇ < 0

 (16)

• ∇ is the gradient between 𝑠𝑠𝑘𝑘 and 𝑠̂𝑠𝑘𝑘+1, i.e., Δ𝑧𝑧
�Δ𝑥𝑥2+Δ𝑦𝑦2

• 𝐹𝐹future is computed by scaling the future cost 𝑓𝑓future of the candidate 𝑠̂𝑠𝑘𝑘+1 into a score.
The future cost 𝑓𝑓future is the route cost up to the next 𝑘𝑘 + 1 + 𝑘𝑘future stops. The future
stops are obtained by assuming the considered candidate 𝑠̂𝑠𝑘𝑘+1 is used and a further
𝑘𝑘future nodes are selected by using the loop in Algorithm 2 (Lines 7–27) but without
future cost consideration (to avoid recurrent function calls). Then, the score is
computed as follows,

𝐹𝐹future = �1 −
𝑓𝑓future

𝑓𝑓future
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓future

𝑚𝑚𝑚𝑚𝑚𝑚� ∙ future𝑚𝑚𝑚𝑚𝑚𝑚 (17)

where 𝑓𝑓future
max and 𝑓𝑓future

min are the maximum (worst) and minimum (best) future cost,
respectively, among the candidate next stops 𝒞𝒞. Furthermore, Equation (17) takes into
account the “gap” between the best and worst future costs. If the gap is small, 𝐹𝐹future
dominates (15) and the future cost becomes the main factor determining the selection
of the next stop.

• 𝑅𝑅variable is a function that returns an integer value between 𝑟𝑟variable and 0 depending on
the (lowest) ranking of the indicated variable among all the 𝑁𝑁𝑐𝑐 candidates. The candidate
with the lowest variable value will obtain the maximum score 𝑟𝑟variable and the score will
incrementally be deducted by one for each next ranked candidate, with a lower bound of
zero score.

• 𝑅𝑅nextstop ranks the preliminary cost of inserting the candidate 𝑠̂𝑠𝑘𝑘+1 into the (incomplete)
route, as evaluated by (5). So, the cost is only computed until 𝑠̂𝑠𝑘𝑘+1.

ATRF 2023 Proceedings

10

• 𝑅𝑅distance ranks the 3D Euclidean distance between 𝑠𝑠𝑘𝑘 and 𝑠̂𝑠𝑘𝑘+1.
• 𝑅𝑅horizontal ranks the distance between 𝑠𝑠𝑘𝑘 and 𝑠̂𝑠𝑘𝑘+1 projected into the 𝑥𝑥𝑥𝑥-plane.
• 𝑅𝑅timewindow ranks the candidate based on the earliest time window.

5. Numerical study
This section presents the results of the application of the proposed algorithm to solve PDPTW.

5.1. Methodology and setup
5.1.1. Case study area
The numerical study simulates the Port Melbourne area in Melbourne, Australia (Figure 3).
Multiple sets of trip requests were randomly generated throughout the area, with each demand
consists of a pick-up location, a drop-off location, and a trip start time. Figure 3 shows an
illustration of the demand location with the circle size indicating the “popularity” of a location.
As can be noted, many of the trips are originating or going towards a node at the top right-hand
corner of the map, which is the Southern Cross train station. The Southern Cross train station
is a main transit hub, especially for trip to/from Port Melbourne area.
For this study, a total of 22 different demand datasets were created, consisting of either 50 (3
datasets), 100 (6 datasets), 150 (6 datasets), 200 (6 datasets), or 500 (1 dataset) number of
demands (i.e., trip requests). For simplicity of the result analysis, each trip request consists of
one passenger, although technically the algorithm is able to handle group bookings.
Furthermore, the request time is normally distributed with a mean at 5:30 PM and standard
deviation of 1 hour, but is limited to between 4–7 PM. Moreover, in order to generate the
locations, a metric that compares the public transport and car travel (Kutadinata et al. 2021) is
used as a prioritisation consideration, leading to more trips being generated to/from areas where
car travels are more beneficial to the travellers.
Figure 3: Port Melbourne map showing the demand distribution

ATRF 2023 Proceedings

11

5.1.2. Implementation details
For this numerical study, the parameters used for the algorithms are shown in Table 1.
Table 1: Parameters used for the algorithms

Description Notation Values
Neighbourhood size - 30
No. of iterations for Algorithm 1 - 300
No. of next stop candidates 𝑁𝑁𝑐𝑐 4

Gradient scores for DTLV 𝑓𝑓low, 𝑓𝑓med, 𝑓𝑓high, 𝑓𝑓neg 1.5, 3.5, -1, 4

Gradient thresholds for DTLV 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑low,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑med,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑high 0.5, 0.8, 99

Future cost parameters future𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑘𝑘future 100, 1

Maximum ranking scores for 𝑅𝑅 𝑟𝑟nextstop, 𝑟𝑟distance, 𝑟𝑟horizontal, 𝑟𝑟timewindow 4.5, 2, 2.5, 3

Vehicle capacity 𝐶𝐶𝑘𝑘 9

Vehicle distance cost rate 𝑐𝑐𝑑𝑑 1 /km

Vehicle capital cost 𝑐𝑐𝑣𝑣 2000 or 20,000

Wait penalty 𝑐𝑐𝑤𝑤 ,𝛼𝛼𝑤𝑤 1, 1

Late penalty 𝑐𝑐𝑙𝑙 ,𝛼𝛼𝑙𝑙 10, 2

The algorithm was implemented in MATLAB and the scripts were run at Deakin University’s
remote desktop facility. The computation utilised MATLAB parallel computing with four
workers.

As a benchmark, the performance of the proposed algorithm will be compared against a
neighbourhood-search algorithm as described by Czioska et al. (2019) and Kutadinata et al.
(2019). Essentially, the benchmark neighbourhood-search algorithm follows the same two-
level approach and utilises Algorithm 1. However, it utilises another neighbourhood-search
algorithm for the bottom layer (i.e., the single vehicle case) instead of Algorithm 2. For the rest
of the paper, the benchmark neighbourhood-search algorithm will simply be referred to as the
NS algorithm, whereas the proposed algorithm will be referred to as the DTLV algorithm.

5.2. Results
In this subsection, the simulation results of using DTLV and NS are compared. The comparison
includes the algorithm runtime, the final optimisation score (as computed with (5)), as well as
the detailed statistics of the customer’s experience (i.e. the level of service) and the vehicle
operations. Finally, the effect of the vehicle capital cost 𝑐𝑐𝑣𝑣 on the solutions is investigated by
scrutinising the changes in the number of used vehicles and the level of service.
Firstly, Figure 4 shows the average runtime reduction and the optimisation score decrease when
utilising DTLV. It can be seen that DTLV achieves significant computation saving with an
almost negligible score decrease. The runtime reduction is at least 57% and up to 71%, whereas
the score decrease is only up to 1.6%. Furthermore, it can be seen from Figure 5 that, even
though the percentage of runtime reduction on the higher number of demands is smaller, the
actual time savings are more prominent on the higher number of demands, growing from 530
seconds of time savings with 50 demands to 917 seconds of time savings for 500 demands.

ATRF 2023 Proceedings

12

Figure 4: Results of runtime reduction and score decrease

Figure 5: Comparison of runtime

Secondly, Tables 2 and 3 show the comparison of the detailed statistics between the DTLV and
NS. These tables show the differences in the operation resources and the service level, with a
positive number indicating that the number obtained from the DTLV is higher, and vice versa.
It can be observed that DTLV generally leads to higher use of the operational resources,
indicated by the higher number of vehicles used, longer total operating times, higher VKT, as
well as higher inefficiency of vehicle utilisation (dead running and idling). However, these are
compensated by a lower wait time. Furthermore, the detour time difference seems to increase
as the number of demands increases, with DTLV yielding lower detour time at a smaller
number of demands.
Table 2: Statistics totalled from all vehicles

 No. of demands
Average of difference in... 50 100 150 200 500
No. of vehicles used 0 0.5 0.33 0.33 -1

Total operating time (min) 18 75 60 -20 96

Total VKT (km) 2.38 3.97 1.50 6.60 26.88

Total idle time (min) 12 62 54 -36 28

Total empty km/dead run (km) 1.04 0.97 -3.80 5.53 11.72

Total empty idle (min) 7 57 61 -36 19

ATRF 2023 Proceedings

13

Table 3: Statistics totalled from all demands/trips

 No. of demands
Average of difference in... 50 100 150 200 500
Total late pick-up time (min) 0 0 0 0 0

Total late drop-off time (min) 0 0 0 0 -0.5

Total wait time (min) -9.5 -8.0 -25.1 -10.3 16.8

Total detour time (min) -19.6 -7.0 8.5 2.8 53.7

Having said that, it should be noted that the differences are arguably insignificant when
considering each individual vehicle or customer, even in the 500-demand case that has the
highest magnitude differences. For instance, the total difference of 26.88 km VKT was
aggregated from a total of 42 (DTLV) and 43 (NS) vehicles, meaning each vehicle’s VKT only
differs by approximately 600 metres. As another example, the total detour time of 53.7 minutes
is attributed to 500 customers, resulting in only 6 seconds of difference per person between
DTLV and NS.

Finally, the simulations were re-run with the vehicle capital cost 𝑐𝑐𝑣𝑣 changed from 2,000 (low
cost) to 20,000 (high cost). The results showed that most of the routing solutions being
produced are utilising 1 or 2 fewer vehicles. For NS, the solutions for 11 out of the 22 datasets
are using 1 fewer vehicle, another dataset is using 2 fewer vehicles, 9 datasets have no change,
while there is an outlier where one dataset ends up using one more vehicle. For DTLV, the
increased vehicle capital cost results in 15 datasets using 1 fewer vehicle, and another one using
2 fewer vehicles.

Figure 6 illustrates the typical impact of the increased capital cost on the wait time and detour
time. The data is taken from one of the datasets with 200 demands using DTLV. Note that there
is no late penalty being incurred in this case, as well as in most cases. As can be observed, the
wait time distribution is worse (mean difference of 18 seconds), whereas the detour time has
surprisingly improved (mean difference of 9 seconds). Coupled with the fact that the wait time
is doubly penalised by the objective function (5), there is sufficient evidence to conclude that
the service level has decreased for the cases with the high vehicle capital cost.
Figure 6: Results of wait and detour times with changed vehicle capital cost 𝒄𝒄𝒗𝒗

ATRF 2023 Proceedings

14

6. Conclusion
In conclusion, the proposed algorithm shows the capability to match the optimality of an
established method of neighbourhood search algorithm with significantly faster computing
time. This is mainly attributed to the fact that DTLV is not a search heuristic like NS. It was
then shown in a case study area of Port Melbourne that the DTLV was able to optimise the
simulated PDPTW problems, and how the formulation was able to be implemented and tailored
to achieve a desired goal. These outcomes are highly relevant when considering the emerging
ubiquity of ICT and the popularity of a shared and flexible economy in transport. For potential
future works, several improvements have been identified: utilising deep learning techniques
for the next stop selection in DTLV, developing a DT-based passenger allocation algorithm,
and developing a framework to handle real-time requests.

References
Beasley, JE & Christofides, N 1997, ‘Vehicle routing with a sparse feasibility graph’, Eur. J.

Oper. Res., vol. 98, pp. 499-511.
Braekers, K, Caris, A & Janssens, GK 2014, ‘Exact and meta-heuristic approach for a general

heterogeneous dial-a-ride problem with multiple depots’, Transp. Res. Part B: Methodol.,
vol. 67, pp. 166-186.

CORDIS 2020, EU Research results, Autonomous on-demand buses underway in the streets of
Europe, viewed 15 April 2023, https://cordis.europa.eu/article/id/415431-autonomous-on-
demand-buses-underway-in-the-streets-of-europe.

Cubillos, C, Urra, E & Rodríguez, N, ‘Application of genetic algorithms for the DARPTW
problem’, Int. J. Comput. Commun. Control, vol. 4, no. 2, pp. 127-136.

Czioska, P, Kutadinata, R, Trifunović, A, Winter, A, Sester, M & Friedrich, B 2019,
‘Real‑world meeting points for shared demand‑responsive transportation systems’, Public
Transport, vol. 11, pp. 341-377.

Delaunay, B 1934, ‘Sur la sphère vide. A la mémoire de Georges Voronoï’, Bulletin de
l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na, vol. 6, pp. 793-
800.

Detti, P, Papalini, F & de Lara, GZM 2017, ‘A multi-depot dial-a-ride problem with
heterogeneous vehicles and compatibility constraints in healthcare’, Omega, vol. 70, pp. 1-
14.

Ho, SC, Szeto, WY, Kuo, YH, Leung, JM, Petering, M & Tou, TW 2018, ‘A survey of dial-a-
ride problems: Literature review and recent developments’, Transportation Research Part B:
Methodological, vol. 111, pp. 395–421, doi: 10.1016/j.trb.2018.02.001.

Johnsen, LC & Meisel, F 2022, ‘Interrelated trips in the rural dial-a-ride problem with
autonomous vehicles’, European Journal of Operational Research, vol. 303, no. 1, pp. 201-
219, doi: 10.1016/j.ejor.2022.02.021.

Kantabura, V 1983, ‘Traveling salesman cycles are not always subgraphs of Voronoi duals’,
Inform. Process. Lett., vol. 16, pp. 11-12.

Kaufman, B 2020, ‘1 million rides and counting: on-demand services bring public transport to
the suburbs’, The Conversation, viewed 15 April 2023, https://theconversation.com/1-
million-rides-and-counting-on-demand-services-bring-public-transport-to-the-suburbs-
132355.

Krasnogor, N, Moscato, P & Norman, M 1995, ‘A new hybrid heuristic for large geometric
traveling salesman problems based on the Delaunay triangulation’, paper presented at the
Anales del XXVII simposio Brasileiro de Pesquisa Operacional, Vitoria, Brazil.

https://cordis.europa.eu/article/id/415431-autonomous-on-demand-buses-underway-in-the-streets-of-europe
https://cordis.europa.eu/article/id/415431-autonomous-on-demand-buses-underway-in-the-streets-of-europe
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.ejor.2022.02.021
https://theconversation.com/1-million-rides-and-counting-on-demand-services-bring-public-transport-to-the-suburbs-132355
https://theconversation.com/1-million-rides-and-counting-on-demand-services-bring-public-transport-to-the-suburbs-132355
https://theconversation.com/1-million-rides-and-counting-on-demand-services-bring-public-transport-to-the-suburbs-132355

ATRF 2023 Proceedings

15

Kutadinata, R, Thompson, R & Winter, S 2019, ‘Passenger-Freight Demand Responsive
Transport Services: A Dynamic Optimisation Approach’, 26th ITS World Congress,
Singapore.

Kutadinata, R, Dey, S & Leow, D 2021, ‘Relative mobility analysis of a public transport
network in comparison with car travel’, Transp. Res. Record, vol. 2675, no. 11, pp. 214-225.

Kuźmicz, K, Ryciuk, U, Glińska, E, Kiryluk, H & Rollnik-Sadowska, E 2022, ‘Perspectives of
mobility development in remote areas attractive to tourists’, Ekonomia i Środowisko -
Economics and Environment, vol. 80, no. 1, pp. 150-188.

Laker, L 2022, ‘All aboard! How on‑demand public transport is getting back on the road’, The
Guardian, viewed 15 April 2023, https://www.theguardian.com/technology/2022/aug/11/ all-
aboard-how-on-demand-public-transport-is-getting-back-on-the-road.

Lau, SK & Shue, LY 2001, ‘Solving travelling salesman problems with an intelligent search
approach’, APAC J Oper. Res., vol. 18, pp. 77-87.

Liang, X, de Almeida Correia, GH, An, K & van Arem, B 2020, ‘Automated taxis’ dial-a-ride
problem with ride-sharing considering congestion-based dynamic travel times’,
Transportation Research Part C: Emerging Technologies, vol. 112, pp. 260-281.

Liu, M, Luo, Z & Lim, A 2015, ‘A branch-and-cut algorithm for a realistic dial-a-ride problem’,
Transp. Res. Part B: Methodol., vol. 81, pp. 267-288.

Malheiros, I, Ramalho, R, Passeti, B, Bulhões, T & Subramanian, A 2021, ‘A hybrid algorithm
for the multi-depot heterogeneous dial-a-ride problem’, Computers & Operations Research,
vol. 129, no. 105196, doi: 10.1016/j.cor.2020.105196.

Molenbruch, Y, Braekers, K & Caris, A 2017a, ‘Typology and literature review for dial-a-ride
problems’, Ann Oper Res, vol. 259, pp. 295–325, doi: 10.1007/s10479-017-2525-0.

Molenbruch, Y, Braekers, K & Caris, A 2017b, ‘Benefits of horizontal cooperation in dial-a-
ride services’, Transp. Res. Part E: Logist. Transp. Rev., vol. 107, pp. 97-119.

Pimenta, V, Quilliot, A, Toussaint, H & Vigo, D 2017, ‘Models and algorithms for reliability-
oriented dial-a-ride with autonomous electric vehicles’, Eur. J. Oper. Res., vol., 257, no. 2,
pp. 601-613.

PTV 2023, ‘FlexiRide, Public Transport Victoria’, PTV website, viewed 15 April 2023,
https://www.ptv.vic.gov.au/more/travelling-on-the-network/flexiride/.

Qu, Y & Bard, JF 2015, ‘A branch-and-price-and-cut algorithm for heterogeneous pickup and
delivery problems with configurable vehicle capacity’, Transp. Sci., vol. 49, no. 2, pp. 254-
270.

Ritzinger, U, Puchinger, J & Hartl, RF 2016, ‚Dynamic programming based metaheuristics for
the dial-a-ride problem’, Ann. Oper. Res., vol. 236, no. 2, pp. 341-358.

Sazonov, VV, Skobelev, PO, Lada, AN & Mayorov, IV 2018, ‘Application of multiagent
technologies to multiple depot vehicle routing problem with time windows’, Automation and
Remote Control, vol. 79, no. 6, pp. 1139-1147.

Sharif Azadeh, S, Atasoy, B, Ben-Akiva, ME, Bierlaire, M & Maknoon, MY 2022, ‘Choice-
driven dial-a-ride problem for demand responsive mobility service’, Transportation Research
Part B: Methodological, vol. 161, pp. 128-149, doi: 10.1016/j.trb.2022.04.008.

Su, Y, Dupin, N & Puchinger, J 2023, ‘A deterministic annealing local search for the electric
autonomous dial-a-ride problem’, European Journal of Operational Research, vol. 309, no.
3, pp. 1091-1111, doi: 10.1016/j.ejor.2023.02.012.

Translink 2023, ‘On demand Gold Coast’, Translink website, viewed 15 April 2023,
https://translink.com.au/travel-with-us/on-demand/gold-coast.

Tu, W, Fang, Z, Li, Q, Shaw, S & Chen, B 2014, ‘A bi-level Voronoi diagram-based
metaheuristic for a large-scale multi-depot vehicle routing problem’, Transp. Res. Part E, vol.
61, pp. 84-97.

https://www.theguardian.com/technology/2022/aug/11/%20all-aboard-how-on-demand-public-transport-is-getting-back-on-the-road
https://www.theguardian.com/technology/2022/aug/11/%20all-aboard-how-on-demand-public-transport-is-getting-back-on-the-road
https://doi.org/10.1016/j.cor.2020.105196
https://doi.org/10.1007/s10479-017-2525-0
https://www.ptv.vic.gov.au/more/travelling-on-the-network/flexiride/
https://doi.org/10.1016/j.trb.2022.04.008
https://doi.org/10.1016/j.ejor.2023.02.012
https://translink.com.au/travel-with-us/on-demand/gold-coast

