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Abstract 

Demand-responsive service is an effective, emerging means to improve mobility levels in 
urban and rural areas while addressing issues such as traffic congestion, rising transportation 
costs, and environmental concerns. In this paper, we investigate a dial-a-ride problem (DARP), 
which deals with planning transit vehicle routes that satisfy passenger transportation requests 
while minimising the total cost and the customer inconvenience (due to early pick-up or late 
drop-off). We propose a Delaunay-triangulation-based algorithm, which decomposes the 
problem into two hierarchical subproblems and solves it iteratively. Numerical experiments on 
a real road network in Melbourne demonstrate that the proposed algorithm is capable to 
produce comparable solutions to the established neighbourhood search algorithm and with a 
significantly lower computational requirement. 

1. Introduction 
On-demand transit (a.k.a. demand-responsive transit) services have attracted increasing 
attention from both academia and industry, as a complementary transportation means to 
traditional scheduled bus/subway services. Passengers can book a trip, specifying the pick-up 
and drop-off locations and times. The service is more flexible as on-demand vehicles do not 
have fixed routes or timetables to follow and are scheduled based on requests. Compared to 
taxi services and driving private cars, on-demand transit services, as an important part of shared 
economy, specifically, shared mobility, provide great opportunities in addressing 
transportation challenges, such as rising traffic congestion, emissions, and transportation costs. 
They are particularly useful in accommodating mobility needs in rural areas, in regions where 
public transport is underutilised, and for the elderly and disabled. 
The rapid development in technologies, such as autonomous vehicles, GPS, and the Internet of 
Things (IoT) has boosted the trial implementations of on-demand transit services in real life. 
In Australia, on-demand bus services have been put into trials in Sydney (Kaufman, 2020), 
Melbourne (PTV, 2023), and Gold Coast (Translink, 2023). In Wales, UK, passengers can 
“book a shuttle minibus from ‘floating bus stops’ near their homes directly to their destination” 
via an app (Kaufman, 2020). Moreover, autonomous buses have been deployed for on-demand 
services as part of the existing public transport networks in more than 5 countries in Europe 
(CORDIS, 2020). On-demand public transport has also been trialled in Japan and the US. Based 
on the data provided by the Queensland Department of Transport and Main Roads, there is a 
large rise in the on-demand transit services and ridership in Australia (see Figure 1). 

http://www.atrf.info/
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Figure 1: Rise in on-demand transit services and ridership in Australia (Kaufman, 2020) 

 
A Dial-a-Ride problem (DARP) is to address an important component of on-demand 
transportation systems, that is, investigating the planning and optimisation of ride 
arrangements. As the DARP is motivated from the real world, there are various features to 
consider, such as origins and destinations of passengers, time windows for pick-up/drop-off, 
vehicle capacity, fleet type, and passenger special requirements, which make it complex to 
model and solve. Current pilot projects of DAR are limited to trials in relatively small regions, 
for example, 11 locations in Wales (Laker, 2022), and several remote suburbs in Melbourne 
(FlexiRide, 2023). For large implementations, the algorithm for solving the DARP needs to be 
efficient and scalable in order to deal with a large number of requests and plan routes and stops 
in real time.  
This study aims to develop an efficient algorithm based on Delaunay triangulation to solve the 
routing problem of a DAR service. Its performance is evaluated via extensive numerical 
experiments conducted on the Port Melbourne network in Melbourne. The results show that 
the proposed algorithm is able to achieve, on average, a 63.4% computation time saving while 
only experiencing a 0.88% decrease in the “optimality score”. 
This paper is organised as follows. Section 2 briefly reviews the literature on the dial-a-ride 
problems, the solution approaches, and the Delaunay-triangulation method. Section 3 states the 
studied problem and the mathematical model, while Section 4 explains the proposed algorithm. 
Numerical results are discussed in Section 5, followed by a short conclusion in Section 6. 

2. Literature review 
The first DAR service dates to the 1970s in the US. The emergence of shared mobility and the 
concern for the development of sustainable transportation systems have provided the impetus 
for the investigations into the DARPs. In a DARP, passengers (users) book their trips on an 
app, on the internet or via phone for transport from origins to destinations, which could be 
physical addresses, bus stops, etc. They may nominate time windows for their pick-up and/or 
drop-off, and preferences in terms of vehicle type and service type (shared or private). The 
service provider is responsible for arranging vehicles and planning routes to fulfil all requests. 
The DARPs have a lot of applications in various areas, including health care, large 
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transportation terminals and public transport. There are two recent reviews on the DARPs (Ho 
et al., 2018; Molenbruch et al, 2017a). Ho et al. (2018) reviewed 86 papers published between 
2007 and 2017 and presented a detailed taxonomy of the variants of DARPs, based on the 
planning and scheduling procedures (static or dynamic) and uncertainty in the information 
received (deterministic or stochastic). The literature on the DARPs has been growing 
significantly since 2017, and the topic has attracted at least 200 publications, which further 
demonstrates the popularity of the DARP studies in the academic community.  
There are many DARP variants. In terms of vehicle types, recent studies have investigated 
using electric vehicles (EVs) (Su et al, 2023), autonomous vehicles (Johnsen and Meisel, 2022; 
Liang et al., 2020), and heterogeneous fleet (Malheiros et al., 2021). The research of the DAR 
services has been extended to goods transportation, for example, container transportation 
(Kuźmicz et al., 2022). New features considered in the problems lead to extra constraints, such 
as driving ranges and minimum battery levels for EVs (Su et al., 2023), and objectives like 
environmental cost minimisation and assortment optimisation (Azadeh et al., 2022) in addition 
to classic profit maximisation (Liang et al., 2020), ride-time minimisation, and customer 
satisfaction maximisation (Johnsen and Meisel, 2022). 
The solution approaches for the DARPs can be generally classified into two categories: exact 
methods, such as branch and bound (B&B) and its variants (Qu and Bard, 2015; Liu et al., 
2015), and (meta-)heuristics, such as Tabu search (Detti et al., 2017), simulating annealing 
(Braekers et al., 2014), genetic algorithm (Cubillos et al., 2009), and various neighbourhood 
search algorithms (Su et al, 2023; Molenbruch et al., 2017b). Whilst the exact approaches are 
limited to small and medium instances, meta-heuristics and hybrid algorithms (Pimenta et al., 
2017; Ritzinger et al., 2016) which combine multiple meta-heuristics, are more popular for 
large instances. 
Since the DAR services receive real-time information and require real-time planning and 
scheduling, the computational efficiency of solution algorithms is crucial. For algorithms that 
are developed for solving the static, deterministic version of the DARP, that is, decisions are 
made once off with full knowledge, if they are sufficiently fast, they can be adapted for re-
optimisation and be implemented “on-the-go”. Nevertheless, the meta-heuristics, like 
neighbourhood search algorithms, could be time-consuming, in particular when evaluating the 
neighbourhood. The current study is motivated by the goal of devising fast (on-line) algorithms. 
One of the possible approaches to improve the computation time of DARP algorithms is to 
reduce the search space by introducing some “filters” or “guidance” scheme. In this study, the 
focus is to use Delaunay Triangulation (DT) for this purpose. Given a set of nodes, the 
Delaunay triangles are formed such that the given nodes do not lie within the circumcircle of 
any of the Delaunay triangles. A Delaunay triangulation is the dual graph of a corresponding 
Voronoi diagram, where it is formed by partitioning a plane into regions around the given nodes 
(Delaunay, 1934). As such, the DT edges connect adjacent nodes to each other and can provide 
useful information to determine the next “closest” stops when being applied to DARPs. 
Over the years, DT has been used as the basis of routing algorithms, where the paths are 
selected to lie on the DT edges (Beasley and Christofides, 1997). Originally, DT is applied to 
help solve the travelling salesman problem (TSP) (Krasnogor et al., 1995; Lau and Shue, 2001). 
Although it has been proven that the solution to TSP does not always fully lies on the DT edges 
(Kantabura, 1983), Krasnogor et al. (1995) pointed out that there is a large portion of the 
solution that agrees with the DT edges. More recently, DT has been used on multi-depot 
delivery problems (Tu et al., 2014; Sazonov et al., 2018). In terms of the algorithms, DT is 
typically used as part of a Tabu neighbourhood search to restrict the search space of the 
neighbourhood operations (Krasnogor et al., 1995; Lau and Shue, 2001). However, there are 
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other ways to incorporate the DT into routing algorithms, such as the approach by Tu et al. 
(2014) (bi-level DT with simulated annealing) and Sazanov et al. (2018) (DT as the 
communication graph among multi-agents, each performing greedy insertion algorithm). 
Therefore, the review has established the need to develop sufficiently fast DARP algorithms 
for real-life implementation. While DT is a promising approach, previous works have not 
addressed the method to handle the sequencing requirements of a pick-up and the 
corresponding drop-off. In light of this, this paper proposes a novel DT-based algorithm that 
considers the pick-up/drop-off order, as well as the time window by extending the DT into 3D 
space. Furthermore, the proposed algorithm also eliminates part of the search space by utilising 
a “non-search” heuristic that results in a significant reduction of the computation time. 

3. Problem formulation 
3.1. Problem statement 
This study considers a fleet (heterogeneous or homogeneous) of capacitated vehicles to service 
customers, who nominate pick-up and drop-off locations and time windows. Let 𝒫𝒫 denote the 
set of customers, that is, 𝒫𝒫 = {1,2, … ,𝑛𝑛} . Each customer 𝑖𝑖 ∈ 𝒫𝒫  specifies a time window 
[𝐸𝐸𝑖𝑖, 𝐿𝐿𝑖𝑖]  and the customer is ready to be picked up at time 𝐸𝐸𝑖𝑖 and should be dropped off by time 
𝐿𝐿𝑖𝑖. Here, the customer may refer to a group of passengers, and the number of passengers in this 
customer group is represented by 𝑄𝑄𝑖𝑖. The fleet of vehicles is denoted by 𝒦𝒦, and each vehicle 
𝑘𝑘 ∈ 𝒦𝒦 has capacity 𝐶𝐶𝑘𝑘 in terms of the maximum number of passengers in the vehicle. 

The transport network can be described by a graph 𝐺𝐺 = (𝒱𝒱,𝒜𝒜) with a node set 𝒱𝒱 and an arc 
set 𝒜𝒜 = {𝑉𝑉𝑖𝑖𝑉𝑉𝑗𝑗:𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 ∈ 𝒱𝒱, 𝑖𝑖 ≠ 𝑗𝑗}. The set 𝒱𝒱  contains 2𝑛𝑛 + 1 nodes, node 𝑉𝑉0  is the depot of 
vehicles, and nodes 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑖𝑖+𝑛𝑛, respectively, represent the pick-up and drop-off locations of 
customer 𝑖𝑖 ∈ 𝒫𝒫. For simplicity, we shall write node 𝑖𝑖 ∈ 𝒱𝒱 rather than 𝑉𝑉𝑖𝑖 ∈ 𝒱𝒱. 
Following the classification by Ho et al. (2018), the studied problem is a capacitated, static, 
and deterministic DARP with a heterogeneous fleet, time windows and a single objective. 

3.2. Model 
The DARP in this study has two classes of decisions to make, the assignment of customers to 
vehicles and the route design of each vehicle. Our model defines a binary decision variable 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘  
to represent if vehicle 𝑘𝑘 ∈ 𝒦𝒦 traverses the path from node 𝑖𝑖 ∈ 𝒱𝒱 to 𝑗𝑗 ∈ 𝒱𝒱. If for 𝑖𝑖 ≤ 𝑛𝑛, 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 =
1, then node 𝑗𝑗 is assigned to be serviced by vehicle 𝑘𝑘. 

We consider a soft constraint for the service time window [𝐸𝐸𝑖𝑖 , 𝐿𝐿𝑖𝑖] for 𝑖𝑖 ∈ 𝒫𝒫. Consider that 
customer 𝑖𝑖 is serviced by vehicle 𝑘𝑘. If the vehicle arrives at the origin node 𝑖𝑖 earlier than the 
earliest pick-up time 𝐸𝐸𝑖𝑖 , the vehicle will wait at the node until time 𝐸𝐸𝑖𝑖  and then load the 
passenger(s). If the vehicle reaches the destination node 𝑛𝑛 + 𝑖𝑖 later than the latest drop-off time 
𝐿𝐿𝑖𝑖 , it incurs a penalty, which will be included in the objective function to be minimised. 
Additionally, the pick-up wait time is limited to 𝛿𝛿, beyond which will incur a penalty. For ease 
of presentation, we extend some attributes of customers to nodes. Specifically, for node 𝑖𝑖 =
1,2, … ,2𝑛𝑛, the time window is given by [𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖] with  

𝑒𝑒𝑖𝑖 = �
𝐸𝐸𝑖𝑖                              if 𝑖𝑖 ≤ 𝑛𝑛,

𝐸𝐸𝑖𝑖−𝑛𝑛 + 𝑠𝑠𝑖𝑖−𝑛𝑛 + 𝑡𝑡𝑖𝑖,𝑖𝑖+𝑛𝑛  otherwise, 𝑙𝑙𝑖𝑖 = �𝐸𝐸𝑖𝑖 + 𝛿𝛿          if 𝑖𝑖 ≤ 𝑛𝑛,
𝐿𝐿𝑖𝑖−𝑛𝑛  otherwise,  (1) 

where 𝑠𝑠𝑖𝑖 denotes the dwell time (for loading and unloading passengers) and 𝑡𝑡𝑖𝑖,𝑗𝑗 is the travel 
time between nodes 𝑖𝑖 and 𝑗𝑗. Moreover, the number of loading/unloading passengers is 
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𝑞𝑞𝑖𝑖 = �𝑄𝑄𝑖𝑖          if 𝑖𝑖 ≤ 𝑛𝑛,
−𝑄𝑄𝑖𝑖  otherwise. (2) 

At the depot node, we have 𝑒𝑒0 = 0, 𝑙𝑙0 = ∞ and 𝑞𝑞0 = 0. 

Let 𝑢𝑢𝑗𝑗𝑘𝑘 denote the effective arrival time of vehicle 𝑘𝑘 at node 𝑗𝑗 ∈ 𝒱𝒱. This variable is constrained 
by the effective arrival time at the previous node (say 𝑖𝑖 ∈ 𝒱𝒱 ), the dwell time (for 
loading/unloading passengers) at the previous node, denoted by parameter 𝑠𝑠𝑖𝑖, the travel time 
between nodes 𝑖𝑖 and 𝑗𝑗, denoted by parameter 𝑡𝑡𝑖𝑖,𝑗𝑗, and the earliest available time of the customer 
at node 𝑗𝑗, that is, 𝑒𝑒𝑗𝑗. The following inequality constraint defines 𝑢𝑢𝑖𝑖𝑘𝑘. 

𝑢𝑢𝑗𝑗𝑘𝑘 ≥ max�𝑢𝑢𝑖𝑖𝑘𝑘 + 𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑗𝑗, 𝑒𝑒𝑗𝑗� 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘  (3) 

If 𝑗𝑗 is a destination node, that is, 𝑗𝑗 > 𝑛𝑛, then 𝑢𝑢𝑗𝑗𝑘𝑘 is simply the arrival time of vehicle 𝑘𝑘, since 
𝑒𝑒𝑗𝑗 = 0. Otherwise, if 𝑗𝑗 is an origin node, that is, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 𝑢𝑢𝑗𝑗𝑘𝑘 is the time when customer 𝑗𝑗 is 
picked up by the vehicle. 

To impose the capacity constraint, we let 𝑤𝑤𝑖𝑖
𝑘𝑘 denote the load of vehicle 𝑘𝑘, that is, the number 

of passengers that it carries when travelling from node 𝑖𝑖 to 𝑗𝑗. Given there are 𝑞𝑞𝑗𝑗 passengers 
boarding/alighting the vehicle at node 𝑗𝑗, we have 

𝑤𝑤𝑗𝑗𝑘𝑘 = �𝑤𝑤𝑖𝑖
𝑘𝑘 + 𝑞𝑞𝑗𝑗�𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 . (4) 

The objective function consists of the following components: 

• Vehicle cost consists of two parts: (a) ∑ 𝑐𝑐𝑑𝑑 𝑑𝑑𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑖𝑖,𝑗𝑗∈𝒱𝒱 , where 𝑑𝑑𝑖𝑖,𝑗𝑗  is the distance 
between nodes 𝑖𝑖 and 𝑗𝑗, 𝑐𝑐𝑑𝑑 is the coefficient that evaluates the vehicle travel cost per km 
travelled; and (b) 𝑐𝑐𝑣𝑣sgn�𝑢𝑢0𝑘𝑘� is the vehicle capital cost, where sgn(∙) is a function that 
returns 1 if 𝑢𝑢0𝑘𝑘 > 0, and 0 otherwise. 

• Penalty for late pick-up and/or drop-off: 𝑐𝑐𝑤𝑤 max�𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑒𝑒𝑖𝑖, 0�
𝛼𝛼𝑤𝑤 + 𝑐𝑐𝑙𝑙 max�𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑙𝑙𝑖𝑖, 0�

𝛼𝛼𝑙𝑙 , 
where 𝑐𝑐𝑤𝑤, 𝛼𝛼𝑤𝑤, 𝑐𝑐𝑙𝑙, and 𝛼𝛼𝑙𝑙 are coefficients for evaluating the costs for customer 𝑖𝑖 ∈ 𝒫𝒫 
waiting at the origin node 𝑖𝑖 for pick-up, the detour time, as well as any late time (beyond 
the time window). 

min∑ �∑ 𝑐𝑐𝑑𝑑 𝑑𝑑𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑖𝑖,𝑗𝑗∈𝒱𝒱 + 𝑐𝑐𝑣𝑣sgn�𝑢𝑢0𝑘𝑘��𝑘𝑘∈𝒦𝒦 +∑ �𝑐𝑐𝑤𝑤 max�𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑒𝑒𝑖𝑖, 0�
𝛼𝛼𝑤𝑤 +𝑖𝑖∈𝒱𝒱

𝑐𝑐𝑙𝑙 max�𝑢𝑢𝑖𝑖𝑘𝑘 − 𝑙𝑙𝑖𝑖, 0��. 
(5) 

s.t. ∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒱𝒱𝑘𝑘∈𝒦𝒦 = 1, ∀𝑖𝑖 ∈ 𝒱𝒱 (6) 

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒱𝒱 = ∑ 𝑥𝑥𝑛𝑛+𝑖𝑖,𝑗𝑗𝑘𝑘
𝑗𝑗∈𝒱𝒱 , ∀𝑖𝑖 ∈ 𝒱𝒱,𝑘𝑘 ∈ 𝒦𝒦  (7) 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝒱𝒱 = ∑ 𝑥𝑥𝑗𝑗,0
𝑘𝑘

𝑗𝑗∈𝒱𝒱 = 1, ∀𝑘𝑘 ∈ 𝒦𝒦 (8) 

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒱𝒱 = ∑ 𝑥𝑥𝑗𝑗,𝑖𝑖
𝑘𝑘

𝑗𝑗∈𝒱𝒱 , ∀𝑖𝑖 ∈ 𝒱𝒱 ∪ {0},𝑘𝑘 ∈ 𝒦𝒦 (9) 

𝑢𝑢𝑛𝑛+𝑖𝑖𝑘𝑘 ≥ 𝑢𝑢𝑖𝑖𝑘𝑘, ∀𝑖𝑖 ∈ 𝒱𝒱,𝑘𝑘 ∈ 𝒦𝒦 (10) 

𝑢𝑢𝑗𝑗𝑘𝑘 ≥ max�𝑢𝑢𝑖𝑖𝑘𝑘 + 𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑗𝑗 , 𝑒𝑒𝑗𝑗� 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 , ∀𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱, 𝑘𝑘 ∈ 𝒦𝒦 (11) 

𝑤𝑤𝑗𝑗𝑘𝑘 = �𝑤𝑤𝑖𝑖
𝑘𝑘 + 𝑞𝑞𝑗𝑗�𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 , ∀𝑖𝑖, 𝑗𝑗 ∈ 𝒫𝒫,𝑘𝑘 ∈ 𝒦𝒦 (12) 

𝑤𝑤𝑖𝑖
𝑘𝑘 ≤ 𝐶𝐶𝑘𝑘, ∀𝑖𝑖 ∈ 𝒱𝒱,𝑘𝑘 ∈ 𝒦𝒦 (13) 

𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘 ∈ {0,1},𝑢𝑢𝑖𝑖𝑘𝑘,𝑤𝑤𝑖𝑖
𝑘𝑘 ≥ 0, ∀𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱,𝑘𝑘 ∈ 𝒦𝒦 (14) 
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Constraint (6) specifies that each customer is served (picked up) by one vehicle exactly once. 
Constraint (7) guarantees that if a customer 𝑖𝑖 is (or not) picked up by vehicle 𝑘𝑘 from their origin 
node 𝑖𝑖, the vehicle must (or must not) drop them off at their destination node 𝑛𝑛 + 𝑖𝑖. Constraint 
(8) ensures that every vehicle departs from its depot and returns to it. The flow conservation is 
guaranteed by (9) together with (8). Constraint (10) ensures that a customer is picked up before 
getting dropped off, while (11) constrains the effective arrival times of vehicles at nodes. 
Constraint (12) defines the vehicle load. The vehicle capacity is respected by (13). Constraint 
(14) defines the domains of the variables. 

4. The proposed algorithm 
This section outlines the proposed solution for the DARP. The main approach is to decompose 
the problem into two hierarchical subproblems (as shown in Figure 2): 

• the trip allocation problem at the top layer, which is solved by neighbourhood search, 
and  

• multiple instances of the single-vehicle pickup-and-delivery problem with time 
windows (PDPTW) at the bottom, which is solved by the Delaunay-triangulation based 
algorithm. 

Figure 2: Workflow 

 
The following subsections will detail the algorithm at each layer. 

4.1. Neighbourhood search for passenger allocation 
At this layer, the algorithm employs the neighbourhood search technique to optimise the trip 
allocation to vehicles, as detailed in Algorithm 1 below. 
 

Algorithm 1   Trip allocation neighbourhood search 
Input: 
ℛ𝑘𝑘       ⊳  where ℛ𝑘𝑘 is the route of vehicle 𝑘𝑘  
Θ𝑘𝑘 ≔ {𝜏𝜏𝑖𝑖}  ⊳  where 𝜏𝜏𝑖𝑖 represents trip 𝑖𝑖  and Θ𝑘𝑘 is the set of all trips assigned to vehicle 𝑘𝑘  
Output: 
ℛbest
𝑘𝑘   

Θbest
𝑘𝑘   

 
1. procedure TRIPALLOCATIONNEIGHBOURHOODSEARCH(ℛ𝑘𝑘,Θ𝑘𝑘) 
2.      Θbest

𝑘𝑘 ← Θ𝑘𝑘 ,  ∀𝑘𝑘. 
3.      ℛbest

𝑘𝑘 ← ℛ𝑘𝑘,  ∀𝑘𝑘. 
4.      for a pre-specified number of operations do 
5.           Θbest

neighbour,𝑘𝑘 ← Θ𝑘𝑘,  ∀𝑘𝑘 . 
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6.           ℛbest
neighbour,𝑘𝑘 ← ℛ𝑘𝑘,  ∀𝑘𝑘 . 

7.           for 𝛾𝛾 ∈ {1,2, … ,neighbourhood size}  do 
8.                Randomly choose a trip 𝜏𝜏𝑖𝑖 ∈ ⋃ Θ𝑘𝑘 

𝑘𝑘 . 
9.                𝑘𝑘 ← 𝜂𝜂1      ⊳  𝜂𝜂1 is the vehicle index of the chosen trip. 
10.                𝛽𝛽 ← {𝑘𝑘 | Θ𝑘𝑘 ≠ ∅} ∖ {𝜂𝜂1} ∪ min{𝑘𝑘 | Θ𝑘𝑘 = ∅}  . 
11.                Reinsert the trip to a random vehicle 𝑘𝑘 ∈ 𝛽𝛽.     ⊳  greedy insertion 
12.                𝑘𝑘 ← 𝜂𝜂2      ⊳  𝜂𝜂2 is the vehicle index being inserted. 

13.                Θ𝛾𝛾
neighbour,𝑘𝑘 ← the new trip allocation after reinsertion, ∀𝑘𝑘 . 

14.                ℛ𝛾𝛾
neighbour,𝑘𝑘 ← ℛ𝑘𝑘,  ∀𝑘𝑘 ∉ {𝜂𝜂1, 𝜂𝜂2} 

15.                Re-optimise ℛ𝜂𝜂1  and ℛ𝜂𝜂2  using Algorithm 2. 

16.                ℛ𝛾𝛾
neighbour,𝜂𝜂1 ← ℛ𝜂𝜂1  

17.                ℛ𝛾𝛾
neighbour,𝜂𝜂2 ← ℛ𝜂𝜂2  

18.                if the objective function value (5) of ℛ𝛾𝛾
neighbour is lower than that of ℛbest

neighbour then 

19.                     Θbest
neighbour,𝑘𝑘 ← Θ𝛾𝛾

neighbour,𝑘𝑘,  ∀𝑘𝑘 . 
20.                     ℛbest

neighbour,𝑘𝑘 ← ℛ𝛾𝛾
neighbour,𝑘𝑘,  ∀𝑘𝑘 . 

21.                end if 
22.           end for 
23.           if the objective function value (5) of ℛbest

neighbour is lower than that of ℛbest then 

24.                Θbest
𝑘𝑘 ← Θbest

neighbour,𝑘𝑘,  ∀𝑘𝑘  
25.                ℛbest

𝑘𝑘 ← ℛbest
neighbour,𝑘𝑘,  ∀𝑘𝑘  

26.           end if 
27.           Θ𝑘𝑘 ← Θbest

neighbour,𝑘𝑘,  ∀𝑘𝑘  
28.           ℛ𝑘𝑘 ← ℛbest

neighbour,𝑘𝑘,  ∀𝑘𝑘  
29.      end for 
30.      return Θ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 ,ℛ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑘𝑘  
31. end procedure 
 

 
The algorithm requires an initial solution estimate as an input, which can be generated by any 
means, such as greedy insertion. At each iteration (of the for-loop at Line 4), the algorithm will 
generate and evaluate multiple neighbour solutions by slightly modifying the “base solution” 
of the current iteration 𝑘𝑘 , i.e., Θ𝑘𝑘  and ℛ𝑘𝑘  (Lines 7–22). If the best neighbor solution 
(Θbest

neighbour,𝑘𝑘  and ℛbest
neighbour,𝑘𝑘 ) is better than the current solution estimate (Θbest

𝑘𝑘  and ℛbest
𝑘𝑘 ), the 

algorithm will update the solution estimate accordingly (Lines 23–26). Finally, the algorithm 
will update the base solution (Lines 27–28) and move on to the next iteration. The algorithm 
produces the solution estimate at the end of the iteration as an output (Line 30). 
To generate a neighbour solution, the algorithm randomly chooses a trip (Line 8) and moves it 
to another vehicle randomly selected from a feasible set 𝛽𝛽 (Lines 8–12). Note that the feasible 
set includes a single empty vehicle to allow the possibility to “procure” more vehicles when 
needed (Line 10). Then, the routes of the modified vehicles (Vehicles 𝜂𝜂1  and 𝜂𝜂2 ) are re-
optimised (Line 15) and the generated neighbour solution is stored (Lines 13–14, 16–17). 

4.2. Delaunay-triangulation-based algorithm for single-vehicle PDPTW 
At the bottom layer, the newly developed Delaunay-triangulation based algorithm is employed. 
The algorithm solves the single-vehicle PDPTW inherited from Algorithm 1 (Line 15). This 
algorithm maps the pick-up and drop-off stops into a 3D spatiotemporal space (two 
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“horizontal” axis for location coordinates and the “vertical” axis for time) and iteratively 
generates a DT structure created from an appropriate subset of these stops to help generate the 
route solution. 
 

Algorithm 2   Delaunay-triangulation lowest vertices (DTLV) 
Input: 
𝒟𝒟 ≔ {(𝑝𝑝𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖)}   ⊳ where 𝒟𝒟  is the set of 𝑁𝑁 demand, each with a pick-up node 𝑝𝑝𝑖𝑖 , drop-off node 𝑑𝑑𝑖𝑖, and 

request time 𝑡𝑡𝑖𝑖 
𝒩𝒩                            ⊳ where 𝒩𝒩 is the corresponding set of all nodes (both pick-ups and drop-offs) 

Output: 
ℛ ≔ (𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠2𝑛𝑛)            ⊳ where ℛ is a sequence of stops; 𝑠𝑠𝑖𝑖 representing the generated route for the 

vehicle serving all trip demands 
 
1. procedure DTLV(𝒟𝒟,𝒩𝒩) 
2.      𝛼𝛼 ←  {𝑝𝑝𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛}           ⊳ the set of all available nodes that can be feasibly visited; in this instance 

aa                                                  consists of all the possible pick-up nodes only 
3.      Denote the index 𝑒𝑒 as the demand with the earliest pick-up request, i.e., 𝑡𝑡𝑒𝑒 ≤ 𝑡𝑡𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. 
4.      𝑠𝑠1 ← 𝑝𝑝𝑒𝑒                    ⊳ set the earliest pick-up node as the first stop 
5.      𝛼𝛼 ← 𝛼𝛼 ∪ {𝑑𝑑𝑒𝑒}           ⊳ add 𝑑𝑑𝑒𝑒 to 𝛼𝛼 
6.      𝑘𝑘 ← 1 
7.      for 2𝑛𝑛 − 4 times do 
8.           𝑘𝑘 ← 𝑘𝑘 + 1 
9.           𝛾𝛾 ≔ {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)} ← the set of the nodes in 𝛼𝛼 mapped into a 3D space  

⊳ The x and y axes denote the node’s locations, while the z-axis indicate the node’s service time 
(i.e. the start of the pick-up/drop-off time window). 

10.           Generate a DT using 𝛾𝛾. 
11.           if a DT cannot be generated then 
12.                Denote the index 𝑒𝑒 as the node with the lowest z-value, i.e., 𝑧𝑧𝑒𝑒 < 𝑧𝑧𝑖𝑖 ,∀𝑖𝑖 ∈ 𝛾𝛾 ∖ {𝑒𝑒}. 
13.                𝜖𝜖 ← find the trip demand index that corresponds to node 𝑒𝑒. 
14.                𝑔𝑔𝜖𝜖 ← store the stop that corresponds to node 𝑒𝑒, this can either be 𝑝𝑝𝜖𝜖 or 𝑑𝑑𝜖𝜖 
15.           else 
16.                𝒞𝒞 ← the set of the 𝑁𝑁𝑐𝑐 nodes that are connected to the current node by DT edges with the 

extraordinary lowest z-values; these nodes become the candidate for the next stop 
17.                𝒮𝒮 ← the set of the scores of each candidate evaluated by (15) 
18.                Denote the index 𝑒𝑒 as the node in 𝒞𝒞 with the best score in 𝒮𝒮. 
19.                𝜖𝜖 ← find the trip demand index that corresponds to node 𝑒𝑒. 
20.                𝑔𝑔𝜖𝜖 ← store the stop that corresponds to node 𝑒𝑒, this can either be 𝑝𝑝𝜖𝜖 or 𝑑𝑑𝜖𝜖 
21.           end if 
22.           𝑠𝑠𝑘𝑘 ← 𝑔𝑔𝜖𝜖                       ⊳ select the node 𝑔𝑔𝜖𝜖 as the next stop 
23.           𝛼𝛼 ← 𝛼𝛼 ∖ {𝑠𝑠𝑘𝑘−1}           ⊳ remove the previous stop from the available node set 𝛼𝛼 
24.           if 𝑔𝑔𝜖𝜖 is a pick-up then 
25.                𝛼𝛼 ← 𝛼𝛼 ∪ {𝑑𝑑𝜖𝜖}         ⊳ add the corresponding drop-off  𝑑𝑑𝜖𝜖 to the available node set 
26.           end if 
27.      end for 
28.      𝜎𝜎best ← ∞ 
29.      for each possible permutation of the remaining 3 nodes (𝑔𝑔1final,𝑔𝑔2final,𝑔𝑔3final) do 
30.           𝜎𝜎 ←Using this permutation, evaluate the score of the complete route based on (5) 
31.           if 𝜎𝜎 < 𝜎𝜎best then 
32.                �𝑠𝑠1final, 𝑠𝑠2final, 𝑠𝑠3final� ← the current permutation of (𝑔𝑔1final,𝑔𝑔2final,𝑔𝑔3final) 
33.           end if 
34.      end for 
35.      (𝑠𝑠2𝑛𝑛−2, 𝑠𝑠2𝑛𝑛−1, 𝑠𝑠2𝑛𝑛) ← �𝑠𝑠1final, 𝑠𝑠2final, 𝑠𝑠3final� 
36.      return ℛ 
37. end procedure 
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The algorithm selects the earliest stop as a starting point (Line 4) and sequentially builds the 
route by selecting the next “best” stop (Lines 7–27). At each iteration sequence, the algorithm 
creates a DT structure from the available stops, i.e., the current stop, the remaining pick-up 
stops, and the drop-off stops of passengers on board (Lines 9–10). If a DT cannot be created, 
then the algorithm simply chooses the next earliest node as the next stop (Lines 11–14). On the 
other hand, if a DT structure is created, the algorithm focuses on analysing several “lowest” 
vertices (meaning the stops with the closest time deadlines) to be selected as the next stop 
(Lines 16–20). Once there are only three nodes remaining, the algorithm simply computes the 
costs of all six possible permutations of the stops and selects the best one (Lines 29–35). 
When investigating the next stop candidates (Lines 16–20), the logic of limiting the analysis to 
only several of the lowest vertices was derived from the authors’ observations on the optimal 
solutions of numerous self-generated sample problems. It was noted that the optimal solution 
to the single-vehicle PDPTW often selects the lowest vertex as the next stop, and almost never 
goes beyond the third lowest vertex. Hence, in this algorithm, the analysis is limited to the four 
lowest vertices. 

Denote 𝑠𝑠𝑘𝑘 as the current stop and 𝑠̂𝑠𝑘𝑘+1 as a candidate for the next stop. The score of 𝑠̂𝑠𝑘𝑘+1 for 
the purpose of the selection of the vertex as the next stop is governed by the following equation. 

𝐹𝐹score = 𝐹𝐹grad + 𝐹𝐹future + 𝑅𝑅nextstop + 𝑅𝑅distance + 𝑅𝑅horizontal + 𝑅𝑅timewindow (15) 

with details as follows. 

• 𝐹𝐹grad =

⎩
⎨

⎧
𝑓𝑓low
𝑓𝑓med
𝑓𝑓high
𝑓𝑓neg

        

if 0 ≤ ∇≤ 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑low
if  𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑low < ∇ ≤ 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑med
if  𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑high < ∇ ≤ 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑high
if  ∇ < 0

 (16) 

• ∇ is the gradient between 𝑠𝑠𝑘𝑘 and 𝑠̂𝑠𝑘𝑘+1, i.e., Δ𝑧𝑧
�Δ𝑥𝑥2+Δ𝑦𝑦2

  

• 𝐹𝐹future is computed by scaling the future cost 𝑓𝑓future of the candidate 𝑠̂𝑠𝑘𝑘+1 into a score. 
The future cost 𝑓𝑓future is the route cost up to the next 𝑘𝑘 + 1 + 𝑘𝑘future stops. The future 
stops are obtained by assuming the considered candidate 𝑠̂𝑠𝑘𝑘+1 is used and a further 
𝑘𝑘future nodes are selected by using the loop in Algorithm 2 (Lines 7–27) but without 
future cost consideration (to avoid recurrent function calls). Then, the score is 
computed as follows, 

𝐹𝐹future = �1 −
𝑓𝑓future

𝑓𝑓future
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓future

𝑚𝑚𝑚𝑚𝑚𝑚� ∙ future𝑚𝑚𝑚𝑚𝑚𝑚  (17) 

where 𝑓𝑓future
max  and 𝑓𝑓future

min  are the maximum (worst) and minimum (best) future cost, 
respectively, among the candidate next stops 𝒞𝒞. Furthermore, Equation (17) takes into 
account the “gap” between the best and worst future costs. If the gap is small, 𝐹𝐹future 
dominates (15) and the future cost becomes the main factor determining the selection 
of the next stop. 

• 𝑅𝑅variable is a function that returns an integer value between 𝑟𝑟variable and 0 depending on 
the (lowest) ranking of the indicated variable among all the 𝑁𝑁𝑐𝑐 candidates. The candidate 
with the lowest variable value will obtain the maximum score 𝑟𝑟variable and the score will 
incrementally be deducted by one for each next ranked candidate, with a lower bound of 
zero score. 

• 𝑅𝑅nextstop ranks the preliminary cost of inserting the candidate 𝑠̂𝑠𝑘𝑘+1 into the (incomplete) 
route, as evaluated by (5). So, the cost is only computed until 𝑠̂𝑠𝑘𝑘+1. 
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• 𝑅𝑅distance ranks the 3D Euclidean distance between 𝑠𝑠𝑘𝑘 and 𝑠̂𝑠𝑘𝑘+1. 
• 𝑅𝑅horizontal ranks the distance between 𝑠𝑠𝑘𝑘 and 𝑠̂𝑠𝑘𝑘+1 projected into the 𝑥𝑥𝑥𝑥-plane. 
• 𝑅𝑅timewindow ranks the candidate based on the earliest time window. 

5. Numerical study 
This section presents the results of the application of the proposed algorithm to solve PDPTW. 

5.1. Methodology and setup 
5.1.1. Case study area 
The numerical study simulates the Port Melbourne area in Melbourne, Australia (Figure 3). 
Multiple sets of trip requests were randomly generated throughout the area, with each demand 
consists of a pick-up location, a drop-off location, and a trip start time. Figure 3 shows an 
illustration of the demand location with the circle size indicating the “popularity” of a location. 
As can be noted, many of the trips are originating or going towards a node at the top right-hand 
corner of the map, which is the Southern Cross train station. The Southern Cross train station 
is a main transit hub, especially for trip to/from Port Melbourne area. 
For this study, a total of 22 different demand datasets were created, consisting of either 50 (3 
datasets), 100 (6 datasets), 150 (6 datasets), 200 (6 datasets), or 500 (1 dataset) number of 
demands (i.e., trip requests). For simplicity of the result analysis, each trip request consists of 
one passenger, although technically the algorithm is able to handle group bookings. 
Furthermore, the request time is normally distributed with a mean at 5:30 PM and standard 
deviation of 1 hour, but is limited to between 4–7 PM. Moreover, in order to generate the 
locations, a metric that compares the public transport and car travel (Kutadinata et al. 2021) is 
used as a prioritisation consideration, leading to more trips being generated to/from areas where 
car travels are more beneficial to the travellers. 
Figure 3: Port Melbourne map showing the demand distribution 
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5.1.2. Implementation details 
For this numerical study, the parameters used for the algorithms are shown in Table 1. 
Table 1: Parameters used for the algorithms 

Description Notation Values 
Neighbourhood size - 30 
No. of iterations for Algorithm 1 - 300 
No. of next stop candidates 𝑁𝑁𝑐𝑐 4 

Gradient scores for DTLV 𝑓𝑓low, 𝑓𝑓med, 𝑓𝑓high, 𝑓𝑓neg  1.5, 3.5, -1, 4 

Gradient thresholds for DTLV 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑low,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑med,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑high 0.5, 0.8, 99 

Future cost parameters future𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑘𝑘future 100, 1 

Maximum ranking scores for 𝑅𝑅  𝑟𝑟nextstop, 𝑟𝑟distance, 𝑟𝑟horizontal, 𝑟𝑟timewindow  4.5, 2, 2.5, 3 

Vehicle capacity 𝐶𝐶𝑘𝑘  9 

Vehicle distance cost rate 𝑐𝑐𝑑𝑑 1 /km 

Vehicle capital cost 𝑐𝑐𝑣𝑣 2000 or 20,000 

Wait penalty 𝑐𝑐𝑤𝑤 ,𝛼𝛼𝑤𝑤 1, 1 

Late penalty 𝑐𝑐𝑙𝑙 ,𝛼𝛼𝑙𝑙 10, 2 
 
The algorithm was implemented in MATLAB and the scripts were run at Deakin University’s 
remote desktop facility. The computation utilised MATLAB parallel computing with four 
workers. 

As a benchmark, the performance of the proposed algorithm will be compared against a 
neighbourhood-search algorithm as described by Czioska et al. (2019) and Kutadinata et al. 
(2019). Essentially, the benchmark neighbourhood-search algorithm follows the same two-
level approach and utilises Algorithm 1. However, it utilises another neighbourhood-search 
algorithm for the bottom layer (i.e., the single vehicle case) instead of Algorithm 2. For the rest 
of the paper, the benchmark neighbourhood-search algorithm will simply be referred to as the 
NS algorithm, whereas the proposed algorithm will be referred to as the DTLV algorithm. 

5.2. Results 
In this subsection, the simulation results of using DTLV and NS are compared. The comparison 
includes the algorithm runtime, the final optimisation score (as computed with (5)), as well as 
the detailed statistics of the customer’s experience (i.e. the level of service) and the vehicle 
operations. Finally, the effect of the vehicle capital cost 𝑐𝑐𝑣𝑣 on the solutions is investigated by 
scrutinising the changes in the number of used vehicles and the level of service. 
Firstly, Figure 4 shows the average runtime reduction and the optimisation score decrease when 
utilising DTLV. It can be seen that DTLV achieves significant computation saving with an 
almost negligible score decrease. The runtime reduction is at least 57% and up to 71%, whereas 
the score decrease is only up to 1.6%. Furthermore, it can be seen from Figure 5 that, even 
though the percentage of runtime reduction on the higher number of demands is smaller, the 
actual time savings are more prominent on the higher number of demands, growing from 530 
seconds of time savings with 50 demands to 917 seconds of time savings for 500 demands. 
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Figure 4: Results of runtime reduction and score decrease 

 
Figure 5: Comparison of runtime 

 
Secondly, Tables 2 and 3 show the comparison of the detailed statistics between the DTLV and 
NS. These tables show the differences in the operation resources and the service level, with a 
positive number indicating that the number obtained from the DTLV is higher, and vice versa. 
It can be observed that DTLV generally leads to higher use of the operational resources, 
indicated by the higher number of vehicles used, longer total operating times, higher VKT, as 
well as higher inefficiency of vehicle utilisation (dead running and idling). However, these are 
compensated by a lower wait time. Furthermore, the detour time difference seems to increase 
as the number of demands increases, with DTLV yielding lower detour time at a smaller 
number of demands.  
Table 2: Statistics totalled from all vehicles 

 No. of demands 
Average of difference in... 50 100 150 200 500 
No. of vehicles used 0 0.5 0.33 0.33 -1 

Total operating time (min) 18 75 60 -20 96 

Total VKT (km) 2.38 3.97 1.50 6.60 26.88 

Total idle time (min) 12 62 54 -36 28 

Total empty km/dead run (km) 1.04 0.97 -3.80 5.53 11.72 

Total empty idle (min) 7 57 61 -36 19 
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Table 3: Statistics totalled from all demands/trips 

 No. of demands 
Average of difference in... 50 100 150 200 500 
Total late pick-up time (min) 0 0 0 0 0 

Total late drop-off time (min) 0 0 0 0 -0.5 

Total wait time (min) -9.5 -8.0 -25.1 -10.3 16.8 

Total detour time (min) -19.6 -7.0 8.5 2.8 53.7 
 
Having said that, it should be noted that the differences are arguably insignificant when 
considering each individual vehicle or customer, even in the 500-demand case that has the 
highest magnitude differences. For instance, the total difference of 26.88 km VKT was 
aggregated from a total of 42 (DTLV) and 43 (NS) vehicles, meaning each vehicle’s VKT only 
differs by approximately 600 metres. As another example, the total detour time of 53.7 minutes 
is attributed to 500 customers, resulting in only 6 seconds of difference per person between 
DTLV and NS. 

Finally, the simulations were re-run with the vehicle capital cost 𝑐𝑐𝑣𝑣 changed from 2,000 (low 
cost) to 20,000 (high cost). The results showed that most of the routing solutions being 
produced are utilising 1 or 2 fewer vehicles. For NS, the solutions for 11 out of the 22 datasets 
are using 1 fewer vehicle, another dataset is using 2 fewer vehicles, 9 datasets have no change, 
while there is an outlier where one dataset ends up using one more vehicle. For DTLV, the 
increased vehicle capital cost results in 15 datasets using 1 fewer vehicle, and another one using 
2 fewer vehicles. 

Figure 6 illustrates the typical impact of the increased capital cost on the wait time and detour 
time. The data is taken from one of the datasets with 200 demands using DTLV. Note that there 
is no late penalty being incurred in this case, as well as in most cases. As can be observed, the 
wait time distribution is worse (mean difference of 18 seconds), whereas the detour time has 
surprisingly improved (mean difference of 9 seconds). Coupled with the fact that the wait time 
is doubly penalised by the objective function (5), there is sufficient evidence to conclude that 
the service level has decreased for the cases with the high vehicle capital cost. 
Figure 6: Results of wait and detour times with changed vehicle capital cost 𝒄𝒄𝒗𝒗 

 



ATRF 2023 Proceedings 

14 

6. Conclusion 
In conclusion, the proposed algorithm shows the capability to match the optimality of an 
established method of neighbourhood search algorithm with significantly faster computing 
time. This is mainly attributed to the fact that DTLV is not a search heuristic like NS. It was 
then shown in a case study area of Port Melbourne that the DTLV was able to optimise the 
simulated PDPTW problems, and how the formulation was able to be implemented and tailored 
to achieve a desired goal. These outcomes are highly relevant when considering the emerging 
ubiquity of ICT and the popularity of a shared and flexible economy in transport. For potential 
future works, several improvements have been identified: utilising deep learning techniques 
for the next stop selection in DTLV, developing a DT-based passenger allocation algorithm, 
and developing a framework to handle real-time requests. 
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