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1. Introduction 
Transport agencies, such as the Queensland Department of Transport and Main Roads, 
routinely monitor roadway conditions and performance measures, and make necessary changes 
to enhance performance. These changes may be in response to road user complaints, staff 
observations of specific traffic problems, or systematic upgrades to traffic corridors. The impact 
of upgrades should be systematically evaluated to review the operational conditions of 
roadways/intersections. Though, evaluating the effects of upgrades, commonly performed with 
a before-after analysis, can be challenging due to (i) heterogeneous data sources, (ii) various 
performance measures, and (iii) underlying patterns in the data that could mask the real benefits 
(if any) of the changes. 
This study proposes a systematic framework to quantify the effects of upgrades to road 
infrastructure, such as signal timing plans. Accurate travel time data is a key input in an upgrade 
evaluation process, and there are a variety of methods to collect this data, such as Global 
Positioning System (GPS) probe data and Bluetooth. Depending on the source of data, spatial 
and/or temporal aggregation may be required, which has an important impact on travel time 
statistics (Büchel and Corman, 2020). There are several studies comparing these data collection 
methods. For example, Berzina et al. (2013) performed a statistical analysis to evaluate three 
different data collection methods, while Zhang et al. (2015) proposed a scheme to validate 
arterial travel time based on GPS probe and Bluetooth data as two independent sources. 
Various measures are available to evaluate the performance of a corridor. In addition to mean 
and median travel time as central tendency measures, reliability measures can capture the 
reliability/dependability of travel time experienced by travellers. Reliability measures evaluate 
variation/uncertainty in day-to-day origin-destination travel time. Studies have investigated the 
concepts, applications, and methodological developments of reliability measures, such as 
Taylor (2013) and Zang (2022). There are also measures to quantify the congestion of a 
corridor. The proposed systematic framework incorporates central tendency, reliability, and 
congestion measures as part of a before-after analysis. 
Different factors can contribute to variation in origin-destination travel time, some of which are 
irregular, such as severe weather events, while others are linked to underlying patterns, such as 
the day of the week. The effect of an upgrade/change on a corridor can vary for different 
underlying patterns, and benefits and disbenefits may cancel out in an aggregated evaluation. 
In the proposed framework, a pattern analysis is incorporated to overcome this issue. 
While studies have investigated the effects of upgrades on corridors, they have mostly focused 
on specific aspects of the evaluation process rather than proposing a unified approach. For 
example, Li et al. (2015) quantified the route travel time performance for an arterial south of 
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Indianapolis, Indiana, evaluating controller synchronization and offset optimization using travel 
time distributions and the percentage of vehicles arriving on green. Li et al. (2019) assessed a 
signal upgrade project in southeastern Salt Lake County, exploring the use of link-based travel 
times from probe data to estimate two metrics, median and interquartile range travel time. In 
this paper, we demonstrate that failing to consider all aspects of an evaluation process can result 
in incomplete or inaccurate conclusions. Particularly, we propose an easy and unified approach 
in which data preparation and aggregation, analysis of performance measures, and analysis of 
underlying patterns are incorporated into a systematic framework.  

2. The proposed systematic framework 
The proposed systematic framework, as shown in Figure 1, begins with an upgrade/change to 
a traffic corridor. After collecting the travel time data and conducting necessary data preparation 
processes, an “aggregated” before-after analysis is performed to evaluate the impact of the 
change on the corridor. The analysis is performed using all available data, i.e., no data 
segmentation is performed at this stage. Several metrics are utilised to quantify the effect of the 
change, resulting in quantifying the “overall” impact of the change. If the results of this overall 
analysis are unclear or inconclusive, if the confidence in the obtained results is questionable, or 
if, for any other reason, there is a need for re-performing the before-after analysis with clustered 
data, a pattern analysis is performed. The intent is to cancel out the performance differences 
between the before and after period, which are unrelated to the upgrade/change to the traffic 
corridor. Cluster analysis is the approach to find patterns in the data, for which additional data 
such as traffic flow, incident data, and weather data are required. Once distinctive patterns are 
identified, a before-after analysis is performed for each pattern separately to determine the 
impact of the change on each pattern. This provides the analyst with more in-depth insights and 
conclusions into the effect of the performed change. 
Figure 1: Flowchart of the proposed systematic framework 
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2.1. Data preparation 
The proposed framework can utilise data from any dependable travel time data source, as long 
as all data is from the same source.  
Since most reliability and congestion measures provide route-level statistics, spatial 
aggregation of travel times may also be required.  
Depending on the data source, temporal aggregation of travel time data may be required. For 
that, small time intervals (e.g., 1 to 5 min) will cause significant fluctuations, and may also be 
encountered with missing values, while large intervals (e.g., 60 min) could lead to aggregation 
errors (see, e.g., Steinmaßl et al., 2021). Therefore, 15-min aggregation intervals are 
recommended. Temporal aggregation uses traffic flow as a weight to calculate a weighted 
average travel time.  
The framework is also augmented with a sample size recommendation based on the variability 
of the data. To estimate the mean travel time with a tolerance of ±Δ seconds at a confidence 
level of 𝑥𝑥%, the recommended minimum sample size is calculated using the formula 𝑧𝑧2𝑠𝑠2/Δ2, 
where 𝑧𝑧 is the 𝑧𝑧-score for 𝑥𝑥% confidence level and 𝑠𝑠 is the sample standard deviation. 

2.2. Before-after analysis 
After determining the minimum sample size and preparing the travel time data, the proposed 
framework utilises three primary metrics, namely, empirical Cumulative Distribution Function 
(eCDF) (Tufuor et al., 2020), Buffer Index (BI) (Lyman and Bertini, 2008), and Planning Time 
Index (PTI), to conduct a before-after analysis on the travel time data before and after the 
proposed upgrades/changes. 
2.2.1. Empirical Cumulative Distribution Function (eCDF) 
eCDFs are a commonly used statistical tool that allow for easy visualization and efficient 
comparison of travel times in before-after analyses. The proposed framework compares eCDFs 
using five statistics, in addition to a statistical hypothesis test. These statistics include (1) the 
median (50th percentile) travel time in seconds, which is a central tendency measure less 
affected by outliers than the mean travel time, (2) the interquartile range (IQR), which is the 
difference between 75th and 25th percentile travel times in seconds, representing the variability 
in travel time without excessive influence by the tails of the distribution, (3) the 95th percentile 
travel time in seconds, which is the input for BI and PTI metrics as well, (4) the slope of eCDF 
within IQR (denoted by IQR slope) in percentage per minute, which is the percentage change 
in cumulative frequency by one minute increase in travel time within IQR region, and (5) the 
average slope in percentage per minute, which is similar to IQR slope measured within the 5th 
and 95th percentage travel time region. A smaller median, IQR, and 95th percentile travel time 
in the after period indicate improvement, while a larger IQR slope and average slope in the after 
period represent smaller variability, corresponding to improved travel time reliability. We also 
include the non-parametric Kolmogorov-Smirnov test to statistically measure the difference 
between the two eCDFs, based on the largest distance between the two distributions. The null 
hypothesis is that the before and after distribution functions are not statistically different. 
2.2.2. Buffer Index (BI) 
Buffer Time (BT) is a recommended extra travel time that travellers should consider adding to 
their average travel time to ensure that they can reach their destination on time 95 percent of 
the time, i.e., 𝐵𝐵𝐵𝐵 = 𝑇𝑇95% − μ, where 𝑇𝑇95% and μ represent the 95th percentile and mean travel 
time, respectively. Based on that, BI is calculated by dividing BT by mean travel time, i.e., 
𝐵𝐵𝐵𝐵 =  𝐵𝐵𝐵𝐵

μ
. Intuitively, BI is the extra percentage of travel time required to reach a destination on 
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time 95 percent of the time. Larger BT or BI are typically associated with longer delays and 
decreased travel time reliability.  
2.2.3. Planning Time Index (PTI) 

PTI is the ratio of the 95th percentile travel time to the Free-flow Travel Time (FTT), i.e., 𝑃𝑃𝑃𝑃𝑃𝑃 =
 𝑇𝑇95%
𝐹𝐹𝐹𝐹𝐹𝐹

, where FTT is the mean travel time in free-flow or light traffic conditions, e.g., 10 PM to 
5 AM. It represents the extra time that should be budgeted relative to FTT. The PTI denotes the 
near-worst case travel time as compared to travel time during free-flow traffic. PTI suggests the 
level of congestion, i.e., the severity of delay as compared to free-flow conditions. Often, the 
more congested a corridor is, the more unreliable it can be. Hence, one can potentially infer the 
level of reliability from the PTI metric. However, a corridor can be congested and still 
experience consistent travel times, thereby considered reliable (Ale-Ahmad, 2020). 

2.3. Pattern analysis 
Hierarchical clustering is a widely used approach for clustering time-series data, which involves 
grouping objects based on a similarity/dissimilarity measure. A distance metric is used to 
quantify the distance between pairs of time-series data, resulting in a “distance matrix”. Various 
distance measures have been proposed, with the Euclidean distance performing well in many 
cases (Ding et al., 2008). The output of a hierarchical clustering algorithm is presented in an 
agglomerative dendrogram, where objects start in individual clusters and merge as they move 
up the hierarchy. Cluster analysis is conducted separately for morning and afternoon peak 
periods to identify different patterns in each period. Combining them may obscure the ability 
to distinguish between the patterns. After the cluster analysis for a corridor is performed, 
potential causes such as incidents, weather events, average flow, and day of the week are 
considered to explain observed patterns. Statistical testing of correlations between travel times 
and potential causes, such as day of the week, is performed using Pearson's correlation test, 
which assesses the linear relationship between two continuous/categorical variables.  

3. Results 
The proposed framework has been tested on three traffic corridors in South East Queensland. 
The first case study is Finucane Rd, a 4-km long corridor situated in Redland City. The signal 
timing plan for this corridor was changed on July 30, 2020, and implemented from 7-9 AM and 
4-7 PM. The second case study focused on Wembley Rd, a 5.1-km long corridor located in 
Logan City. The signal timing change for this corridor was implemented between June 21 and 
June 27, 2021, from 7-9 AM and 2-7 PM. The third case study examined Moggill Rd, a 12-km 
long corridor in Brisbane. Unlike the first case study, no changes to the signal timing plan have 
been implemented on this corridor. It serves as a control case to verify the accuracy of the 
results. In particular, if there are significant differences observed in this corridor, seasonal 
effects may have influenced the before-after analysis. However, if no significant differences 
are found, it can be concluded that the improvements observed in the case study with performed 
changes are solely due to the signal timing changes made. The reference point used to divide 
the before and after periods is set to July 30, 2020, which is consistent with the first case study.  

3.1. Data preparation results 
In this study, we used three data sources, including STREAMS (traffic management system), 
Bluetooth (Bhaskar and Chung, 2013), and HERE (probe data). The minimum required sample 
size for each case study is calculated using the approach described in Section 2.1. As an 
example, consider the 7:00-8:00 HERE travel time data for Finucane Rd outbound direction. 
By setting the confidence level to 95% and Δ to ±15 seconds, the minimum sample size for the 
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before and after periods is 44 and 42, respectively. Using 15 min travel times, this leads into at 
least 11 and 10 days data for a 1-hour analysis. Figure 2 demonstrates how a smaller sample 
size can affect the results. Particularly, while a 1-week analysis results in eCDFs with 
significant fluctuations and showig that the after period is worse, an analysis with 10 weeks 
data results in smooth eCDFs and an insignificant difference between the eCDFs.  
Figure 2: Before-after analysis with 1 and 10 week data (Finucane Rd, outbound, 7-8 AM, HERE data) 
 

  

3.2. Before-after analysis results 
After review of literature and discussion with the practitioners, a simplified tool to visually 
present the results of a before-after analysis is considered.  Figure 3 shows an example result 
of the analysis applied to 8-9 AM Bluetooth travel time data for Wembley Rd. The left-hand 
side shows eCDFs for before and after periods, along with the five relative statistics below the 
eCDFs. We also present total BI and total PTI metrics, which represent these two metrics where 
all 15 min travel times in the 8-9 AM interval are considered. The graph is colour coded to 
demonstrate the changes in statistics. For this particular example, eCDFs show that there is a 
statistically significant difference between before and after periods. In addition, considering the 
total BI and PTI metrics, reliability and congestion are improved in the after period. On the 
right-hand side we show the BI and PTI metrics calculated for each 15 min interval individually. 
As can be observed, PTI is improved in the after period across all four 15 min intervals. 
However, BI has been similar in before and after periods for 8 AM and 8:30 AM, but inferior 
in the after period for the remaining two intervals. 
Figure 3: Example result of the before-after analysis, Wembley Rd (inbound, 8-9 AM, Bluetooth data) 
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3.3. Pattern analysis results 
An analysis of traffic patterns on Finucane Rd is conducted, focusing on the morning and 
afternoon peak periods separately. Results indicate a positive correlation between traffic flow 
and day of the week. Specifically, two patterns emerged during the morning peak period: 
Mondays/Fridays and midweek days. To illustrate the benefit of finding these patterns, before-
after analysis is then performed for each pattern separately. Results show that the reliability is 
improved in both patterns. However the change in travel times is more evident for 
Mondays/Fridays than midweek days, as shown in Figure 4. However, an overall analysis does 
not reveal the benefits obtained in Mondays/Fridays, as shown in Figure 5. This demonstrates 
that with a pattern analysis, the transport agency could only apply the traffic signal 
improvements on the days of the week when it is beneficial.  
Figure 4: Before-after analysis for two distinct patterns (Finucane Rd, 8-9 AM, using STREAMS data) 
 

  
Figure 5: An overall before-after analysis without considering patterns (Finucane Rd, 8-9 AM, using 
STREAMS data) 
 

 
We note that in the afternoon peak period, Mondays formed one pattern, while all other 
weekdays formed another, which is different from the patterns observed in the morning period. 
This highlights the importance of performing pattern analysis for each peak period separately. 

3.4. Control case study 
We expect to observe insignificant differences in the control case, showing natural variation, 
as opposed to significant variations observed in other cases with an upgrade. Considering the 
Wembley Rd, the proposed framework was able to identify significant differences across all 
hours on both directions (an example is depicted in Figure 3). On the other hand, results for the 
Finucane Rd showed a significant difference for some hours (one example is shown in Figure 
4). In contrast, Moggill Rd, which serves as the control case in this study, shows no significant 
difference in almost all hours on both directions. For instance, Figure 6 presents the eCDFs for 
Moggill Rd 18A, 7:00-8:00, using HERE data. The eCDFs are not significantly different at an 
80% confidence level. The inconsistency in the statistics further supports the natural variation 
in this case, such as the improvement in the 95th percentile travel time and the worsening of the 
median travel time in the after period. 
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Figure 6: Travel time eCDFs for Moggill Rd 18A, inbound direction, 7-8 AM, using HERE data. 
 

 

 

4. Conclusions 
In this study, we presented a framework for evaluating changes made to traffic corridors. Our 
proposed framework consists of three main components: (1) data preparation procedures, (2) a 
before-after analysis, and (3) a pattern analysis. To test the effectiveness of our framework, we 
conducted three case studies in South East Queensland. The results demonstrated that the 
framework was successful in providing valuable insights about the changes made to two 
corridors which underwent changes, as well as when the changes are more beneficial. 
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