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Abstract 
Shared electric mobility systems as a disruptive means of transport faces with different 
operational challenges, particularly in the case of dockless e-micromobility setting where users 
can pick up and drop off e-bikes/e-scooters anywhere they want. This flexibility leads to a 
potential imbalance between supply and demand, which is known as bike rebalancing problem 
(BRP). To address this issue, strategies are being implemented by operators and users. In this 
study, an integrated operator and user-based rebalancing strategy is proposed for dockless e-
bike/e-scooter sharing systems to optimize the system's costs and benefits. An on-demand e-
micromobility sharing system is simulated using the network of Manhattan to evaluate the 
proposed method. The proposed rebalancing method has resulted in a 76% and 19% increase 
in the number of successful trips compared to system without rebalancing and system with 
dynamic recharging, respectively. It also leads to improvement in walking distance of users. 

1. Introduction 
In recent years, bike/scooter-sharing systems have been expanded in cities around the world to 
serve first and last-mile needs in multimodal transport networks (Zhang et al., 2022). Station-
based bike-sharing systems require users to rent bikes from stations where bikes are stored and 
returned. Dockless free-floating bike-sharing systems, on the other hand, enable users to rent 
and return bikes at any locations within the operating area. 
 However these systems may suffer from the bike imbalance problem, where bikes become 
unevenly distributed, leading to an imbalance between supply and demand. This problem needs 
to be addressed to enhance service quality and satisfy demand effectively (Ghosh et al., 2017). 
Bike rebalancing problem (BRP) has been classified into two categories: static BRP (SBRP), 
which considers the system’s status in the last time interval, and dynamic BRP (DBRP), which 
considers the variation of demand over time (Ghosh et al., 2017). The strategies used in 
rebalancing can be classified as operator-based or user-based. In operator-based rebalancing, 
operators and a fleet of rebalancing trucks reposition bikes between regions (Li et al., 2021), 
while user-based rebalancing incentivizes users to perform rebalancing tasks (Li and Liu, 
2021), (Zhang et al., 2019). An integration of operator-based and user-based rebalancing is less 
studied with potential of inclusion of benefits of the two strategies and moderating their 
shortcomings. 
Electric bike and scooter sharing systems have become more popular due to their convenience 
and speed compared to regular bikes (Kazemzadeh and Ronchi, 2022). However, the e-bike/e-
scooter rebalancing problem has been less considered in previous studies. This paper designs 
an integrated rebalancing strategy for dockless e-mobility systems. This type of rebalancing is 
more complex due to the need to simultaneously consider battery charging and repositioning 
tasks, as well as checking the level of charge before incentivizing user-based rebalancing. 

http://www.atrf.info/
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This study proposes an integrated operator-based and user-based rebalancing method for 
dockless e-bike/e-scooter sharing systems using a mixed-integer-nonlinear-rebalancing 
program (MBNRP). The proposed model determines which e-bikes/e-scooters should be 
repositioned by a fleet of repositioning trucks or users to minimize the total cost and maximize 
the total profit of operator. The proposed method aims to reduce the number of unfulfilled 
requests for e-bikes/e-scooters by predicting demand in each node using historical data for 
future time periods. The study assumes battery swapping as the method used for charging e-
bikes/e-scooters, and the level of charge of each individual bike is considered in the model. 
The proposed model is implemented in a simulation environment, and the performance of the 
method is compared with some benchmark rebalancing methods. Users’ decision-making is 
modeled with a utility choice model, and the branch and bound method is used to solve the 
MBNRP efficiently.  
The remainder of the article is structured as follows. Section 2 presents the problem. In Section 
3, the proposed optimization model is developed. Section 4 introduces simulation, some 
benchmarks for evaluating the proposed model and the results.  

2. Problem description  
This study introduces an electric bike/scooter-sharing rebalancing strategy for dockless systems 
using integrated operator-based and user-based strategies.  
The operating day is divided into some time intervals. Rebalancing tasks are performed at the 
end of each time interval to prepare the system for the demand in the next time step. Location 
of available bikes are known since e-bikes and e-scooters are equipped with GPS. Demand in 
each node for each time interval is predicted based on historical data. The proposed algorithm 
relocates idle bikes from their location to other nodes to rebalance the supply to reduce unmet 
demands in the next time step, increasing the profit and minimize operating costs of truck-based 
rebalancing and user-based rebalancing.  
The proposed method determines a plan for truck-based and user-based rebalancing for the next 
time step based on data at the end of current time step. The plan includes e-bikes/e-scooters 
which should be recharged and relocated by each truck to intended destinations, e-bikes/e-
scooters that must be incentivized for user-based rebalancing, bikes which should be visited by 
trucks to be recharged and trucks’ routing plan. The proposed on-demand e-micromobility 
model considers the interaction between three parts: bikes, the platform and passengers.  

2.1. E-Bikes 
E-bikes and e-scooters form the supply side of the system. The characteristics of Bike 𝑖𝑖 at time 
𝜏𝜏 are as follows: 

< Id𝑖𝑖
b, 𝑥𝑥𝑖𝑖b,𝜏𝜏,𝑦𝑦𝑖𝑖b,𝜏𝜏, 𝑙𝑙𝑖𝑖

b,𝜏𝜏, 𝑠𝑠𝑖𝑖b,𝜏𝜏 > 
where Idi

b  denotes the ID of bike 𝑖𝑖, 𝑥𝑥𝑖𝑖b,𝜏𝜏and 𝑦𝑦𝑖𝑖b,𝜏𝜏 are bi-dimensional location of bike at time 
𝜏𝜏. 𝑙𝑙𝑖𝑖

b,𝜏𝜏 is level of charge and 𝑠𝑠𝑖𝑖b,𝜏𝜏 denotes the status of bike 𝑖𝑖 at time 𝜏𝜏 (1 if bike unrented, 0 if 
rented, and 2 when relocating by trucks). 

2.2. The platform 
The platform has the information of bikes and passengers requesting at each time 𝜏𝜏 . The 
information of all components of the system becomes updated whenever a passenger sends a 
request to the platform and selects and reserves a bike or drops off a bike. Once a request is 
made by Passenger 𝑘𝑘 at time 𝜏𝜏, the platform calculates the distance of the passenger from all 
available bikes. Among available bikes (𝑠𝑠𝑖𝑖b,𝜏𝜏 = 1), bikes whose distance to Passenger 𝑘𝑘 (∆𝑖𝑖𝑖𝑖) 
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is less than a predefined acceptable walking distance (𝜔𝜔) are introduced to the passenger. 
Among introduced options Passenger 𝑘𝑘 considers bikes/scooters that their level of charge (𝑙𝑙𝑖𝑖

b,𝜏𝜏) 
is more than required level for completing his/her intended journey (𝑙𝑙𝑘𝑘

p,𝜏𝜏) as possible options. 
Following this, among possible options, passengers choose a bike based on utility model, which 
is defined in Subsection 2.3. 
Pricing mechanism of the e-micromobility system is based on e-bike/scooter rental period in 
minutes. User should pay an initial fee to unlock the bikes (𝑓𝑓0) and pay 𝑓𝑓1 dollars per minutes. 
Let 𝐶𝐶𝑘𝑘𝑘𝑘𝑟𝑟   and 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘 be the rental cost and rental time of e-bike 𝑖𝑖 for Passenger 𝑘𝑘. 

𝐶𝐶𝑘𝑘𝑘𝑘𝑟𝑟   =𝑓𝑓0+𝑓𝑓1. 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘 (3) 
The pricing structure for user-based rebalancing of e-bikes entails passengers paying an initial 
fee (𝑓𝑓0) and being exempt from incurring variable costs based on rental time 𝑓𝑓1 , so the amount 
of reward related to user-based rebalancing for Passenger 𝑘𝑘  selecting e-bike 𝑖𝑖  is equal to 
𝑓𝑓1. 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘. 

2.3. Passengers 
Let 𝑃𝑃𝜏𝜏  denotes set of passengers requesting to the system at time 𝜏𝜏. The characteristics of 
Passenger 𝑘𝑘 requesting at time 𝜏𝜏 are: 

< 𝑥𝑥𝑘𝑘p,𝜏𝜏,𝑦𝑦𝑘𝑘p,𝜏𝜏,𝑥𝑥𝑥𝑥𝑘𝑘
p,𝜏𝜏,𝑦𝑦𝑦𝑦𝑘𝑘

p,𝜏𝜏, 𝑙𝑙𝑘𝑘
p,𝜏𝜏 > 

𝑥𝑥𝑘𝑘p,𝜏𝜏,𝑦𝑦𝑘𝑘p,𝜏𝜏, 𝑥𝑥𝑥𝑥𝑘𝑘
p,𝜏𝜏,𝑦𝑦𝑦𝑦𝑘𝑘

p,𝜏𝜏indicate current location/destination of Passenger 𝑘𝑘. 𝑙𝑙𝑘𝑘
p,𝜏𝜏 is required 

level of charge for Passenger 𝑘𝑘 to complete his/her journey. 

The platform provides passengers with a set of e-bikes/e-scooters (𝑛𝑛𝑜𝑜𝑘𝑘  possible options for 
Passenger 𝑘𝑘) to choose from. If a passenger does not choose a bike, they will travel using other 
transportation modes. The choice behavior of users is modeled as a utility maximization 
process. The utility of potential options of Passenger 𝑘𝑘 can be expressed as follows: 

Selecting bike 𝑖𝑖: 𝑢𝑢𝑘𝑘𝑘𝑘 =  𝛽𝛽𝑘𝑘 + 𝛽𝛽𝑘𝑘t .∆𝑘𝑘𝑘𝑘 + 𝛽𝛽𝑘𝑘c. 𝐶𝐶𝑘𝑘𝑟𝑟  (4) 
Selecting other modes: 𝑢𝑢𝑘𝑘𝑜𝑜 = 𝛽𝛽𝑘𝑘o (5) 

where 𝛽𝛽𝑘𝑘 and 𝛽𝛽𝑘𝑘o are utility constants. 𝛽𝛽𝑘𝑘t  and are 𝛽𝛽𝑘𝑘c are utility coefficient per unit distance and 
cost for Passenger 𝑘𝑘 . ∆𝑘𝑘𝑘𝑘  and 𝐶𝐶𝑘𝑘𝑟𝑟  are observed variables related to the walking distance of 
Passenger 𝑘𝑘 to reach Bike 𝑖𝑖 and cost of the journey, respectively. Therefore, the probability that 
Passenger 𝑘𝑘 selects Bike 𝑖𝑖 is: 

𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘 = 𝑒𝑒𝑢𝑢𝑘𝑘𝑘𝑘 ( � 𝑒𝑒𝑢𝑢𝑘𝑘𝑘𝑘 + 𝑒𝑒𝑢𝑢𝑘𝑘
𝑜𝑜

𝑗𝑗=𝑛𝑛𝑜𝑜𝑘𝑘

𝑗𝑗=1

)�  
 
(6) 
 
 

3. Problem formulation 
The proposed model aims to minimize the cost of mixed truck-based and user-based 
rebalancing in an e-micromobility system, while maximizing the system’s profit. The cost of 
truck-based rebalancing includes the travel cost of repositioning trucks, and cost of battery 
swapping per bike. The cost of user-based rebalancing is related to the amount of reward given 
to users who relocate bikes. 
In the e-micromobility sharing system, the main objective of rebalancing is to satisfy the 
demand and minimize the imbalanced penalty (𝑝𝑝𝑗𝑗) caused by the difference between predicted 
demand and actual inventory in Node 𝑗𝑗. Another benefit of rebalancing is the potential increase 
in rental fees (because of longer trips to be served) by using rebalancing trucks to exchange 
depleted batteries with fully charged ones.  
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The network includes set of nodes N = B ∪ O , where B represents set of nodes in which bikes 
are located and O represents center of regions that have more demand for e-bikes/e-scooters. 
The proposed method accounts four actions for each e-bike/e-scooter: truck-based rebalancing, 
truck-based recharging, user-based rebalancing, and do nothing. The Mixed Binary 
Rebalancing Problem (MBRP) determines the relocation strategy of each e-bike/e-scooter 
separately. The proposed mixed binary non-linear problem is first linearized, then it is 
considered as a mixed binary linear problem which is solved by the branch and bound method. 
We conducted the optimization on Matlab 2020 using Intlingprog algorithm. Required 
notations are shown in Table 1. 
 
Table 1: Notations  

Notations  Descriptions  
N Set of nodes 

B Set of bikes’ locations 

O Set of center of regions with high e-bikes/e-scooters 
demand 

𝑸𝑸 Set of trucks 

𝒊𝒊, 𝒋𝒋 Indices for nodes 

𝒒𝒒 Indices for trucks 

𝑰𝑰𝒋𝒋 Initial bike inventory at Node j 

𝑭𝑭𝒋𝒋 Final bike inventory at Node j 

𝑫𝑫�𝒋𝒋 Predicted demand for the next time step at Node j 

𝐬𝐬 Unit battery swapping cost 

𝛂𝛂 Level of charge to rental fee conversion factor  

𝐜𝐜 Unit travel cost  

𝑴𝑴 A positive value that is large enough 

𝐥𝐥𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 Level of charge of a full charged battery 

𝒍𝒍𝒊𝒊 Level of charge of the bike located in Node 𝑖𝑖 

𝒅𝒅𝒊𝒊𝒊𝒊 Distance of Node 𝑖𝑖 to Node 𝑗𝑗 

𝒓𝒓𝒊𝒊𝒊𝒊 Reward of user-based rebalancing from Node 𝑖𝑖 to 𝑗𝑗 

𝒑𝒑𝒋𝒋 
Unit imbalanced penalty related to shortage or surplus in 
Node 𝑗𝑗  

𝒌𝒌𝒒𝒒 Capacity of rebalancing Truck 𝑞𝑞 

𝒙𝒙𝒊𝒊𝒊𝒊
𝒒𝒒   

Decision variable for truck-based rebalancing. 
1 if the bike located in Node  i is recharged and relocated 
to j by Truck 𝑞𝑞; 0 otherwise 

𝒚𝒚𝒊𝒊𝒊𝒊
𝒒𝒒  Decision variable for routing of trucks. 

1 if the Truck q passes from Node i to j; 0 otherwise 

𝒛𝒛𝒊𝒊𝒊𝒊 
Decision variable for user-based relocation. 
1 if the bike located in Node i is taken by a user from i to 
j 

𝑮𝑮𝒋𝒋
𝒒𝒒 An auxiliary continuous variable to eliminate subtours of 

Truck q 

𝑸𝑸𝒊𝒊𝒊𝒊
𝒒𝒒  Number of bikes carried by Truck q when travelling from 

Node i to j 
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The mixed binary rebalancing problem is as follows.  

min��� s 𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞

𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁𝑞𝑞∈𝑄𝑄

−  ���α (lfull − 𝑙𝑙𝑖𝑖
𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁𝑞𝑞∈𝑄𝑄

) 𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞 + ��� c 𝑑𝑑𝑖𝑖𝑖𝑖

𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁𝑞𝑞∈𝑄𝑄

 𝑦𝑦𝑖𝑖𝑖𝑖
𝑞𝑞  

+ ��𝑟𝑟𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖∈𝑁𝑁

 𝑧𝑧𝑖𝑖𝑖𝑖 + �𝑝𝑝𝑗𝑗|𝐷𝐷�𝑗𝑗
𝑗𝑗∈𝑁𝑁

− 𝐹𝐹𝑗𝑗| 

 
(7) 
 
 

s.t 
�𝑦𝑦𝑖𝑖𝑖𝑖

𝑞𝑞

𝑗𝑗∈𝑁𝑁

≤ 1          ∀𝑖𝑖 ∈ 𝑁𝑁, 𝑞𝑞 ∈ 𝑄𝑄 (8) 
 
 

�𝑦𝑦𝑖𝑖𝑖𝑖
𝑞𝑞

𝑗𝑗∈𝑁𝑁

=  �𝑦𝑦𝑗𝑗𝑗𝑗
𝑞𝑞

𝑗𝑗∈𝑁𝑁

          ∀𝑖𝑖 ≠ 𝑗𝑗, 𝑞𝑞 ∈ 𝑄𝑄 (9) 

��𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞

𝑗𝑗∈𝑁𝑁𝑞𝑞∈𝑄𝑄

+ �𝑧𝑧𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑁𝑁

≤ 1          ∀𝑖𝑖 ∈ 𝑁𝑁 (10) 

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞

𝑖𝑖∈𝑁𝑁

≤ 𝑘𝑘𝑞𝑞 .�𝑦𝑦𝑖𝑖𝑖𝑖
𝑞𝑞

𝑖𝑖∈𝑁𝑁

          ∀𝑞𝑞 ∈ 𝑄𝑄, 𝑗𝑗 ∈ 𝑁𝑁 (11) 

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞

𝑗𝑗∈𝑁𝑁

≤�𝑦𝑦𝑖𝑖𝑖𝑖
𝑞𝑞

𝑗𝑗∈𝑁𝑁

          ∀𝑞𝑞 ∈ 𝑄𝑄, 𝑖𝑖 ∈ 𝑁𝑁 (12) 

𝐺𝐺𝑗𝑗
𝑞𝑞 ≥ 𝐺𝐺𝑖𝑖

𝑞𝑞 + 1 − M(1 − 𝑦𝑦𝑖𝑖𝑖𝑖
𝑞𝑞) (13) 

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞

𝑖𝑖∈𝑁𝑁

= �𝑄𝑄𝑗𝑗𝑗𝑗
𝑞𝑞

𝑗𝑗∈𝑁𝑁

−�𝑄𝑄𝑚𝑚𝑚𝑚
𝑞𝑞

𝑗𝑗∈𝑁𝑁

          ∀𝑞𝑞 ∈ 𝑄𝑄,𝑚𝑚 ∈ 𝑁𝑁 (14) 

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞

𝑖𝑖∈𝑁𝑁

≤�𝑄𝑄𝑖𝑖𝑖𝑖
𝑞𝑞

𝑖𝑖∈𝑁𝑁

         ∀𝑗𝑗 ∈ 𝑁𝑁 (15) 

𝑄𝑄𝑖𝑖𝑖𝑖
𝑞𝑞 ≤ 𝑘𝑘𝑞𝑞 . 𝑦𝑦𝑖𝑖𝑖𝑖

𝑞𝑞  (16) 
��𝑥𝑥𝑖𝑖𝑖𝑖

𝑞𝑞

𝑖𝑖∈𝑁𝑁𝑞𝑞∈𝑄𝑄

+ �𝑧𝑧𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑁𝑁

≤ max�0,𝐷𝐷�𝑗𝑗 − 𝐼𝐼𝑗𝑗�          ∀𝑗𝑗 ∈ 𝑁𝑁  (17) 

��𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞

𝑗𝑗∈𝑁𝑁𝑞𝑞∈𝑄𝑄

+ �𝑧𝑧𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑁𝑁

≤ 𝐼𝐼𝑖𝑖          ∀𝑖𝑖 ∈ 𝑁𝑁  (18) 

𝐹𝐹𝑗𝑗 = 𝐼𝐼𝑗𝑗 + ��𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞

𝑖𝑖∈𝑁𝑁𝑞𝑞∈𝑄𝑄

+ �𝑧𝑧𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑁𝑁

−��𝑥𝑥𝑗𝑗𝑗𝑗
𝑞𝑞

𝑖𝑖∈𝑁𝑁𝑞𝑞∈𝑄𝑄

−�𝑧𝑧𝑗𝑗𝑗𝑗
𝑖𝑖∈𝑁𝑁

          ∀𝑗𝑗 ∈ 𝑁𝑁 (19) 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑞𝑞  , 𝑦𝑦𝑖𝑖𝑖𝑖

𝑞𝑞  , 𝑧𝑧𝑖𝑖𝑖𝑖 ∈ {0,1} (20) 
𝑄𝑄𝑖𝑖𝑖𝑖
𝑞𝑞  ,𝐺𝐺𝑗𝑗

𝑞𝑞  ∈  𝐼𝐼 (21) 
The objective function (7) minimizes total cost of rebalancing and maximizes system’s profit. 
Constraint (8) ensures that each truck should visit each station at most one time, and flow 
conservation of trucks is guaranteed in constraint (9). Constraint (10) guarantees that just one 
rebalancing method should be used for each bike. Constraint (11) restricts the number of bikes 
carried by the truck to each node to trucks' capacity. Constraints (12) ensures that truck should 
visit the bike that should be carried to other nodes. Constraint (13) is utilized to eliminate 
subtours. Constraint (14) and (15) are used to ensure inventory conservation of bikes carried by 
trucks. Constraints (16) implies that the number of bikes carried between nodes by each truck 
should be limited to the truck capacity. Constraints (17) ensures that the final bike inventory 
should not exceed predicted/estimated demand at each node in the next time step. Constraint 
(18) restricts the number of e-bikes/e-scooters taken from each node to the initial bike inventory 
in that node.Constraint (19) defines final number of bikes in each node. Constraints (20) and 
(21) are domain constraints. 
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4. Simulation and results 
To evaluate the proposed method, a simulation of an on-demand e-micromobility shared system 
is conducted in MATLAB, using Manhattan as the network. Taxi demand of Manhattan in a 
weekday is used as demand to compare how an e-micromobility system could perform against 
the taxi system. Note that the demand is time-varying throughout the day. We compare the 
effectiveness of the proposed MBRP model with two other approaches, including (i) system 
without rebalancing: bikes are utilized by users without any charging or repositioning activity 
during an operating day, and (ii) system with dynamic recharging: used bikes with less than 20 
percent level of charge are recharged by recharging trucks in some time intervals during an 
operating day. At the beginning of each time interval, the platform advises recharging trucks to 
visit and recharge bikes with less than 20 percent level of charge based on bikes current 
situation. The optimum route of recharging vehicles is determined based on vehicle routing 
problem (VRP) model. 
Number of successful renting/unmet demands is considered as a performance metric for 
evaluating the developed method. As it is demonstrated by simulation results in Figure 1, the 
proposed integrated rebalancing method could improve the operation of the system. The 
number of successful trips has increased by 76% and 19% in the proposed rebalancing method 
compared to system without recharging/rebalancing and system with dynamic recharging. In 
the proposed method, walking distance per person, which is an important performance metric 
for shared e-micromobility systems, is about 0.6 km less than that of two other benchmarks. 
This study sheds light on an integrated operator-based and user-based rebalancing strategy in 
the e-bike sharing systems, future research could explore the implementation of a dynamic 
incentive system for user-based rebalancing. Such a system could enhance the likelihood of 
users accepting user-based rebalancing while also increasing the overall profitability of the 
system. 
 
Figure 1: Comparison of successful/ unmet demands among three scenarios 
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