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Abstract 
The displacement responses of a bridge structure subjected to moving vehicle load can be used 
to reflect the information of structural stiffness and load-carrying capacity. This study develops 
a target-free computer vision-based approach as an alternative to conventional displacement 
sensors for measuring bridge displacement responses in a contactless manner. This approach 
involves camera calibration and scale factor determination, natural feature target identification 
and description, feature matching and tracking. The developed approach is applied for the 
vibration displacement measurement of Stirling Bridge in Fremantle, Western Australia 
exposed to normal traffic. The Stirling Bridge has been selected due to the significant number 
of fully loaded trucks that pass through it, traveling from the North Fremantle Port to Perth 
City. The identification results agree well with the traffic patterns recorded from a traffic 
camera installed on the bridge deck. The developed technique provides an affordable and easily 
deployable alternative to conventional contact-type displacement sensor, which can be used for 
timely bridge health condition assessment.  
 

1. Introduction 
Existing bridge structures exposed to the operational environment for long service life, are 
prone to performance degradation owing to material deterioration, natural hazards and human-
made loading conditions (Peng et al., 2022). Their vertical displacement (deflection) under 
traffic loads is usually selected as a critical parameter for evaluating bridge performance 
(Spencer et al., 2020) and establishing a quantitative basis for heavy traffic control. Measuring 
bridge deflection can be challenging using existing physical sensors; however, the proposed 
method offers a convenient solution for measuring this deflection. Conventional contact-type 
displacement sensors, such as the linear variable differential transducer (LVDT), require a 
stationary reference point, which is often difficult to be found in the field. Furthermore, the 
measurement range of traditional displacement sensor is relatively short, which limit its 
application to large-span bridge structures (Hong et al., 2013). To address the limitations of 
current sensor systems for field applications, the research community has been actively 
exploring new technologies that can advance the state-of-the-practice in structural health 
monitoring (SHM). Thanks to the rapid advances in computer vision, the camera-based non-
contact vision sensing has emerged as a promising alternative to conventional contact sensors 
for structural dynamic response measurement and health monitoring. Significant advantages of 
the vision sensor include its low cost, ease of setup and operation, and flexibility to extract 
displacements of any points on the structure from a single video measurement. 
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2. Methodology and technical details 
The typical procedure of the vision-based displacement measurement includes: 
(1) Video camera setup and calibration. A camera equipped with a lens can be positioned 
remotely on a tripod for short-term measurements or fixed in place for long-term monitoring. 
The recorded video can be processed in real-time using image-processing software or stored 
for post-processing. Prior to use, the camera must be calibrated to establish the geometric 
relationship between the image coordinates and the corresponding real-world coordinates. 
(2) Single or multiple target/ feature detection. Any texture, natural or artificial, on the surface 
of a structure can be used as a tracking target, provided that it has a distinct pattern that stands 
out from the surrounding background. However, for accurate pattern matching, a suitable subset 
with sufficient local texture must be carefully selected for each measurement point. 
(3) Feature matching and tracking. To track the motion of a target, its position is identified in a 
sequence of video images. Advanced vision techniques now offer subpixel tracking accuracy, 
allowing for precise measurement of even very small movements. 
(4) Displacement extraction. The process of extracting displacement involves converting the 
structural motion, which is initially measured in pixel units, to physical units such as 
millimeters, using a scale factor. 
A technical pipeline of computer vision-based displacement tracking process is illustrated in 
Figure 1. 
 
Figure 1: Technical pipeline of computer vision-based displacement tracking 
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In this paper, four corners of the girder segment side wall are selected. According to the design 
drawing of the Stirling bridge, the width and height of the girder segment side wall are about 
3048 mm and 3305 mm, respectively. The scale factor between the pixel unit and physical 
engineering unit (mm) is then calculated as 3.3605 mm/pixel. The feature points in the image 
were detected by the SIFT algorithm and matched by Approximate Nearest Neighbors 
(FLANN)-based matcher (Bradski and Kaehler, 2008).  

3. In-situ validation result analysis 
During September 14th -16th, 2022, a series of in-situ bridge tests were carried out. The 
identification results corresponding to some representative traffic patterns are presented in 
Figure 2 and Figure 3. Overall, the bridge displacement responses subjected to operation 
conditions are mainly induced by the traffic load. As evidenced by Figure 2 and Figure 3, the 
bridge displacement responses reach the valley value at the time instant when the heavy vehicle 
passes the measurement point (the middle of second span from the south abutment). It is 
interesting to notice that the shape of displacement curve corresponding to traffic patterns from  
different directions is different. In particular, when the heavy vehicles are mainly distributed 
on the Fremantle-Perth city direction traffic lane (as highlighted with the blue box in Figure 2 
and Figure 3), the displacement at the left side of the valley value is larger than that of the right 
side. In contrast, when heavy vehicles are mainly distributed on the Perth city-Fremantle 
direction traffic lane (as highlighted with the green box in Figure 3), the displacement at the 
right side of the valley value is larger than that of the left side. The above phenomenon can be 
explained by the bridge influence line theory. 
 
Figure 2: (a) bridge dynamic displacement between 8:55-9:05 Sep 16, 2022; (b) traffic pattern at 08:56:30 
Sep 2022: heavy vehicles distributed on both direction traffic lanes; (c) traffic pattern at 08:58:53 Sep 
2022: heavy vehicles mainly distributed on the Fremantle-Perth city direction traffic lane. 
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Figure 3: (a) bridge dynamic displacement between 12:33-12:37 Sep 16, 2022; (b) traffic pattern at 
12:33:48 Sep 2022: heavy vehicles mainly distributed on the Fremantle-Perth city direction traffic lane; 
(c) traffic pattern at 12:34:48 Sep 16 2022: heavy vehicles mainly distributed on the Perth city-Fremantle 
direction traffic lane.  

 
(a) 
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Since the ground truth of bridge displacement responses subjected to traffic load is not 
available, the authors attempted to indirectly verify the rationality and correctness of the 
developed target-free computer vision-based displacement tracking algorithm. Figure 4 shows 
the histogram of bridge displacement responses during the time period of 08:54:47 to 13:54:09 
on September 16, 2022, along with their 95% and 99% confidence intervals. The largest 
displacement response, with a value of 10.39 mm, was identified at 13:16:56. Our analysis 
reveals that heavy trucks appeared on the bridge deck when the largest displacement responses 
were observed. It should be noted that the vehicle-induced peak displacement is influenced by 
various factors such as vehicle weight, speed, type, road roughness, and so on. In the future 
study, it is suggested to collect additional data to calculate the dynamic amplification factor 
(DAF) and analyze the effect of vehicle type, vehicle speed on DAF (Ma et al., 2019).  
 
Figure 4: Histogram of bridge displacement response during 08:54:47-13:54:09 Sep 16, 2022. 
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4. Conclusion and recommendation 
Researchers have developed a target-free computer vision-based approach as a substitute for 
conventional displacement sensors to measure bridge displacement responses in a contactless 
manner. In-situ validation results revealed that the vision-based displacement subjected to 
traffic load aligns well with the traffic pattern and is explainable by the bridge displacement 
influence line theory. However, the accuracy of vision-based displacement identification can 
be affected by environmental factors such as wind-induced camera motion and light conditions. 
To mitigate the effects of wind-induced camera motion and displacement identification errors, 
the following tasks are recommended: i) use a relatively heavy and solid camera tripod; ii) 
utilize a case to cover the video camera to avoid wind effects; iii) develop signal processing 
techniques to eliminate camera motion-induced displacement identification errors. To mitigate 
the inaccuracy resulted from poor light conditions, it is recommended to adjust the filming 
angle, shield the camera, and avoid filming during the times of intense direct sunlight. 
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