
Australasian Transport Research Forum 2023 Proceedings 
29 November – 1 December, Perth, Australia 

Publication website: http://www.atrf.info 
 

Heatwaves and bus ridership, the case study of 
metropolitan Adelaide 

Damien Simmons1, Ali Soltani2, Andrew Allan3, Johannes Pieters4 
1, 3 and 4UniSA Creative, University of South Australia 

2College of Medicine and Public Health, Flinders University 
Email for correspondence: simdl001@mymail.unisa.edu.au or Andrew.Allan@unisa.edu.au 

 
Abstract 

The built environment is the majority of human habitat globally and the urban heat island effect 
is becoming more pronounced due to heat-absorbing materials, exacerbated by climate change. 
The number of roads is increasing as more people use personal vehicles, leading to induced 
demand and an increased urban heat island effect. Good public transport systems reduce 
reliance on personal vehicles and can create a lower heat island effect, but there are challenges 
in public adoption. A study investigated the possibility of heatwave conditions deterring bus 
travel, using a multiple linear regression model. The model accounted for 15% of the data 
collected, and heatwaves had a weak or inconclusive result. The model also revealed 10 
variables with statistical significance, which can be used for predictive models on bus 
patronage and future studies. This study provides insights on the potential impact of heatwaves 
on public transport use and offers variables for future research on bus patronage. 
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1. Introduction 
Global warming and the urban heat island (UHI) effect are raising metropolitan temperatures 
(Macintyre et al. 2018; Oke 1982; Shahmohamadi et al. 2011; Allan et al., 2022). Urban regions 
have the largest concentration of greenhouse gases but the lowest per capita emissions 
(Horowitz 2016; Longden 2019; Macintyre et al. 2018; Ghanbari et al., 2023). Cities are facing 
overcrowding, transport, and the effects of events like the Covid-19 pandemic as 68% of the 
world's population moves to urban areas by 2050. Public transport may alleviate some of these 
issues, although convenience and walkability affect ridership. This study uses publicly 
accessible data to examine the impact of heatwave conditions on public transport ridership in 
Adelaide, revealing the interaction of variables and mediating factors. 

The research was conducted in Adelaide, South Australia, where the 30-Year Plan for Greater 
Adelaide (30YPGA) aimed to alleviate road infrastructure congestion to transition Adelaide 
towards carbon-neutrality (Department of Planning, Transport, and Infrastructure 2017). 
Adelaide's subtropical position makes it prone to summer heatwaves (Guan et al. 2013). The 
city's public transportation includes rail and light rail but is largely dominated by buses. The 
city's public transportation system includes buses that serve the Central Business District 
(CBD), ring routes, and connectors (Government of South Australia 2015; Somenahalli et al. 
2013; Sun, Allan & Somenahalli 2019). The bus network includes 233 street, road, and on- 
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demand routes, as well as a bus-only track-based O'Bahn (Allan, Nawaz & Fielke 2015; 
Department of Planning, Transport, and Infrastructure 2019). 

The major goal of this study is to evaluate the possible impact of heatwave conditions on bus 
travel and discover features that may be used in bus ridership prediction models. For this goal, 
two main research topics have been created: 

• How do heatwave conditions affect bus usage in urban areas? 
• How can metropolitan Adelaide's public transport infrastructure be improved by 

identifying bus ridership's most important factors? 

This study examines bus ridership during heatwaves and emphasizes the need of exact data in 
transportation studies. It highlights the importance of canopy cover in transportation conditions 
and urban architecture, especially in countering the effects of adverse hot weather conditions. 
The study provides policy-makers and urban planners with useful information to enhance 
public transport networks during heatwaves. 

 

2. Literature review 
Multiple factors have contributed to the Urban Heat Island (UHI) phenomenon, according to 
research. Climate change and heatwaves have compounded this problem. Given these 
constraints, urban planning methods must be modified. Public transport is being promoted as a 
key pathway to reduce fossil fuel use in urban areas (Chapman 2007; Comarazamy et al. 2013; 
Piselli et al. 2018). However, whilst public transit is sustainable and feasible under normal 
weather circumstances, its appeal during heatwaves and storms is compromised. These weather 
fluctuations may reduce public transport ridership, affecting the network's adoption rate and 
municipal income (Miao, Welch & Sriraj 2019). 

 

This extensive literature study examined the many environmental elements that influence 
public transport utilisation. From this analytical viewpoint, knowledge gaps have been 
identified, prompting relevant research topics. The review discusses the contextual 
environment, the conditions for a predictive model, and then produces a fitted model that 
integrates various determining elements. 

 

Urban populations grow, expanding urban landscapes (Neuman 2005). This expansion replaces 
vegetation's cooling properties with urban infrastructure's heat-absorbing materials (Oke 1982). 
Thus, heat is maintained and distributed into the environment, prolonging high temperatures 
throughout the night (Piselli et al. 2018; Shahmohamadi et al. 2011; Azhdari et al., 2018). 
While global temperatures rise, urban materials absorb and release heat into the environment 
as temperatures fall (Oke 1982). This causes a large temperature difference between urban and 
nature areas. Increasing thermal emissions from private vehicles amplify this phenomenon, 
prolonging UHI effects and urban ambient temperatures. 

 

Globally it is estimated that 14% of greenhouse gas emissions (7.0 GtCO2 in 2010) comes from 
transportation (IPCC 2014). Road related transport accounts for 75% of transportation 
emissions (The ICCT 2017). The high usage of private vehicles contributes to greenhouse gas 
emissions, worsening global warming. This confluence is compounded by the phenomenon of 
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induced demand, in which the increased usage of personal vehicles leads to an increase in road 
infrastructure (Hymel 2019). Although the world is expected to rapidly transition to zero 
emissions road vehicles from 2030 onwards, the continued expansion of hard surfaced road 
infrastructure will exacerbate the UHI effects. 
Dependability, frequency, safety perceptions, and socio-economic status affect public 
transportation ridership are the focus of previous studies examining ridership patterns, (Stead 
& Bannister 2001; Truong & Somenahalli 2015), but not on the effects of hot weather. This 
research examines how heatwaves affect public transit ridership in metropolitan Adelaide. 

 

The Australian Bureau of Meteorology defines a heatwave as "three or more consecutive days 
of unusually high daytime and nighttime temperatures in relation to local long-term climate 
and recent history" (BoM 2020; Coates et al. 2014). By increasing the thermal load absorbed 
by materials, these heatwaves exacerbate the UHI impacts on the built environment. It is 
important to note that Australia has no common heatwave temperature threshold. This absence 
of a standardised definition is due to the subjective nature of what a local population considers 
thermal comfort; 30C may be hot in Tasmania but mild in Queensland. 

 

Scholarly research shows that extreme weather conditions, including heat waves, can 
inconvenience individuals at public transport drop-off and pick-up zones, resulting in lower 
ridership (Singhal, Kamga & Yazici 2014; Tao et al. 2018; Soltani et al., 2013). Weekends are 
especially susceptible to weather-induced ridership changes. While weather conditions may 
interrupt public transport for 5% of commuters, there is no empirical data on the impact of heat 
wave occurrences on public transport use (Aaheim & Hauge 2005). 

 

Mitigation measures have historically focused on shelters at transportation hubs to protect 
commuters from bad weather conditions. This shelter-centric strategy has reduced poor 
passenger patronage on bus networks (Miao, Welch & Sriraj 2019; Singhal, Kamga & Yazici 
2014). It's important to note that shelter infrastructure is not the only area of investigation. The 
urban heat island (UHI) occurs when green areas, woods, and plants are converted into urban 
infrastructure, causing heat to accumulate and discharge into the urban environment. This 
change raises urban temperatures relative to nature (Oke 1982). 

 

Due to high ambient temperatures, climate change, and anthropogenic heat outputs (e.g., air 
conditioning), numerous Australian capital cities are subtropical, making the UHI phenomena 
susceptible to amplification. (Anupriya 2016; Deilami & Yigitcanlar 2018; Guan et al. 2013; 
Sharifi, Sivam & Boland 2016). Design factors, including the creation of urban canyons that 
limit airflow, can exacerbate the UHI impact. A study by Deilami and Yigitcanlar (2018) 
demonstrated how the design of public transport networks can cause localised UHI effects, 
supporting the notion that design is important. 

 
Guan et al. conducted a 2013 examination of Adelaide's UHI and found that its hotspots move 
over the day-night cycle. This unpredictability should be considered when developing 
mitigation methods and examining heatwave-related behaviour, including transportation 
decisions. It is important to note that although Guan et al.'s study was comprehensive, their 
data collecting approach, which relied on static monitors set at 4 metres and movable boom 
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monitors installed on trucks, did not catch surface-level sidewalk temperatures. According to 
studies, pavement thermal temperatures may reach 67C during daytime hours, and the thermal 
impacts can last far into the evening owing to subsurface heat transmission (Ferguson et al. 
2008; Int et al. 2013). Pavement materials can be improved to ameliorate heat retention, 
including the use of more permeable or reflective materials, which can reduce surface and near- 
surface air temperatures and improve local comfort (Ferguson et al. 2008, p. 24). 
Sharifi et al. conducted a study that revealed a significant link between outdoor thermal comfort 
and urban heat island (UHI). Thermal comfort is psychological contentment with thermal 
conditions (Anupriya 2016). Physical, physiological, and psychological adaptations allowed 
humans to survive harsh thermal settings (Anupriya 2016). Urban streets contribute to the UHI 
effect, by rendering pedestrian zones thermally unpleasant for all street users, including public 
transit riders. Jamei & Rajagopalan conducted a computer simulation study on a Melbourne 
neighbourhood to investigate the effects of enhanced shade canopies on chosen roadways in 
the area to ameliorate the negative effects of UHI on pedestrian thermal comfort (Jamei & 
Rajagopalan 2018). This study determined that shade helped improve a person’s thermal 
comfort. The creation of thermally tolerable public transit waiting places becomes possible 
with street trees that provide sufficient shade canopies. 

 

Increased pavement temperatures may have a direct health impact, with surface temperatures 
surpassing 50C (Ferguson et al. 2008). Australia has recorded instances of heat-related contact 
burns, mostly in youngsters (Martin, Burrows & Wood 2015; Scanlan 2019). When 
temperatures exceed 41C, the risk of heat strokes increases and various pre-existing health 
conditions, including cardiovascular and cerebrovascular diseases, diabetes, chronic 
obstructive pulmonary disease, pneumonia, asthma, and influenza, are exacerbated. As heat 
stress-related problems become more widely recognized, this may influence urban 
transportation choices. Given that public transport reduces greenhouse gas emissions and 
mitigates the UHI effect, consideration of thermally appropriate “cooler” materials is 
recommended when repairing, augmenting or building new public transit facilities and their 
associated active transport networks. Using a "bottom-up" methodology to assess pavements 
independently, Roesler et al. (2015) were able to determine the contribution of footpaths to an 
urban area’s UHI (Roesler, Sen & Technology 2015, p. 2). 

 

A possible mitigating approach is "cool pavements." Reflective pavements increase surface 
albedo in materials, lowering temperatures. The subsurface or surface layers of evaporative 
pavements store water to cool the area (Soltani & Sharifi, 2017). Heat-harnessing pavements 
utilise extracted heat for various use. Both studies show thermal comfort gains for urban 
pedestrian users, including surface-level public transit users. However, they do not clearly 
examine how these materials, or their absence may affect travel behaviour patterns in locations 
susceptible to UHI conditions. Bus stop waiting conditions have a small impact on ridership on 
heat stress days. The canopy over bus stops affects ridership more than the stations themselves 
(Lanza & Durand 2021). On days with temperatures over 29C, ridership drops less in places 
with tree canopy than in those without. This indicates that individuals may not want to take 
public transit in hot weather conditions without a canopy or shade. 

 

Public transport uptake is crucial to cities' greenhouse gas emission reduction and UHI 
mitigation initiatives, even as personal transport is electrified and powered by emissions free 
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energy in future. The greater efficiency of public transit, even in an electrified urban transport 
future, will result in less heat being generated through urban transport. This review supports 
the concept that heat waves may affect the behaviour of individuals engaged in outdoor 
activities, including public transportation. Where heatwaves affect public transport use, more 
specialised solutions may be possible such as through street tree plantings, the use of “cool” 
building materials and less heat intensive road vehicles. An examination of the impact of 
heatwaves on public transport ridership, with an emphasis on the Adelaide bus network, is 
suggested given Adelaide's history of heatwaves. A predictive model was created using the 
specified criteria, although time and data availability restrictions prevented the collection of 
certain data items. This area may benefit from further investigation. 

 
3. Methodology 
This research uses only secondary data sources that were identified after a thorough systematic 
literature assessment. Primary data sources were not used due to time constraints associated 
with undertaking this research as part of a coursework postgraduate research project. This study 
does not include public involvement, hence it did not require human research ethics clearance. 
This research uses a retrospective quantitative method (Kumar 2005) to identify 
environmental-dependent use patterns (Bakar 2018). Due to its extensive coverage, the study 
focused on Adelaide's bus transport system. It utilized longitudinal ridership data from four 
summer four-week periods to construct trends (Bakar 2018). Anticipated events that may affect 
ridership, such as the Adelaide Fringe Festival, Australia Day and other public holidays, were 
taken into account, with the study ending three days before an event’s commencement to ensure 
that only routine normalised travel pattern behaviours were examined. 

 
 
The longitudinal component of historical weather data must match bus ridership data for each 
date (Kumar 2005, pp. 110–111). Due to scheduling restrictions, data from one weather station 
was synchronised with the relevant week’s travel patterns. This method offered a snapshot of 
weather conditions on a ridership day, however adding metropolitan area weather stations 
would improve the granularity of the data. The research cohort for this study was made up of 
people from different socio-economic backgrounds. The Australian Bureau of Statistics 
quadrennial census provided the socio-economic data. This dataset provided a cross-sectional 
socio-economic profile of the population (Australian Bureau of Statistics 2022b; Phidu 2022). 
This dataset lacked longitudinal coverage similar to that which is available for patronage across 
the Adelaide bus system, hence it was repeated for each of the four study years. 

Temperature and shade affect human movement (Fan, Myint & Zheng 2015; Lanza & Durand 
2021). Instead of explicitly analysing bus stop canopy coverage, the study utilized DataSA's 
2018 LIDAR-derived tree canopy percentages for different suburbs. Despite lacking 
longitudinal continuity, this data allows for a cross-sectional comparison of suburbs. Given the 
modest growth rate of trees, canopy coverage changes throughout the four-year study were 
minor, especially in Adelaide were hot dry Mediterranean summers constrain the rapidity of 
vegetation growth. Unfortunately, each suburb's tree canopy loss over this span is unknown. 
Urban infill and increasing urban densities across Adelaide’s metropolitan area has resulted in 
reduced tree cover due to narrower suburban streets and a loss of suburban backyards. Multiple 
linear regression was used to estimate bus ridership for numerous parameters (Norman 2010; 
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Pitsiava-Latinopoulou, Tsohos & Basbas 2001). This approach is reasonable due to the many 
factors that may affect bus ridership. The number of factors impacting bus ridership is 
significantly more than those included in this study. This research sought to identify the largest 
ridership influencing factors. 

 
 
4. Data analysis 
4.1. Data sources 

Initial Concept - The initial process of data collection was to choose five main roads and obtain 
ridership data for all routes on those roads. Four-week periods at the height of summer for the 
years 2015, 2016, 2017 and 2018 were chosen. This would allow broad data gathering on both 
ridership behaviour as well as average summer temperatures. These four weeks were also set 
to end three days before the Adelaide Fringe Festival which could change the ridership count 
significantly and may not reflect standard bus patronage throughout other summer periods. The 
chosen periods for study are as follows: 

2015: January 10th to February 7th 
2016: January 12th to February 9th 
2017: January 17th to February 14th 
2018: January 16th to February 13th 
Ridership Data - Data for initial ridership was obtained from the DataSA website (DataSA 
2022). Plans to investigate the impact of canopy on bus ridership were initially considered but 
were later replaced with analysis at the suburb level due to limited data. The then Department 
of Infrastructure and Transport (DIT) (Government of South Australia) provided detailed 
passenger information for 5 routes/10 stops after an initial request for comprehensive data was 
deemed too extensive. 

Routes were primarily chosen based on their distribution through a range of socio-economic 
areas. These areas were based off the 2016 Index of Relative Socioeconomic Disadvantage 
(IRSD) obtained via the Australian Bureau of Statistics (ABS). This is to ensure adequate 
representation of ridership from a diverse range of patrons (Australian Bureau of Statistics 
2022b). 
Bus stop selection was based on one of two criteria: 

• The bus stop must have repeated ridership over the four-week periods. 
• It may also have high ridership counts to highlight any variability that may occur due 

to high intensity heat waves. 
A pivot table summarized validation frequency for populous routes, cross-referenced with 
QGIS to map bus routes. IRSD 2016 SA-2 data from data.gov.au were matched with ABS 
survey area 2 boundaries and used in a GIS overlay to map routes across socio-economic areas 
(Australian Government 2022). Bus stops were selected based on band boarding floor count, 
which is the lowest number of boardings within a 10-person range of validation. 
The routes and stops sent to DIT for specific ridership numbers. In response, DIT clarified that 
they meant 10 stops over 5 routes. However, it was determined that reducing the data set to 
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only 10 stops over 5 routes would not provide a meaningful picture of ridership behaviour, and 
the time spent doing so would be significant. As a result, it was decided to use banded data and 
select 13 routes and 126 stops to gain higher resolution for modelling. 
Canopy data - 2018 canopy data for each suburb was obtained from DataSA and paired with 
each bus stop location. This allowed a metric for linking heat influenced human behaviour to 
bus ridership. 

Socioeconomic data - Socioeconomic data with a higher resolution was obtained by using ABS 
IRSD Survey Area 1 (SA1) data and Median Age SA1 (Figure 1) (Australian Bureau of 
Statistics 2022b; Phidu 2022). SA1 provides a rating for socioeconomic conditions at a higher 
level of granularity than the previous IRSD SA2 data. This accounts for the overall social well- 
being of an area as historically, people in a lower socioeconomic area are more likely to rely 
on public transport even in times of extreme heat (Chen & Akar 2017; Hernández-Rejón & 
Treviño-Hernández 2016). 

 
 

Figure 1: Generated QGIS layout of bus stops, IRSDs and POI data 
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Frequency of transit - The frequency of the Adelaide bus network varies based on the stop. 
Some stops closer to the CBD have been designated as “Go Zones” which provide a maximum 
of a 15-minute wait time before a bus arrives during daytime hours and every 30 minutes 
outside of this time. Each bus stop has been designated a 1 or a 0 based on if they are a Go 
Zone stop. “1” denotes the inclusion of a Go Zone, 0 denotes no Go Zone. bus stop where 
applicable. For each bus stop, a binary value of 1 or 0 was assigned to signify if a POI was in 
walkable distance. 

Points of interest - Points of interest (POI) were taken via the “Quick OSM” function in QGIS. 
This queries from a selectable list of POI types. A 400m buffer was created around each bus 
stop, to account for walkability of a neighbourhood and this was used to create records of 
walkable destinations for each. 

Addition of CBD and coast data - Both the CBD and coastlines are popular destinations and 
have their own higher representation of transit users (Somenahalli et al. 2013). This is 
accounted for by the addition of calculating the distance from both the CBD and coastal Glenelg 
from each individual bus stop. 

Weather data - Air temperature records from Adelaide airport for each day were marked 
against validation dates. This allows a comparison of ridership between days of normal 
temperatures and days that experience heatwave conditions. 

Historic heatwave readings were obtained from the climate summaries archive from the BOM 
website (Bureau of Meteorology 2022). This information was for the same date periods as the 
ridership data. Based on the BOM definition of a heatwave, periods where above average 
maximum temperatures corresponded with above average minimum temperatures for more 
than three days were selected. These periods were then recorded and marked against each bus 
validation entry with a binary value of 1 for heatwave and 0 for non-heatwave. Temperatures 
for the day were also recorded and matched to bus validation. 
Omissions - Three variables that proved extremely difficult to obtain were pavement materials, 
bus stop construction and localised surface temperatures surrounding bus shelters. Due to the 
limited time available for the study, individual analysis of every bus stop would have been 
prohibitive. 

4.2. Dataset compilation and analysis 
Temperature, heatwave, route, route direction and ridership validations were recorded matched 
to each chosen bus stop for each date. 
Bus stops were matched via an intersection analysis in QGIS to determine which SA1 boundary 
they belonged to. SA1 boundary information allowed the mapping of IRSD, canopy cover, 
POI, education and occupation and Median Age of the area to each bus stop. Go zone 
information was obtained by querying the Adelaide metro bus route information website and 
marked to each bus stop (Government of South Australia 2022). 
A “distance from hub” script was run on the GIS overlay to determine each bus stop distance 
from both the beach and CBD and this distance was then matched to each bus stop. 
Due to the non-linearity of POI distances from the CBD and Beach, with significantly higher 
numbers for some data points, the logarithmic calculations have been used (Aaheim & Hauge 
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2005; Povey, Boreham & Tomaszewski 2016). The same technique was also used for canopy 
distribution of each suburb. 
The final dataset contains a total of 13 primary variables and 25795 individual data points 
which are available on request. 
The software used for analysing the data were: QGIS, Microsoft Excel, IBM SPSS 

4.3. Initial analysis of individual routes 
Ridership for routes were assembled and then matched to temperature, this was used to create 
an initial picture of ridership patterns. A simple scatter plot diagram was generated to inspect 
visually how ridership may behave under these conditions (Figure 2). Overall, there did appear 
to be a relationship between bus ridership and prolonged heatwave conditions. The longer 
heatwave conditions remained; the less bus ridership occurred. 

 
Figure 2: Sample scatter plot of ridership versus temperature, denoting heat waves (shaded columns) 

 
 
 

 
 
 
 
4.4. Modelling of validations 
A multiple regression model was chosen as the main analysis to explore the relationship 
between chosen variables (Table 1) and bus patronage (Norman 2010). An R squared value of 
0.2 was considered sufficient for predicting human behaviour. Variables with p-values (Sig) 
less than 0.05 indicate statistical significance in relation to bus patronage. 
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Table 1: Chosen variables for the regression model 
 

Variable Definition Min Max Ave Std Error 
 

Ridership 
The dependent variable used to 
compare all other influencing variables 
against. 

 
1 

 
210 

 
8.787 

 
17.0529 

Route_Direction Direction the bus was travelling 
primarily toward the CBD or away. 0 1 0.578 0.493879 

Median_Age Age of the population for the ABS SA1 
area. 0 72 39.107 11.62441 

POI If a bus stop may have a local attraction 
for commuters. 0 1 0.562 0.496101 

Log Canopy Log representation of how much tree 
coverage is within a suburb. 2.198335 3.88732 2.896 0.388895 

Temperature Recordings of temperature for each day. 19.8 41.7 28.961 5.162757 

Heatwave Recording if the day was a heatwave. 0 1 0.224 0.416851 

IRSD_SA1 The Index for relative socioeconomic 
disadvantage for a stop. 1 10 5.776 2.596275 

GoZone_Stop Stop is an express stop. 0 1 0.114 0.318211 

Log CBD 
Distance 

The logarithmic representation of the 
distance from the CBD for each bus 
stop. 

 
7.544189 

 
9.401231 

 
8.721 

 
0.381537 

Log Beach 
Distance 

Log of the distance to the coastal area 
for each bus stop. 6.834436 10.01097 9.090 0.587117 

Log BeachxAge Used to represent age groups going to 
or from the Beach. 0 593.94 355.976 108.0514 

Log CBDxAge Used to represent age groups going to 
or from the CBD. 0 650.52 340.857 104.7663 

 
 
 

5. Results 
5.1. Heatwave Model 
The model summary indicates that the model can account for 15% of the data, as shown by the 
R-squared value of 0.150. The adjusted R-squared value is 0.149 and the standard error estimate 
is 15.727. ANOVA results reveal an F value of 412.933, with a significant value of 
.000b, indicating that the model is good and the null hypothesis is rejected. 
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5.1. Coefficients 
The variables table shows that ten out of the eleven variables are statistically significant. The 
area of concern, heatwaves, shows that there is only a weak correlation between itself and 
validations with a significance of .067 (Table 2). 

 

Table 2: Coefficient outputs 
 

Variables Coefficient Beta t-value p-value 

Constant 16.277  -12.113 <.001 

Route Direction .202 .154 26.349 <.001 

Median Age .408 2.478 8.908 <.001 

POI .208 .100 16.596 <.001 

Log Canopy .374 .027 3.140 .002 

IRSD_SA1 .054 -.027 -3.281 .001 

Go Zone Stop .316 .084 14.264 <.001 

Heatwave .235 -.011 -1.831 .067 

Log CBD 1.124 .608 24.159 <.001 

Log Beach .892 -.150 -4.892 <.001 

Log CBDxAge .030 -3.574 -19.678 <.001 

Log BeachxAge .021 .920 7.026 <.001 

 
 
The standardised coefficient Beta shows that for standard deviation of heatwave results reduced 
ridership of -.011. 

Route direction shows a very strong correlation between Route direction and ridership, for 
every one standard deviation of route direction, ridership increases by 0.154. 

Median Age shows very strong positive correlation between Age and ridership, for every 
standard deviation of age increase, ridership increases by 2.478. 
POI shows very strong positive correlation between bus stops that have POIs, for every 
standard deviation instance of POI, the ridership changes by 0.100. 
Log Canopy Cover shows strong correlation between the abundance of surrounding canopy in 
a suburb. For every standard deviation in canopy cover, ridership increases changes by 0.027. 
IRSD_SA1 shows very strong negative correlation between socioeconomic conditions and 
ridership. For each standard deviation in socio-economic conditions, there is an inverse change 
in ridership by -0.027. IRSD is rated from 1-10 with 1 being significant disadvantage and 10 
being low disadvantage. 
Go Zone Stop show very strong correlation, with every change in standard deviation in express 
bus stop, ridership increases by 0.084 
Log of CBD Distance shows a very strong correlation between with every standard deviation 
of distance from the CBD, the ridership changes by 0.608. 
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Log of Beach Distance shows a very strong negative correlation, with bus ridership inversely 
changes by -.150 for each standard deviation in distance from the beach. 
Log CBDxAGE shows very strong negative correlation, with a -3.574 change in ridership for 
each standard deviation the further from the CBD the service is and how old a rider is. 
Log BeachxAge shows very strong correlation, with a 0.920 change in ridership the further 
from the beach and how old the rider might be. 

5.2. Comparison to model with heatwave variable removed 
Upon removal of the heatwave variable, there is very little change with the standard error of 
the estimate changing by 0.001. R Square remained at .150 and Adjusted R square remained at 
.149. 
For ANOVA The F value changes positively to 453.850 and the null hypothesis was still 
rejected with a Sig of .000b. 

5.3. Coefficients 
There is little change in the coefficients, some standard deviations to present a mild change 
(Table 3). 

Median age standardised coefficient beta changes positively by 0.002. 
Log CBDxAGE standardised coefficient beta changes negatively by 0.001. 

 

Table 3: Final coefficient outputs 
 

Variables Coefficient Beta t-value p-value 

Constant 16.286  -11.792 <.001 

Route Direction .202 .154 26.344 <.001 

Median Age .408 2.480 8.913 <.001 

POI .208 .100 16.599 <.001 

Log_Canopy .374 .027 3.151 .002 

IRSD_SA1 .054 -.027 -3.278 .001 

Go Zone Stop .316 .084 14.259 <.001 

Log_CBD 1.125 .608 24.165 <.001 

Log_Beach .892 -.150 -4.887 <.001 

Log CBDxAge .030 -3.575 -19.682 <.001 

Log BeachxAge .021 .920 7.022 <.001 

 
 
6. Discussion 
Mapped ridership and temperature initially showed a correlation between heatwaves and 
ridership, but refinement revealed these associations to be insignificant. The multiple 
regression model suggests minimal impact of heatwaves on bus ridership due to the need for 
additional variables reflecting human behaviour. Factors such as socio-economic conditions, 
distance, frequency, canopy cover, and age play a role in determining bus ridership and align 
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with prior research (Jackisch et al. 2015; Knowles 2006; Lanza & Durand 2021; Truong & 
Somenahalli 2015). The model may be useful in developing a predictive model for all ridership 
in a city with more appropriate data to include pavement and building materials around public 
bus transit infrastructure. 
The data used has limitations, mainly due to low resolution and incomplete records of ridership. 
More accurate data is needed, but obtaining it is difficult, as demonstrated in the methodology. 
An arrival recording is missing, which could improve the overall accuracy of the ridership 
picture. Mobile phone or GPS data could be an alternative option for studying pedestrian 
movement, but anonymizing data would require rigorous governance and ethics (Higgins et al. 
2014; Teixeira, Almeida & Viana 2021). 
Socio-economic data is represented by two variables: IRSD and median age. Additional indices 
that could be incorporated are IRSAD, Index of Economic Resources, and Index of education 
and occupation (Australian Bureau of Statistics 2022a). This may provide more detail as it is 
recommended for distributions between people with advantage and disadvantage, which would 
be beneficial to future models since the public bus system services both. The model's R squared 
value is lower than required, but the instance of ridership in relation to socioeconomic status 
aligns with current theory (Richmond 1996, p. 24). This creates challenges in directing 
adequate bus services to those most in need and in ensuring continued usage by existing bus 
transit patrons that do so by personal preference even where alternative modes exist. 
Addressing these challenges may require a cultural shift and more effective public transport 
systems. 
The increasing data periods to encompass all days of summer to capture more heatwave data 
may increase accuracy, as the 2015 sample period did not have any heatwave instances in that 
period. Additionally, with the availability of sufficient data, it should be possible to map an 
entire year or more of bus ridership when using this model for predicting bus patronage. 
Obtaining representative information on bus stop quality could improve the accuracy of bus 
ridership estimates (Lanza & Durand 2021). Previous studies suggest that bus stop quality and 
canopy coverage influence ridership, but resource limitations precluded examination in this 
study. Nonetheless, shelters with full roofing and side structures are believed to be significant 
for maintaining ridership by protecting individuals from solar radiation and other weather 
elements (Lanza & Durand 2021). Future studies should include bus stop configuration as a 
metric in their models. While canopy data was incorporated into the model, this was at a suburb 
level and did not expressly consider the canopy coverage leading to a bus stop or surrounding 
the bus stop in general. By adding a rating system surrounding the bus stop area, this may allow 
for more accuracy in the model. 
The study used air temperature data from only one weather station. To account for microclimate 
differences across the large study area, using data from multiple weather stations is 
recommended. This would better capture areas with higher instances of heatwaves, which may 
impact ridership behaviour. Future investigations should involve multiple weather stations 
distributed throughout the study area. Precipitation was not mapped, although it is noted that 
this can also be a deterrent to public transport usage (Miao, Welch & Sriraj 2019). While the 
summer periods in Adelaide often have minimal precipitation, rain can occasionally during the 
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study period. If this model were the base of a year longitudinal study, precipitation should be a 
considered variable. Wind and cold could be additional variables to consider including. 
POI data was only considered based on proximity to bus stops, without considering the number 
or type of POIs. A POI index including type and count may be useful in mapping patron 
behaviour. POI information was mapped one-to-one, so a bus stop only registers a POI if it is 
the closest one, which can be problematic if there are two bus stops for opposite directions. 
School terms, weekends, and public holidays were included in the analysis as part of regular 
bus ridership. However, the possibility that school returning could have inflated bus ridership 
during heatwaves was acknowledged. Additionally, weekends and public holidays may have 
resulted in reduced ridership. To account for these factors, a variable representing changes in 
the school and public holidays calendar could be added to the analysis. Long travel times and 
frequent stopping can discourage people from using bus services due to congestion issues, 
which may affect personal vehicles as well. Accounting for travel time, rather than just distance 
from primary destinations like the CBD, could provide better insights into bus ridership, as 
time is often a more important factor for travellers than distance (Knowles 2006). 
All Adelaide buses are air-conditioned and as such a bus ride may be seen as a welcome 
reprieve to the intense heat of the day. While human behaviour is altered due to heat intensity, 
this may reflect the route taken to the bus stop rather than catching the bus itself (Sharifi, Sivam 
& Boland 2016). Including qualitative information in models can enhance their predictive 
power and provide a more comprehensive understanding of ridership behaviour (Lu et al. 2013; 
Teixeira, Almeida & Viana 2021). However, using only quantitative data limits the ability to 
determine causation. Queries related to activity levels, active transport participation and travel 
frequency could improve the model’s predictive qualities. Additional research focused on 
causal links would increase the model’s reliability, but would require a more extensive study, 
such as on the scale of a PhD thesis project, examining additional issues through field surveys 
(particularly in relation to UHI effects) and changes over time with a longitudinal study. 
Predictive modelling involving the movement of people during different types of weather 
should also be investigated. A comprehensive and reliable model with the aforementioned 
attributes, would result in improved policy-making and transport planning that is better placed 
to diminish UHI effects on public transport patronage. 

 

7. Conclusion 
The aim of this study was to predict bus ridership during heatwaves using publicly available 
data, but the R squared value limitations resulted in the findings being inconclusive. The 
elimination of insignificant variables suggests heatwaves may not significantly affect bus 
ridership; however, the model can only explain 15% of the data. With more data and variables, 
the model could become a reliable tool for predicting ridership, regardless of the influence of 
heatwaves, but further research is needed to increase its accuracy. The study identified reliable 
variables for application in a multi-variant regression model thereby adding new knowledge to 
this field. 
The study created a ridership model using freely available data and open-source software, 
revealing the need for efficient data retrieval tools. Gathering fine-grained ridership data is 
challenging, and tracking alighting passengers may require improvements in governance. 
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Although time-consuming, accumulating appropriate public transport data could yield a more 
reliable ridership model. 

7.1. Policy implications 
The study suggests that public transportation authorities should consider the thermal comfort 
of public transit infrastructure to ensure that public transit patronage levels are maintained or 
improved. Factors that contribute to an increased UHI, which may discourage public transit 
patronage, should be addressed through the choice of “cooler” materials for building surfaces, 
pedestrian footpaths and roadways. A model that can predict public transit ridership changes 
in response to public transit infrastructure improvements aimed at creating “cooler” urban 
environments would be very useful to the planning of public transit routes, services and 
infrastructure. To account for micro-climate characteristics, public transport agencies should 
collect air temperature records from multiple weather stations. Adding a rating system around 
the bus stop area, such as canopy covering, could increase the model's utility as a planning tool, 
particularly in optimizing attracting potential transit riders in the pedestrian catchments 
(pedsheds) around bus stops. 

7.2. Study limitations and directions for further research 
The study has limitations in terms of data resolution and scope. The then Department of 
Infrastructure and Transport's banded data may not provide accurate estimations of passenger 
behaviour. The ridership data only accounted for boarding passengers, resulting in reduced 
accuracy of the complete pattern of ridership from the beginning to the end of a trip. Future 
research could integrate other indices such as weather-related variables (i.e., wind, cold and 
rain), income level, employment, car ownership, and property ownership. The study could 
benefit from more specific information on bus stop conditions and canopy coverage, which 
have been shown to impact ridership. Additionally, the research only used air temperature 
readings from one weather station, which could be improved by using records from multiple 
weather stations to account for microclimate variations in each location. In addition, given the 
limitations of data availability, as well as the limited time and budget for this study, future 
research should be conducted using cause and effect models, taking into account multiple 
dimensions of bus ridership, and determining the weighting of heatwaves in relation to other 
contributing factors. 
Future research could consider adding data representative of human behaviour, such as mobile 
phone or GPS data, to improve accuracy in investigating passenger mobility. Collecting 
representative data on bus stop quality would provide a more realistic picture of bus ridership. 
Additionally, studying the microclimate of each region would require using air temperature 
readings from multiple meteorological stations or taking temperature readings in the field or 
deriving this from satellite heat maps. 
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