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1. Introduction 
Methodological advances in discrete outcome modelling have largely focused on enabling 
representation of complex behaviors and improving forecasting accuracies. An important 
behavioral aspect often investigated is the presence of heterogeneity in the effects of 
contributory variables and how they vary in between alternative outcomes, across 
observations, and over discrete outcome events (Yuan et al., 2015). While multinomial- 
Logit models provide a fundamental basis for discrete outcome analysis under the random 
utility maximization framework, the basic structure comprises of shortcomings, including 
the ability to only capture effects that vary systematically with observed variables.  

Over the years, research has focused on proposing improvements and flexibilities to the 
standard multinomial- Logit models to address some of the limitations. Among them, the 
Mixed-Logit models and Latent class models have by far been the most used to analyze 
heterogeneity in the effects. Mixed- Logit models use parametric distributions to 
accommodate effects that are heterogeneous (Vij and Krueger, 2017), offering additional 
insights regarding the disaggregate discrete processes. However, due to availability of 
several parametric distributions with different properties, the selection of an appropriate 
distribution has been recognized as an analyst-intensive task (Keane and Wasi, 2013, Vij 
and Krueger, 2017, Beeramoole et al., 2023, Paz et al., 2019). In contrasts, latent class 
models employ non- and semi- parametric distributions to relax some of the limitations of 
using parametric distributions, such as alleviating the need to prespecify the shape or 
functional form of the distribution (Vij and Krueger, 2017). However, the non-parametric 
distributions do not have a well-defined functional form. As a result, the specification 
problem translates from testing and selection of adequate parameter distributions in mixed-
Logit models, to identification of optimal number of latent classes along with their 
corresponding membership and class-specific utilities. 

Several such advanced specifications and associated mixing distributions are available 
today to address modelling limitations of the standard Logit and capture important and 
complex behavioral characteristics from the observed data, such as heterogeneity in tastes, 
nonlinearity, and correlation in the effects of variables on the discrete outcome. However, 
there is no consensus among researchers regarding the best approach to achieve this (Keane 
and Wasi, 2013). Further, prespecifying the specification structure without extensively 
testing all methods can potentially impose strong assumptions regarding behavior leading 
to biased or erroneous outcomes. To address this issue, there is need for a generalized 
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framework to facilitate extensive testing of diverse hypotheses, while considering multiple 
methods to capture complex behavioral insights from the data. 

In this study we propose an optimization-based framework to perform extensive hypothesis 
testing for estimation of discrete outcome models to adequately represent a combination of 
complex behaviors observed in an empirical setting. Previous studies (Paz et al., 2019, 
Ortelli et al., 2021, Beeramoole et al., 2023) have investigated the discrete outcome 
specification as an optimization problem. However, a detailed investigation on how the 
optimization-based framework can extract important behavioral information regarding the 
presence of heterogenous effects, while also examining the presence of latent classes, 
nonlinearities and correlation has not been conducted.  
 
The proposed framework considers multiple specification types, including multinomial-, 
mixed-, and latent-class- Logit models, to generate unique hypotheses that simultaneously 
test potential explanatory variables, their functional forms, coefficients that capture 
heterogeneous preferences along with their mixing distributions, presence of latent 
segments with homogenous preferences within the observed data, optimal number of latent 
classes, presence of within-class heterogeneity in the effects and correlation. A 
metaheuristic-based solution algorithm is implemented to solve the proposed multi-
objective optimization problem that evaluates the specifications based on both in- and out- 
of-sample fit. The proposed extensive hypothesis testing framework strategic and objective 
investigation of the data to capture important insights regarding behavior. 
 

2. Methodology 
2.1 Mathematical programming formulation 
Latent class models typically constitute two main components, 1) a class-membership 
model, and 2) class-specific choice models that are conditional to class membership (Greene 
and Hensher, 2003). The class-specific models are defined using a mixed-Logit 
specification based on the utility maximization theory, as given by eqn. (1), which estimates 
the probability 𝑃𝑃𝑛𝑛𝑛𝑛|𝑞𝑞 of individual 𝑛𝑛 choosing alternative 𝑗𝑗, conditional on 𝑛𝑛 belonging to 
latent class 𝑞𝑞. The proposed specification allows simultaneous investigation of behaviors, 
including within-class nonlinearities, heterogeneity in preferences, and correlated effects. 
Since the class membership is unknown to the analyst, a prior membership probability 𝑃𝑃�𝑛𝑛𝑞𝑞 
of individual 𝑛𝑛  belonging to 𝑞𝑞  is estimated using eqn. (2). A multinomial-Logit 
specification is used to define class membership due to the discrete nature, with parameters 
of 𝑞𝑞𝑡𝑡ℎ  class normalized to 0 to ensure model identification. In addition, the present 
formulation tests the estimation of class membership probabilities as both a function of a 
utility or as constants while ensuring that the membership probabilities for all classes sum 
to one. Further, when the total number of classes 𝑄𝑄 is equal to 1, the specification returns 
to a standard mixed- Logit model to test heterogeneity in the effects, and a multinomial- 
Logit model if only fixed coefficients are estimated.  

To maintain interpretability, the latent class specification problem is formulated based on 
the approach used by Greene and Hensher (2013), wherein the vectors of individual 
characteristics 𝐙𝐙𝑛𝑛  and alternative attributes 𝐗𝐗𝑛𝑛 are exclusively used to define class 
membership and class-specific models, respectively. However, depending on the context of 
the study, the latent class components can be appropriately defined using any of the variable 
vectors. Similarly, nonlinearity in class membership utilities can also be defined or tested. 
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The model coefficients 𝜷𝜷 for 𝐗𝐗𝑛𝑛  and 𝜽𝜽 that are associated with  𝐙𝐙𝑛𝑛  are estimated using 
standard MLE (Train, 2003) and Expectation Maximization procedures (Train, 2008). 
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 (2) 

In this study, the latent class specification problem is defined as a multi-objective non-linear 
mixed-integer combinatorial optimization problem, involving two conflicting objective 
functions – to minimize in-sample Bayesian Information Criteria (BIC) and minimize out-
of-sample Mean Absolute Error (MAE), as given by eqns.(3) (3)and (4), respectively. 
Binary variables (5) are introduced in the specification to include or test specific features 
from the data in the membership and class-specific utilities to generate unique hypotheses. 
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Subject to: 

𝛼𝛼𝑛𝑛𝑗𝑗
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𝑞𝑞 ,𝛼𝛼�𝑛𝑛𝑗𝑗
𝑞𝑞 , �̈�𝛼�𝑚𝑚
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𝑞𝑞 ,𝛾𝛾𝑗𝑗
𝑞𝑞 ,𝜙𝜙�𝑗𝑗,𝑝𝑝

𝑞𝑞 ,𝑄𝑄� ∈ {0,1} ∀ 𝑞𝑞,𝑚𝑚, 𝑗𝑗 ,𝑘𝑘,𝑎𝑎𝑛𝑛𝑎𝑎 𝑝𝑝,𝑝𝑝 ≠ 𝑘𝑘 (5) 
 
Similarly, other constraints are imposed that test generic and alternative-specific effects of 
explanatory variables, their nonlinear transformations, and the correlation between their 
effects. In addition, constraints that allow pre-specification of part(s) of the membership 
and class-specific utilities are defined that enable analyst to test specific hypothesis or 
conduct a semi-guided specification search. pre-specifications ensure that the generated 
models align with the problem objectives and enable the consideration of important 
practical aspects beyond the statistics as often required in causal analyses. 

2.2 Solution algorithm 
In this study, Multi-objective Global-Best Harmony Search (MOGBHS) (Xiang et al., 
2014) is adapted and integrated with the standard Maximum likelihood and Expectation 
Maximization parameter estimation methods to solve the proposed mathematical 
programming problem. Global-Best Harmony Search (GBHS) is a population-based 
metaheuristic, which combines the search strategies of Harmony Search and Particle Swarm 
Optimization to improve exploration of the solution space as well as intensify search near 
potential optimal solutions. The algorithmic steps designed to solve the proposed 
specification problem are described as follows. 
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Inputs: Dataframe containing 𝐗𝐗𝑛𝑛, 𝐙𝐙𝑛𝑛, 𝑦𝑦𝑛𝑛𝑛𝑛𝑡𝑡  ∀ 𝑛𝑛 ∈ 𝑁𝑁�, 𝑡𝑡 ∈ 𝑇𝑇� , 𝑗𝑗 ∈ 𝐽𝐽;̅ 
Testing/validation dataframe, 𝑣𝑣 
Pre-specifciations: 𝑄𝑄� ,𝛼𝛼�𝑛𝑛𝑗𝑗

𝑞𝑞 , �̈�𝛼�𝑚𝑚
𝑞𝑞 ,𝜔𝜔�𝑗𝑗

𝑞𝑞 ,𝜇𝜇𝑗𝑗
𝑞𝑞 , �̂�𝜆𝑗𝑗

𝑞𝑞 ,𝛾𝛾𝑗𝑗
𝑞𝑞 , 𝑓𝑓𝑗𝑗

𝑞𝑞 ,𝜙𝜙�𝑗𝑗,𝑝𝑝
𝑞𝑞  

Decision variables: 𝛼𝛼𝑛𝑛𝑗𝑗
𝑞𝑞 , �̈�𝛼𝑚𝑚

𝑞𝑞 ,𝜔𝜔𝑗𝑗
𝑞𝑞 , 𝐟𝐟𝑞𝑞 ,𝚪𝚪𝒒𝒒,𝜙𝜙𝑗𝑗,𝑝𝑝

𝑞𝑞  ∀ 𝑚𝑚 ∈ 𝑀𝑀� , 𝑗𝑗 ∈ 𝐽𝐽,̅ 𝑘𝑘, 𝑝𝑝 ∈ 𝐾𝐾� 𝑎𝑎𝑛𝑛𝑎𝑎 𝑝𝑝 ≠ 𝑘𝑘; 
 𝑄𝑄, 𝛃𝛃𝑛𝑛

𝑞𝑞 , 𝛉𝛉𝑞𝑞 , 𝜆𝜆𝑗𝑗
𝑞𝑞 ,𝜎𝜎𝑗𝑗,𝑝𝑝

𝑞𝑞  ∀ 𝑚𝑚 ∈ 𝑀𝑀� , 𝑗𝑗 ∈ 𝐽𝐽,̅ 𝑘𝑘, 𝑝𝑝 ∈ 𝐾𝐾� 𝑎𝑎𝑛𝑛𝑎𝑎 𝑝𝑝 ≠ 𝑘𝑘  
Initialization 
1. Set initial values: 𝐻𝐻𝑀𝑀𝐻𝐻,  𝐻𝐻𝑀𝑀𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑛𝑛,𝐻𝐻𝑀𝑀𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥,𝑃𝑃𝑃𝑃𝐻𝐻𝑚𝑚𝑚𝑚𝑛𝑛,𝑃𝑃𝑃𝑃𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥,𝜌𝜌, 𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥  
2. Initialize an empty 𝑀𝑀𝐻𝐻𝑀𝑀 
3. Set 𝑄𝑄 = 1, 𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖 =  1 
Initialize harmony memory 
4. Initialize 𝐻𝐻𝑀𝑀𝑄𝑄 of size 𝐻𝐻𝑀𝑀𝐻𝐻 with random solutions; 𝐻𝐻𝑀𝑀𝑄𝑄 = [𝐻𝐻1, . . . , 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] 
5. Evaluate objective functions ∀ 𝐻𝐻 𝑖𝑖𝑛𝑛 𝐻𝐻𝑀𝑀𝑄𝑄 
6. Sort 𝐻𝐻𝑀𝑀𝑄𝑄 based on Fast non-dominant sorting and crowding distance 
Improvise new harmony 
7. Repeat 𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥  times 

7.1. Harmony consideration 
Generate a random number ϊ ∈ {0,1} 
If ϊ ≤ 𝐻𝐻𝑀𝑀𝐻𝐻𝐻𝐻𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖, then 

Generate a random number ș ∈ {1, . . . ,𝐻𝐻𝑀𝑀𝐻𝐻} 
Randomly select features from solution 𝐻𝐻ș 𝑖𝑖𝑛𝑛 𝐻𝐻𝑀𝑀𝑄𝑄 to create new solution 𝐻𝐻𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖  

else  
Generate a new random solution 𝐻𝐻𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖  

7.2. Pitch adjustment 
Generate a random number ϊ ∈ {0,1} 
If ϊ ≤ 𝑃𝑃𝑃𝑃𝐻𝐻𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖, then 

Perturb 𝐻𝐻𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖 by changing adding or removing a feature 
else  

No perturbation 
7.3. Evaluate objective functions 
7.4. 𝐻𝐻𝑀𝑀𝑄𝑄 ∪  𝐻𝐻𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖   
7.5. Sort 𝐻𝐻𝑀𝑀𝑄𝑄 based on Fast non-dominant sorting and crowding distance 
7.6. Local Search 

If 𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖 ≥ 𝜌𝜌 × (𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥), then 
Generate a random number ϊ ∈ �1, . . . , 𝑙𝑙𝑒𝑒𝑛𝑛(𝑃𝑃𝑃𝑃𝑄𝑄)� 
𝐻𝐻𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖  =  𝐻𝐻ϊ 
Perturb 𝐻𝐻𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖 using pitch adjustment 
Go to step 7.7 

else  
Go to step 7.1 

7.7. Terminate improvise new harmony 
𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖 =  𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖 + 1 
If 𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖 = 𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥 , then 

Go to step 8 
else 

Go to step 7.6 
Update Main harmony memory 
8. 𝑀𝑀𝐻𝐻𝑀𝑀 ∪ 𝐻𝐻𝑀𝑀𝑄𝑄 
9. Sort 𝑀𝑀𝐻𝐻𝑀𝑀 based on Fast non-dominant sorting and crowding distance 
10. Keep only pareto front solutions in 𝑀𝑀𝐻𝐻𝑀𝑀;   𝑀𝑀𝐻𝐻𝑀𝑀 = 𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 
Termination 
11. Estimate 𝜚𝜚𝑠𝑠 using min-max normalization ∀ 𝐻𝐻 in 𝑃𝑃𝑃𝑃𝑄𝑄  
12. Estimate 𝜚𝜚𝑠𝑠∗ using min-max normalization ∀ 𝐻𝐻 in 𝑀𝑀𝐻𝐻𝑀𝑀 
13. Find best solution 𝐻𝐻∗

𝑃𝑃𝑃𝑃𝑄𝑄  in 𝑃𝑃𝑃𝑃𝑄𝑄, where 𝐻𝐻∗
𝑃𝑃𝑃𝑃𝑄𝑄  is solution with min.(𝜚𝜚𝑠𝑠) 

If 𝜚𝜚𝑠𝑠 𝑜𝑜𝑓𝑓 𝐻𝐻∗
𝑃𝑃𝑃𝑃𝑄𝑄 <  𝑚𝑚𝑎𝑎𝑚𝑚. (𝜚𝜚𝑠𝑠∗) ∀ 𝐻𝐻 in 𝑀𝑀𝐻𝐻𝑀𝑀, then 

Set 𝑄𝑄 = 𝑄𝑄 + 1  
else 
Return 𝐻𝐻𝑀𝑀𝐻𝐻 

End 
 
The specification search begins by setting the hyperparameters and initializing the harmony 
memory for class 𝑄𝑄 = 1 . Initial solutions (𝑀𝑀1 … 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻)  are generated by randomly 
assigning values to binary variables (eqn. (6)) or using analyst pre-specifications. The 
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solutions are then sorted from best to worst using Fast non-dominated sorting, proposed by 
Deb et al. (2002). An iterative process of ‘improvising harmony’ is then initiated, during 
which either some features from 𝑀𝑀𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖 in memory are randomly selected and considered for 
improvisation or a new solution is generated. A pitch adjustment step follows, in which the 
decision variables in 𝑀𝑀𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖 undergo perturbation based on a random number generator. Pitch 
adjustment allows testing of minute changes in the specification, such as inclusion or 
deletion of a variable, or change in random distribution for a specific variable’s coefficient. 
The objective functions are evaluated, and the updated solution is included in 𝐻𝐻𝑀𝑀 followed 
by the non-dominant sorting of 𝐻𝐻𝑀𝑀. A local search step is initiated as the iterations reach a 
pre-defined threshold 𝜌𝜌. During local search, only solutions within the Pareto-front (𝑃𝑃𝑃𝑃) are 
considered for improvisation. The process repeats for an increment in the number of latent 
classes. The specification search terminates when none of the solutions found during the 
current number of latent classes is observed in the 𝑃𝑃𝑃𝑃 solutions, or when the maximum 
number of latent classes is reached. The final 𝑃𝑃𝑃𝑃 is returned which contains the best set of 
non-dominant solutions. 

 

3. Numerical experiment - transport mode choice preference using 
Swiss metro dataset. 
3.1 Data description 
The proposed MOGBHS was used to analyze transport mode choice behavior in Switzerland 
using a stated preference data collected by Bierlaire et al. (2001) in 1998. A detailed description 
of the dataset is provided by Antonini et al. (2007). Each respondent was presented with three 
transport mode alternatives (train, car, and Swiss metro), and nine hypothetical choice 
scenarios. Potential explanatory variables considered for the choice analysis included travel 
time (in minutes), travel cost (in CHF), headway for public transport modes (Train and Swiss 
metro), presence of luggage with traveler (no luggage, one, and more than one), seat 
configuration for Swiss metro (dummy variable indicating if the seats are arranged like airlines 
or not), dummy variable indicating if the traveler had an annual public transport ticket or not, 
traveler class (dummy variable to indicate first-class traveler), age, gender, income, and travel-
cost bearer (self, employer, or both). For the experiments, 80% of the total observations 
(10,395) were used as the training dataset, while the remaining 20% were used to test out-of-
sample prediction performance.  
 

3.2 Results & analysis 
Figure 1 presents the final Pareto front identified using MOGBHS with respect to in-sample 
BIC and out-of-sample MAE. Solutions found in the Pareto front were estimated with number 
of latent classes (𝑄𝑄)  equal to two, which provided improvement in both BIC and MAE 
compared to those with only one class. The search terminated at 𝑄𝑄 = 3  as there was no 
significant improvement observed in BIC and MAE when compared to the Pareto Front 
solutions at 𝑄𝑄 = 2. Table 1 presents a relatively optimal solution selected from the elbow of 
the Pareto Front obtained using the MOGBHS. 

The estimated specification identified two latent classes of travelers with distinct travel 
preferences. The class membership was defined using income levels, presence of luggage and 
a categorical variable that indicated if the travel cost was fully borne by travelers, or (partially 
or fully) subsidized by the employer. Latent class one is mostly likely to include travelers who 
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prefer using public transport modes including Swiss metro and Train. The membership of 
travelers to this group is likely to reduce as their income levels and presence of luggage increase. 
In addition, they are less likely to be subsidized for travel costs. 35% of the observed sample 
are likely to belong to this group. The members of latent class one are not likely to prefer 
airplane like seat configurations and are sensitive to waiting time. The coefficient for headway 
was estimated with a normal distribution indicating significant heterogeneity in the effect of 
waiting time. Upto 85% of the observed sample associated a negative utility with headway. In 
contrasts, the Latent class two represented car dependents, who are likely to belong to high 
income groups and have access to travel costs subsidies. They are less likely to carry luggage 
and are sensitive to travel and waiting times. The random coefficients estimated for travel and 
waiting times indicate a significant variance in the associated preferences of travelers.  

 
Figure 1: Pareto Front estimated using the MOGBHS algorithm 

Table 1: Relatively optimal solution obtained from the Pareto Front for behavioral analysis for 
Swissmetro data 

   Estimate t-ratio1 Estimate t-ratio1 
  f2 Class1 Class2 

Class membership Utilities 

Class-specific constant     0.44 1.7 
Income      0.29 3.4*** 
Presence of luggage     -1.22 -8.3*** 
Travel cost subsidy     0.22 2.6*** 

Class-specific Utilities 
ASC Swissmetro   7.71 17.9***   
ASC Train   7.49 16.7***   
Travel time mean    -0.03 -21.8*** 
 s.d. 𝑛𝑛   0.04 -21.2*** 
Seats   -0.33 -2.7***   
Headway mean  -0.05 -7.9*** -0.05 -18.9*** 
 s.d. 𝑛𝑛 0.10 -12.6*** 0.05 -17.0*** 
Log-Likelihood   -5,370    

AIC   10,767    

BIC   10,830    

1. = weakly significant (p < 0.10, t > 1.645), ** = significant (p< 0.05, t>1.96), *** = strongly significant (p< 0.01, t>2.58)  
2. n = normal; u = uniform; t = triangular; ln = lognormal 

The search approximately took 14 hours during which more than 300 unique specifications 
representing diverse combinations of behavior were tested. There is significant improvement in 
BIC from 14,837 to 10,830 during the search. However, the performance of the proposed 
MOGBHS was observed to drop when considering latent class specifications compared to when 
testing only for multinomial- and mixed-Logit specifications. This could be associated with the 
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substantial increase in model complexity when latent class specifications are considered, which 
are prone to convergence issues. 
 
Table 2 presents the non-dominant solutions found in the Pareto Front using the proposed 
extensive hypothesis approach. The BIC and MAE estimates show a trade-off between in-
sample fit and out-of-sample prediction accuracy. While there is some similarity between the 
specifications based on the  potential explanatory variables, the solutions vary in terms of 
complexity. These solutions can improve modelling efficiency by providing the analyst with 
objective start points to continue the model development based on the study context.   
 
Table 2: Pareto Front solutions obtained from the search 

 BIC MAE Specification 
type 

Potential explanatory 
variables 

Complexity 

1.  10,731 6.03 latent class 
model with 2 

classes 

Cost, Headway, Seats, 
cost for traveler with 

annual public transport 
ticket 

Class membership: first 
class traveler, gender, 

income 

Within-class 
heterogeneity with 

correlated 
parameters 

2.  10,830 1.45 latent class 
model with 2 

classes 

Travel time, seats, and 
headway 

Class membership: 
income, presence of 

luggage, travel subsidy 

Within-class 
heterogeneity in 

the effects of travel 
time and headway 

3.  11,283 0.12 latent class 
model with 2 

classes 

Travel cost, cost for 
traveler with annual 

public transport ticket, 
alternative-specific 

constant 
Class membership: age, 

first class traveler, 
income, gender, travel 

subsidy 

Within-class 
heterogeneity in 

the effects of cost-
related variables 

4.  11,941 0.04 latent class 
model with 2 

classes 

Headway, Seats, cost 
for traveler with annual 
public transport ticket 

 

Within-class 
heterogeneity with 

correlated 
parameters 

5.  14,144 0.02 mixed-Logit 
model 

Travel time, cost, seats, 
age, income, gender, 

availability of luggage 

Within-class 
heterogeneity in 

the effects of seat 
configuration 

 

4. Conclusion 
In this study, the generalized extensive hypothesis testing framework was proposed to include 
and test for advanced specifications such as those involving latent classes and within 
heterogeneous effects. The specification search considered multiple model performance 
measures including in-sample BIC and out-of-sample MAE to enable identification of superior 
specifications that best capture a combination of complex behaviors that are typically observed 
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in real world datasets. The proposed method considers simultaneously multiple modelling decisions, 
including potential explanatory variables, their functional forms, the type of coefficients to be estimated, 
coefficients that capture heterogeneous preferences along with their mixing distributions, presence of 
latent segments with homogenous preferences within the observed data, optimal number of latent 
classes, presence of within-class heterogeneity in the effects and correlation. The experiment with 
Swissmetro dataset illustrated the performance of  the proposed MOGBHS algorithm in 
providing important insights from the data regarding the contributory factors that affect latent 
class membership and the associated class-specific mode choice preferences. The estimated 
models revealed the presence of two latent classes of travelers with distinct preferences for 
transport modes. Planners and practitioners can potentially benefit from these insights as 
effective starting points to continue the hypothesis testing and subsequent model development. 
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