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1. Introduction 
Discrete Choice Models (DCMs) have become a dominant theoretical framework for studying 
individual travel behavior. Econometric models, including DCMs, have been used to 
investigate individual decision-making over decades (Train, 2009). However, there is a 
growing inclination towards utilizing machine learning models, particularly Deep Neural 
Networks (DNNs), for analysing traveller’s choices (Zhang et al., 2020). While DCMs have 
been the primary approach for travel behaviour, DNN models have been shown to offer 
superior prediction accuracy due to their advanced learning algorithms and flixable modelling 
structure (Thanh et al., 2019). However, a major drawback of DNNs is that they are often 
considered as black-box models, meaning that it can be challenging to understand why they 
make certain predictions. When it comes to critical decisions in transportation planning, such 
as congestion pricing and infrastructure investment, interpretability is of utmost importance. 
Therefore, the lack of interpretability of DNNs can be a significant limitation for applications 
where transparency is crucial, such as choice modeling.  
Recent studies have utilized neural networks as a tool to learn more flexible behavior 
representations within DCMs, while still trying to maintain model interpretability (Sifringer et 
al., 2020, Wang et al., 2020a, Wang et al., 2020b, Wong and Farooq, 2021). The basic concept 
involves integrating a neural network into a DCM, which allows the neural network to learn a 
portion of the model specification, while the base model remains a DCM. This design is 
referred to as the Neural-Embedded Discrete Choice Model (NEDCM) (Han et al., 2020). In a 
recent study, Sifringer et al. (2020) proposed a NEDCM based on the Random Utility 
Maximization (RUM) theory, as the Learning Multinominal Logit model (L-MNL). This 
approach divides the systematic part of the utility specification into two components, a 
knowledge-driven and a data-driven one. The advantage of L-MNL is that it has a lighter 
architecture and sparser connectivity compared with a regular DNN model. However, these 
extended DNN models may not be considered transparent and reliable in choice modelling, as 
they may contain hundreds of layers and thousands of parameters. To be more precise, a 
reliable and transparent model must accurately represent the real relationships between the 
explanatory variables and the outcomes of the choices made, while providing dependable 
responses to questions about hypothetical scenarios at the disaggregated level. 
As the significance of interpretability in advanced machine learning approaches such as DNNs 
becomes increasingly apparent, the Artificial Intelligence (AI) research community is 
dedicating more attention to the subject of explainability of DNNs (Arrieta et al., 2020). Post-
hoc interpretation techniques have been introduced to solve the interpretation problem of 
DNNs by explaining the model's decisions with high-level insights (Lipton, 2018). These 
methods help to increase the reliability of DNNs and enable their deployment in critical 
applications with improved trustworthiness. It can also help developers find errors or biases in 
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their system and can even facilitate the development of more robust systems. In earlier 
research, there were attempts to extract information from the neural networks. For example, 
Hagenauer and Helbich (2017) and Golshani et al. (2018) conducted sensitivity analysis to 
measure the importance of different variables. Meanwhile, Wang et al. (2020b) demonstrated 
how to extract a comprehensive list of economic indicators from neural networks. Factors such 
as elasticities and Value of Time (VOT) have been calculated using the gradient of choice 
probabilities, and other information such as market share have been computed using choice 
probability in the DNN. However, Multi nominal Logit models (MNLs) are able to provide 
further explicit parametric form for each economic information while DNNs are not. Despite 
the increasing attention towards post-hoc analysis in the field of discrete choice modeling, only 
a limited number of studies have been dedicated to uncovering behavioral insights using these 
methods. 
The purpose of this paper is to study the role of DNN architecture in the application of 
explainability methods in the context of choice modelling. To achieve this, we compare and 
evaluate the application of Integrated Gradient method, as a cutting-edge post-hoc 
explainability approach on NEDCMs and fully connected DNN model. Our main focus is to 
measure consistency between the statistical theories, such as RUM, and both NEDCM and 
DNN models. 

2. Methodology 

2.1. Deep neural networks 
 
DNNs have emerged as a powerful tool for modeling complex datasets (Goodfellow et al., 
2016). Unlike fully connected DNNs, which are typically trained to predict the probability of 
choosing each alternative based on the attributes of all alternatives, NEDCMs incorporate 
information about the decision-making process itself. NEDCMs embed the utility functions of 
each alternative in a high-dimensional space, where the distance between the embedded utilities 
reflects the similarity of the alternatives. This approach allows NEDCMs to capture the 
underlying decision-making process more realistically, and to account for the fact that 
individuals may have different preferences and decision-making strategies. 
The Alternative-Specific Utility function DNN (ASU-DNN) represents a cutting-edge 
NEDCM proposed by Wang et al. (2020a), with impressive accuracy in modeling discrete 
choice data. The structure of ASU-DNN is presented in Figure 1. ASU-DNN is designed with 
a specific architecture composed of an input layer, two hidden layers, and an output layer. The 
input variables are partitioned into two separate vectors, individual-specific and alternative-
specific variables. Every group of variables progresses through a fully connected network. 
Each neural network within the second layer represents a utility function, while the last layer 
computes the output probabilities. By leveraging the RUM theory, ASU-DNN estimates the 
utility of each alternative by analyzing individual-specific variables and their corresponding 
alternative-specific variables, thereby providing a more comprehensive and realistic 
understanding of the decision-making process.  
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Figure 1: the structure of ASU-DNN model includes input layer, hidden layers, and the output layer.  

The purpose of this paper is to compare two distinct DNN architectures, ASU-DNN and fully 
connected DNN, using real-world data in order to gain insight into how much the DNN's 
architecture impacts the significance of input variables. 

2.2. Post-hoc analysis 
The post-hoc explainability techniques have been proposed to shed light on the opaque 
behavior of DNNs. These methods are designed to provide a better understanding of how 
DNNs make predictions. Integrated Gradients is a post-hoc method for interpreting the 
predictions of DNNs by attributing importance scores to input features (Sundararajan et al., 
2017). This method calculates the gradient of the output of a DNN with respect to the input 
features, integrating the gradients along a path from a baseline input to the actual input. Along 
this path, this technique calculates gradients at multiple points, which measure how sensitive 
the model's output is to changes in the input variable. By averaging these gradients over the 
entire path, the Integrate Gradient method provides information about how variation in input 
variables influence the model’s prediction. The formulation of Integrated Gradient for 𝑖𝑖𝑖𝑖ℎ 
feature of sample 𝑥𝑥 is defined as: 
 

𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑖𝑖(𝑥𝑥) = (𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑖𝑖′)�
𝜕𝜕𝜕𝜕(𝑥𝑥′ + 𝛼𝛼 × (𝑥𝑥 − 𝑥𝑥′)

𝜕𝜕𝑥𝑥𝑖𝑖

1

𝛼𝛼=0
𝐼𝐼𝛼𝛼 

 
𝑥𝑥𝑖𝑖′ refers to the 𝑖𝑖𝑖𝑖ℎ dimension of the baseline 𝑥𝑥′. The resulting attribution scores reflect the 
contribution of each input feature 𝑥𝑥𝑖𝑖 to the final output 𝜕𝜕, providing insights into the decision-
making process of the DNN. Integrated Gradients has been shown to outperform other 
gradient-based attribution methods and has been applied to various domains, such as natural 
language processing, computer vision, and healthcare, to help improve model transparency and 
accountability (Lundstrom et al., 2022). 

3. Experimental results 
In this study, we evaluate the interpretability of ASU-DNN and the fully connected DNN using 
the Swissmetro dataset, which was collected in Switzerland in 1998 (Bierlaire et al., 2001). 
The dataset comprises responses from 1,192 individuals who were asked to choose their 
preferred mode of transportation among three alternatives: train, Swissmetro (SM), and car. 
For this analysis, we select Travel Time, Travel Cost, Age, and Income among the available 
variables for choice analysis. We use the Integrated Gradient method to provide insights into 
how these models make predictions. In this experiment, ASU-DNN and DNN include 2 layers 
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with 100 neurons in each layer. We also compare the performance of DNN models with a well-
known choice model, the MNL, in terms of within-sample fit and out-of-sample prediction. 
 
The dataset is divided into two parts: 70% for the training dataset and 30% for the test dataset. 
As presented in Table 1, loglikelihood and accuracy were calculated for fully connected DNN, 
ASU-DNN, and MNL models, using the test and train datasets. This result highlights the 
improvement in accuracy of ASU-DNN on the test dataset, reinforcing the ability of ASU-
DNN in modeling unseen dataset. The number of parameters in ASU-DNN architecture is 
significantly less that the fully connected DNN. This means connections that are not supported 
by the theory are removed from the model. As a result, ASU-DNN avoids spurious correlations 
that could lead to overfitting, which is a common problem in deep learning models. 
Furthermore, as shown in the table, ASU-DNN demonstrates superiority over MNL in both 
training and test prediction accuracy and log-likelihood. Therefore, ASU-DNN has better 
generalization ability than fully connected DNN and MNL, which is a desirable property for a 
DNN model to have. 
 
Table 1: the goodness of fit measurements of the fully connected DNN and ASU-DNN for the test and 
train datasets 

Model Number of 
parameters Loglikelihood Accuracy 

Train 

ASU-DNN 1,803 -3519.97 74.92 
Fully Connected DNN 21,403 -1330.17 97.79 

MNL 10 -5095.18 65.11 

Test 

ASU-DNN 1,803 -1831.45 71.78 
Fully Connected DNN 21,403 -8861.69 67.20 

MNL 10 -2203.35 66.21 
 
 
Table 2 shows the average impact of input variables on the selection of each travel mode in the 
ASU-DNN model computed by the Integrated Gradient method. Travel Time and Travel Cost 
of each mode have negative effects on the selection of their corresponding mode, but positive 
effects on the selection of other modes. For example, travel time of train have negative impacts 
of -0.114 on the selection of train, but  positive effects of 0.087 and 0.026 on Swissmetro and 
car selections respectively. This indicates that increasing the time and cost of a transportation 
mode would decrease its attractiveness, and meanwhile increase the chance of choosing other 
transportation modes. Moreover, the magnitude effects of Travel Time and Travel Cost are 
highest for their corresponding alternatives, which is also consistent with RUM theory. As an 
example, the magnitude impact value of train travel cost (0.26) is higher than its effect on 
Swissmetro and Car. Similarly, Table 2 shows Age and Income also have a significant impact 
on the choice of transportation mode, with Age having the highest impact on Swissmetro and 
Income having the highest impact on Train. 
  
Table 2:  Average impact of input variables on mode choice using Integrated Gradient for ASU-DNN 

Input Variables Train SM Car 

Train travel time  -0.113 0.087 0.026 
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Train cost -0.260 0.193 0.066 

SM travel time 0.139 -0.348 0.208 

SM cost 0.180 -0.420 0.239 

Car travel time 0.022 0.100 -0.123 

Car cost 0.042 0.243 -0.285 

Age 0.270 -0.422 0.152 

Income -0.186 0.123 0.062 
 
The results presented in Table 3 offer insight into the average impact of input variables on the 
transportation modes of Train, Swissmetro, and Car for the fully connected DNN model. 
Similar to ASU-DNN, the impact of time and cost on their corresponding alternative is negative 
for the fully connected DNN, however in some cases their impact on other alternatives is also 
negative. For instance, Train travel time has a negative impact on the selection of both Train 
and Car, even though it is expected to only have a negative effect on Train. Additionally, when 
considering the absolute values of impacts, some alternative-specific variables do not have the 
highest impact on their corresponding alternative. As an example, Car travel cost has the 
highest impact on Swissmetro, not Car. These findings suggest that there may be some 
inconsistencies between the fully connected DNN models and behavioral processes which 
could have implications for their usage in choice modeling. 
 
Table 3: Average impact of input variables on mode choice using Integrated Gradient for DNN 

Input Variables Train SM Car 

Train travel time  -0.800 0.816 -0.016 

Train cost -0.428 0.201 0.226 

SM travel time 0.563 -0.867 0.303 

SM cost 0.891 -1.191 0.299 

Car travel time 0.383 -0.189 -0.194 

Car cost -0.194 0.708 -0.513 

Age -0.081 -0.082 0.164 

Income -0.254 0.160 0.093 
 
The comparison between Table 2 and Table 3 reveals insights into the effects of RUM when 
applied within the DNN architecture. In Table 2, using Integrated Gradient to interpret the 
ASU-DNN framework, our observations align with the expectations of RUM theory, as 
evidenced by variables like travel time and travel cost, which yield expected effects on their 
respective modes and alternative modes, reflecting the inherent trade-offs in user decision-
making. However, Table 3 presents a contrast within the fully connected DNN model, with 
unexpected negative impacts on unrelated alternatives, challenging RUM assumptions. This 
significant difference between the ASU-DNN and fully connected DNN models shows the 
relationship between the modeling structure and RUM principles. These findings highlight the 
limitation of the fully connected DNN models and the strength of ASU-DNN in capturing 
behavioral insights in the mode choice datasets. 
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4. Conclusion 
In this paper, we evaluated the performance of ASU-DNN and fully connected DNN models 
using the Integrated Gradient method. This study showed the ability of the Integrated Gradient 
method in explaining the contribution of variables on the decision outcome is highly dependent 
on the adopted DNN architecture. Although the fully connected DNN had high prediction 
accuracy and low likelihood during training, ASU-DNN showed superior performance in 
modeling unseen data, as evidenced by its higher prediction accuracy and lowest log-likelihood 
during validation, surpassing both DNN and MNL models. Our interpretation analysis revealed 
that compared to the fully connected DNN model, ASU-DNN, with its theory-based 
architecture, is more consistent with RUM theory. The results indicated that in ASU-DNN, 
travel time and cost have a negative impact on their corresponding alternative, while their 
impacts on other alternatives are positive. In contrast, the fully connected DNN model showed 
that travel time and cost have a negative impact on other alternatives additional to their 
corresponding alternative. Furthermore, the absolute impact of travel time and travel cost on 
their corresponding alternative is the highest in ASU-DNN, while DNN shows not such 
connection between input variables and outputs.  
The findings of this study demonstrate the potential of post-hoc analysis techniques for gaining 
insights into DNN models in the context of discrete choice modeling. With the highlighted 
interpretability offered by post-hoc methods, DNN models with theory-based architecture 
emerge as powerful tools for modeling travel mode choice datasets. The ability of these new 
models to capture the behavioral relationships from the dataset, along with post-hoc analysis, 
suggests informed decisions with a higher degree of accuracy for critical choices, such as 
transport investments. Future studies can explore additional post-hoc analysis techniques to 
extract further information from DNN models. 
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