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Abstract 

This study presents a comprehensive statistical analysis of expected crash costs per 1,000 
Tonne-Kilometres of Payload for Articulated Trucks (ARTs) and Multi-Combination Vehicles 
(MCVs) across diverse road types. The study explores the suitability of different models, 
focusing on the hurdle lognormal model due to its compatibility with the dataset's 
characteristics. The research sheds light on the relationship between road types, vehicle types, 
Annual Average Daily Traffic (AADT) and its logistic transformations and crash costs, 
providing insights that can inform decision-making and road safety strategies. 

1. Introduction 

Heavy vehicles (HV) play a pivotal role in the growing freight industry, which is highly 
important for the economic performance of any nation, but due to their size and weight can lead 
to significant crashes. Besides the loss of lives, injuries, and traffic disturbances, HV crashes 
have a substantial economic impact. Analyzing crash costs not only highlights the financial 
impact on society but also informs policymakers and planners. 

This study analyses the relationship between AADT and crash cost per 1,000 Tonne-Kilometres 
travelled. The original crash dataset contained 5,845 road segments. Of these, 2,914 are at least 
partially gazetted for MCVs, with 95% fully gazetted for MCVs. The only filtering removes all 
sections that are not gazetted for MCVs (approximately 50%). 

Employing a hurdle lognormal model, this study examines the crash cost per thousand tonne- 
kilometres of payload in relation to AADT or relevant transformations. It encompasses diverse 
road types and facilitates comparisons of diverse expectations for heavy vehicle crash costs. In 
the quest for an appropriate model, negative binomial and quartile mixed models were also 
explored. Ultimately, the hurdle lognormal model emerged as the most fitting choice, given the 
continuous nature of the dependent variable and the dataset's abundance of zero values. 
Notably, the inclusion of a weighting mechanism that accords greater consideration to fully 
MCV-gazetted road segments, longer segments, and specific timeframes significantly shaped 
the modelling process. 

This study investigated various specifications and transformations to ascertain the optimal 
approach for modelling crash cost per thousand tonne-kilometres of payload using AADT. The 
model outputs generally align with expectations, revealing that increased AADT correlates with 
higher anticipated crash costs. However, this relationship's nuances vary by road and vehicle 
type. While the logarithm of roadway AADT may not exhibit the strongest relationship, it 
proves apt for the required analysis. Notably, the analysis zeros in on comparing crash cost 
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outcomes between segments with different types of vehicles and road infrastructure at identical 
AADT levels. 

This research explores a unique combination of vehicle and road types with a dataset much 
more populated with zeroes than in the current literature. As such, different challenges were 
faced in gaining insights from this data. Potential applications for limiting the use of certain 
vehicles on roads with particularly high expected crash cost has not been performed before. 
 
2. Methodology 
2.1 Identify suitable regression models  

Poisson and negative binomial are the most used models to predict count data applied to the 
number of crash occurrences on road segments over time. Modelling crash cost rather than 
count data accounts for the differences in severity among crashes. Three model types have been 
used for crash cost: quantile mixed modelling, hurdle modelling and negative binomial. 

The negative binomial modelling method is often employed due to its suitability for 
overdispersed count data, but it may not align well with the discrete assumptions of the method. 
On the other hand, quantile mixed modelling has found limited application, primarily in 
assessing crash barrier costs on a single road type (two-lane highway, where barrier costs may 
be an appropriate measure while being less appropriate on other road types). 

The hurdle model presents itself as an appealing choice due to its distinct treatment of zero 
occurrences and positive counts (Ma et al., 2016). This approach is particularly apt for this 
study, given that the response variable exhibits two differing states, each with its unique 
statistical characteristics. The central feature of the hurdle model is its recognition of the 
excessive frequency of zero occurrences, by maintaining separate parameters for both zero 
occurrences and counts, accommodating a variety of distributions for the positive count 
component. 

For the hurdle approach, the zero-probability distribution is given as a logistic model, as it 
provides the best specification for determining the probability of binary outcomes – either a 
crash has or has not occurred on the given road segment. In this context, the “hurdle” signifies 
the probability that the given event is zero. To address the positive-value distribution, 
lognormal, gamma and normal can be tested. The positive-value distribution provides an 
expected value when a crash event occurs. By integrating both aspects of the model, an overall 
expected crash cost is derived. The implementation of the hurdle lognormal equation was 
carried out using the R package brms for Bayesian methods (Bürkner, 2017; Bürkner, 2021). 

2.2 Methods to obtain statistically significant and logical results 
Observations reveal diverse trends across road types. Rural single-carriageways exhibit the 
highest crash costs, while motorways and rural dual-carriageways show lower maximum costs. 
The estimation of models for ART and MCVs considered three alternative variables or 
transformations including the AADT of either articulated trucks or MCVs, with these 
alternatives being vehicle AADT, log vehicle AADT and log of the product of roadway AADT 
multiplied by vehicle AADT. 
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2.3 Validation 
Models are validated using approximate leave-one-out cross-validation with the loo R package, 
which evaluates based on PSIS. Model estimate reliability is calculated using the summary 
Pareto k diagnostics. Metrics for model fit include WAIC and epod, suitable for Bayesian 
models (Gelman et al., 2014). Model fit accuracy is compared by analysing the significance of 
best fits, and testing if differences between models are statistically significant. This is done by 
dividing the elpd (theoretical expected pointwise predictive density) difference of the best and 
reference models by the standard error difference and comparing it to a z-score. This is an 
approximate measure which provides an indication of the relative strength of different models 
(Vehtari et al., 2017). 

3. Results and discussion 
3.1 Prediction 
To find the expected crash cost, first find the probability of a crash:  

P(Crash) = 1 −  𝑃𝑃(No Crash)      (1) 
and: 

𝐸𝐸(Crash Cost|Crash) = 𝑒𝑒𝜇𝜇+(σ2)/2      (2) 
then:  

𝐸𝐸(Crash Cost) = 𝑃𝑃(Crash) ∙ 𝐸𝐸(Crash Cost|Crash)     (3) 
 
The two components of the model are the hurdle and μ terms. To find the expected crash cost, 
the general equation is:  

𝐸𝐸(Crash Cost) = (1 − ℎ𝑢𝑢) × 𝑒𝑒𝜇𝜇+(σ2)/2             (4) 
 
In this case, the hu and μ terms are related to the AADT independent variable:  
 

ℎ𝑢𝑢 =  1
1+𝑒𝑒−(𝛼𝛼𝛼𝛼+𝛽𝛽)          (5) 

 
𝜇𝜇 =  (𝛿𝛿𝛿𝛿 + 𝜀𝜀)          (6) 
 
where x is the independent variable. The hu term involves a probability transformation to ensure 
its value remains between 0 and 1. The μ term does not have this constraint but is involved in 
a log transformation.  
 
3.2 Results of roadway models 
Table 1 summarises all coefficients of the best-fit models. These results may be used to show 
the relative size of effects (where the dependent and independent variables are the same but 
cannot be directly interpreted. Interpretation of these results requires the use of the equations 
above.  
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Table 1: Coefficient for all models 

Roadway 
Vehicle 
Type 

AADT 
Variable 

hu Int 
(β) 

hu AADT 
(α) 

Int 
(ε) 

μ AADT 
(δ) 

Sigma 
(σ) 

Motorways 
ART Log AADT 15.34 -1.55 7.08 -0.46 0.92 

MCVs Log AADT 27.70 -2.53 5.45 -0.37 0.73 
Rural 
Single 

ART Log AADT 5.08 -0.64 2.76 -0.08 1.28 
MCVs Log AADT 4.70 -0.59 0.43 0.13 1.36 

Rural Dual 
ART Log AADT 9.24 -0.89 21.29 -1.91 0.74 

MCVs Log AADT 7.60 -0.70 -15.39 1.59 1.28 
Urban 
Single 

ART Log AADT 7.49 -0.59 8.86 -0.55 1.06 
MCVs Log AADT 6.15 -0.38 3.37 0.03 1.80 

Urban 
Dual 

ART Log AADT 5.09 -0.39 8.19 -0.50 1.24 
MCVs Log AADT 3.83 -0.15 7.54 -0.48 1.09 

* Note: Log AADT = Log(Roadway AADT) 
 
The relationship between the probability of no crash and the expected crash cost per 1,000 
tonne-kilometres of payload with roadway AADT was analysed for each road type. 
 
On motorways, the MCV expected crash cost rates are consistently below the ART amount at 
the same roadway AADT. Differences in expected crash cost ratios are experienced for rural 
dual carriageways, MCVs show increases in expected crash costs with increasing log AADT, 
meanwhile, the expected crash cost ratios for articulated trucks are downward sloping. 
 
For both MCVs and ART in rural single-carriageways, the expected crash cost increases 
similarly above 50 thousand AADT (corresponding to approximately 5 log AADT). The ART 
expected crash cost is above that for an MCV at the same vehicle AADT, but the gap between 
these values narrows significantly as roadway AADT increases. At higher values of roadway 
AADT, the change in ART expected crash cost is flattening out, while the MCV value is 
continuing to increase as shown in figure 1. 
 
Figure 1: Relationship between AADT and TCC/1000TKM Payload for Rural Single Carriageway 
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Overall, many roadway/vehicle type combinations show strong relationships between roadway 
AADT and expected crash cost per 1,000TKM payload, while other combinations of roadway 
AADT and vehicle type show limited relationships, where the data available is highly varied.  
 
4. Conclusion and future directions 
The results presented demonstrate the relationship between roadway AADT and crash costs for 
Articulated vehicles and MCVs across roadway types. This relationship is varied, which reflects 
the potential impacts of roadway traffic on crash costs for different vehicle types on various 
roadway types.  
Further research is recommended to explore other analysis methods. Current results indicate 
some relationships between AADT transformations and crash cost estimates. While the insights 
presented by this study examine the likely effects of AADT on expected crash costs, there may 
be other contributing factors that could be considered including: 
 

• Relative intensity of traffic in various locations and how the timing of the crash relates 
to AADT. 

• Whether vehicle type AADT is a better predictive indicator. 
• Variables unrelated to traffic but potentially relevant to the likelihood and severity of 

crashes that contribute to crash costs, including environmental factors such as road 
conditions and lighting.  
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