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Abstract 

Public transportation demand plays a crucial role in service planning and operation. Accurate 
prediction of passenger arrival rates at transit stops allows transportation planners and operators 
to optimize resources and improve service efficiency. Current methodologies primarily focus 
on weather's impact in the aviation industry, supply dynamics, and arrival time prediction, 
while overlooking its influence on public transport demand variation. This study addresses 
these gaps by designing a deep neural network model that can predict public transit demand, 
using large-scale datasets from multiple sources in Melbourne, Australia. We propose a novel 
deep learning architecture called Wasea-Lstm (Weather-Aware Smart Exponential Activation 
LSTM) that captures spatial, temporal, and external correlations for passenger arrival rate 
prediction at tram stops. The model is trained and tested on integrated datasets from automatic 
fare collection (AFC), automatic passenger count (APC), and weather data over a period of 
three months. Results show that the Wasea-Lstm model significantly outperforms benchmark 
models, including gradient boosting machine (GBMR) and multi-layer perceptron (MLP) 
regression by 15% and 6% in R2 metric, respectively. The feature importance ranking reveals 
that stop location, time of the day, temperature, and humidity are the key influencers of 
passenger arrival behaviour in Melbourne. Overall, this study contributes to the development 
of a model that accounts for multi-dimensional, high-resolution determinants of passenger 
demand using large-scale datasets from real world. The proposed Wasea-Lstm architecture 
shows exceptional performance in precisely forecasting stop-level demand for one of 
Melbourne's largest tram routes. Moreover, its applicability extends seamlessly to all routes 
within the network. 

1. Introduction 
Demand is a crucial factor in public transportation planning and operation. It can lead to 
reliability issues such as bunching and exhibits significant variability across space and time 
(Rezazada, Nassir and Egemen 2022). Passenger demand is a key metric that determines 
service types, frequency and schedule, the type, size, and number of in-service vehicles, 
synchronization and connectivity, network design, and service reliability indicators. (Ceder 
2007) succinctly explains that demand rises when public transit service is perceived as a 
delicious food. The passenger arrival rate at public transit stops is an essential measure of 
passenger demand, enabling transportation planners and operators to optimize resources, 
improve service efficiency, and enhance the passenger experience. Due to the unpredictable 
nature of urban environments, demand frequently fluctuates during different times of the day, 
days of the week, seasons of the year, types of land-use, stop locations, and the proximity of 
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attractions, parks, and shopping centers (Rezazada, Nassir and Egemen 2022). In short, the 
more unpredictable transport demand becomes, the more we rely on prediction (Ceder 2007). 
Accurate predictions require a deep understanding of the sources of variability, which can be 
caused by casual uncertainties, such as protests or accidents, or by systematic uncertainties 
associated with service dynamics (Soza-Parra, Raveau and Muñoz 2021). Several studies have 
explored different uncertainties that influence demand change and variability, including public 
transit fares, frequency, and station characteristics (Ingvardson et al. 2018; Toro-González, 
Cantillo and Cantillo-García 2020), network and time of day (Ahn et al. 2016; Frumin and 
Zhao 2012),, passenger crowding (Hensher 2020), on-time vehicle performance (Mai, List and 
Hranac 2012), timetable dependency (Zhang, Chen and Han 2014), pandemics like COVID-19 
(Downey et al. 2022), and socioeconomic background and fare elasticity (Kholodov et al. 
2021). The presence of spatio-temporal and directional demand imbalances in public transport 
networks is unavoidable, and it can be very difficult to identify and predict casual uncertainties 
(Hörcher and Graham 2018). However, systematic and seasonal behaviors can be identified 
using emerging technologies such as machine and deep learning models and real-world data 
sensing and automation on a large scale. 
Numerous analytical, statistical, optimization, simulation, machine learning, and deep neural 
network methods are utilized in the literature to formulate and model various aspects of public 
transport networks and operations. The growth of technology, the availability of large datasets 
from real-world operations using automated sensors and devices, the development of high 
computational power and GPUs, and rapid advancements in artificial intelligence and deep 
neural networks, all present new potential. These factors now make it possible to study complex 
dynamics and a significant number of parameters using multi-source data integration at high 
scale and resolution with comparatively minimal computation time and cost. However, to the 
best of the authors' knowledge, a comprehensive model that can capture demand non-linearity 
and variability across networks and predict in real-time using multi-dimensional longitudinal 
datasets from automatic data fusion is absent. Specifically, adding weather as an explanatory 
variable that can influence passengers' arrival at public transport stops or stations is often 
overlooked in public transportation. For instance, (Smith and Sherry 2008) modeled the 
influence of weather on aircraft arrival rates using Support Vector Machines, while (Venkatesh 
et al. 2017) deployed neural networks and deep learning to predict flight arrival delays, 
considering weather input. (Ke et al. 2017) developed a fusion convolutional long short-term 
memory network (FCL-Net) that captures three different dependencies in demand estimation 
for on-demand ride services, including spatial, temporal, and exogenous factors. Such 
implementation is absent in public transport demand estimation modeling, although it is 
challenging due to the complex nature of public transport systems, network and stop alignment 
and distributions, demand-supply sensitivity, and capacity compared to on-demand ride-hailing 
and taxi services. 
Various researchers have proposed different methodologies and models that consider weather 
and other relevant parameters to predict bus/train arrival times and feeder-bus operations 
(Arshad and Ahmed 2021; Bao, Zhang and Shi 2020; Liu et al. 2022; Yang et al. 2016). The 
existing methodologies primarily focus on the impact of weather in the aviation industry, 
supply dynamics, and arrival time prediction, while overlooking its influence on public 
transport demand variation. Similar studies, such as (Ke et al. 2017), have yet to address 
weather and spatio-temporal correlations, as well as the clear distinction between temporal time 
series and spatio-temporal dependencies in public transport demand estimation. Additionally, 
the literature currently lacks a proper model that can capture spatial and temporal demand non-
linearity with temperature explanatory variables. The limitations of the existing literature can 
be categorized as follows: 
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• Mainly focused on aviation and lacking studies for ground traffic and public transport 
• Primarily studied supply dynamics and their associated aspects 
• Validated using synthesized data and lacking high-quality, large-scale data from the 

real world 
• Evaluated using a single data source or data available for a short period, which cannot 

capture seasonal variation 
To address these gaps, this research aims to design a deep neural network that can predict 
public transit demand in real-time and is applicable to both route and network levels. With the 
potential and availability of automatic data sources, this study contributes to the development 
of a model that accounts for multi-dimensional, high-resolution determinants of passenger 
demand using large-scale datasets from the real world. Furthermore, the proposed method is 
trained and tested on integrated datasets from multiple sources, including automatic fare 
collection (AFC), automatic passenger count (APC), and weather data in Melbourne, Australia, 
over a period of three months. Finally, the suggested architecture for the LSTM model, built 
on a deep neural network, can accurately capture the non-linearity of demand across time and 
space. 
The remaining sections are organized as follows: Section 2 explains the methodology, Section 
3 describes the case study in this research, and Sections 4 and 5 present the results and 
conclusions, respectively. 

2. Methodology 
2.1. Overview 
In this paper, we present an innovative approach called Wasea-Lstm (Weather-Aware Smart 
Exponential Activation LSTM Estimator) that captures spatial, temporal, and external 
dependencies for passenger arrival rate prediction at tram stops. Contrary to the existing 
literature methodologies, our research predicts arrival rates for potentially large dimensions 
with high spatio-temporal resolutions. We tested various machine and deep learning models; 
however, the proposed deep learning architecture outperforms the benchmarks in all metrics. 
In this section, we first briefly introduce gradient boosting machine, multi-layer perceptron, 
and then the designed architecture for LSTM model training and evaluation. We also propose 
a simple algorithm for calculating relative feature importance based on Friedman's work in 
2001, which ranks the contribution of each input variable in predicting the target variable. 

2.2. Model architecture 
2.2.1. Gradient Boosting Machine Regression (GBMR) 
Gradient descent (boosting) is a popular machine learning strategy with numerous applications. 
Gradient boosting of regression trees (GBRT) generates highly competitive, robust, and easily 
understandable methods for both regression and classification, making it particularly well-
suited for analyzing imperfect data (Friedman 2001). Gradient boosting regressors are additive 
models, formulated as the prediction 𝑌𝑌�𝑖𝑖 for given input 𝑋𝑋𝑖𝑖 using a series of weak learners 𝑈𝑈𝑗𝑗 
(Friedman 2001), see Equation 1. 𝐹𝐹𝐽𝐽(𝑋𝑋𝑖𝑖) in this notation denotes that the prediction estimates 
𝑌𝑌�𝑖𝑖 conditioned both on 𝐽𝐽 number of weak learners and 𝑋𝑋𝑖𝑖 set of inputs.  

𝑌𝑌�𝑖𝑖 = 𝐹𝐹𝐽𝐽(𝑋𝑋𝑖𝑖) = ∑ 𝑈𝑈𝑗𝑗
𝐽𝐽
𝑗𝑗=1 (𝑋𝑋𝑖𝑖)                                                                                          (1) 

Equation 2 employs a greedy algorithm utilizing a fixed number of weak learners 𝑈𝑈𝑗𝑗, in the 
gradient boosting tree.  
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𝐹𝐹𝑗𝑗(𝑋𝑋) = 𝐹𝐹𝑗𝑗−1(𝑋𝑋) + 𝑈𝑈𝑗𝑗(𝑋𝑋)                               (2) 

The new term 𝑈𝑈𝑗𝑗(𝑋𝑋),  on the right side must be fitted to minimize the total losses represented 
by the loss function Lj, given the prior approximation 𝐹𝐹𝑗𝑗−1(𝑋𝑋), as shown in relation 3.  

 𝑈𝑈𝑗𝑗(𝑋𝑋) = arg min 𝐿𝐿𝑗𝑗 = arg𝑚𝑚𝑚𝑚𝑚𝑚 ℎ ∑ 𝑙𝑙(𝑌𝑌𝑖𝑖𝑛𝑛
𝑖𝑖=1 ,𝐹𝐹𝑗𝑗−1(𝑋𝑋𝑖𝑖) + 𝑈𝑈(𝑋𝑋𝑖𝑖))               (3) 

The initial term on the right side represents the loss parameter, which can be measured using 
various metrics like squared error, absolute error, or Huber. The scikit-learn version 1.2.1's 
GBMR is utilized to train the model over appropriately preprocessed datasets to use in boosting 
machine learning algorithms. 
2.2.2. Feature selection using relative importance  
There are always non-homogenous influences from different input variables Xi = {X1, …, Xn} 
on output variable(s) Yi. To improve the computational efficiency of the model and identify the 
most relevant and important features in approximation problems, particularly in cases with 
many explanatory variables, the relative influence Ij of individual input variables Xi on the 
variation of Yi is among the most powerful tools for interpreting approximation 𝐹𝐹�(X) (Friedman 
2001).  Several methodologies calculate the relative importance of individual input variables 
on the prediction of output variables, such as Gini importance or Mean Decrease Impurity 
(MDI) and Mean Decrease Accuracy (MDA), which is also known as Permutation importance. 
This research develops an algorithm based on the relative importance proposed in the work by 
(Friedman 2001) (See 4). 

𝐼𝐼𝑗𝑗 = �𝐸𝐸𝑥𝑥 �
𝜕𝜕𝐹𝐹�(𝑋𝑋)
𝜕𝜕𝑋𝑋𝑗𝑗

�
2
𝑣𝑣𝑣𝑣𝑣𝑣�𝑋𝑋𝑗𝑗�                                                                                    (4)  

The left term (𝐼𝐼𝑗𝑗) represents the relative influence of feature j, while the right term approximates 
𝐹𝐹�(X) conditioned on X. The function is approximated by a surrogate measure because the 
solution for decision trees does not strictly exist. (Breiman 1984) proposed relation 5, which 
takes the summation over each node t of the J-node tree T, the corresponding variable 
associated with node t, and the improvement in squared error at the end of the split at node t. 

𝐼𝐼𝑗𝑗
2  =  ∑ �̂�𝚤𝑗𝑗

2𝐽𝐽−1
𝑡𝑡=1 (𝑚𝑚𝑡𝑡 = 𝑗𝑗)                                                                  (5)  

𝑚𝑚𝑡𝑡 = 𝑗𝑗, is an indicator function that returns 1 if feature j is used for splitting in the tth tree and 
0 otherwise. However, Breiman, Friedman, Olshen, and Stone (1983) used it directly rather 
than as squared influence (Friedman 2001). The proposed algorithm calculates the contribution 
of each feature to the reduction in the loss function when constructing decision trees. For each 
feature in the model, it computes the total reduction in impurity gained by splitting on that 
feature across all decision trees. The impurity measure used in the calculation is typically the 
Gini entropy, which assesses the homogeneity of the target variable in the subsets created by 
the split. Finally, the algorithm normalizes the total reduction in impurity for each feature by 
dividing it by the sum of the total reduction in impurity across all features. This produces the 
relative importance of each feature. The resulting feature importance scores are typically scaled 
so that they sum up to 1.0.  
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Algorithm: Relative importance calculation  
Inputs: 

X: input variables, matrix of training data 
Y: target variable of training data 
T: number of decision trees in Gradient Boosting Machine (GBM) model, which is 
trained in the previous section.  

Outputs: 
Relative feature importance scores: array of feature importance scores, that ranks how each 
input variables contributed to the reduction of the loss function (Difference between ground 
truth Y and predicted 𝑌𝑌�  by GBM) 
 

• Train a GBM model with T decision trees to predict Y from X, using scikit-learn 1.2.1  
• For each feature j (location, temp, others) compute the total reduction in the loss: 

for t in 1 to T: 
if feature j is used for splitting in tree t: 
compute reduction in loss function for tree t using feature j 
add reduction to total reduction, j 

• Normalize the total reduction in the loss function for each feature
 feature_importance_scores = total reduction / sum (total reduction) 

• The resulting feature importance scores are typically scaled so that they sum up to 1.0. 
• Return feature_importance_scores. 

2.2.3 Multi-layer perceptron network 
Partial dependence plots (PDPs) are valuable tools in statistical learning. They can be employed 
to infer the interaction between target variables and input variables, such as linear or non-linear 
relationships (scikit-learn). Interactions among some key predictors can lead to higher error 
rates, which can be diagnosed through two-variable partial dependence plots (Hastie, 
Tibshirani and Friedman 2017). Plotting partial dependence to describe each predictor's 
contribution to the fitted GBMR model in the previous section revealed non-linearity and 
strong interactions between temperature and stop location in particular. As a result, a multi-
layer perceptron is introduced to capture this non-linearity and complex interactions among 
predictors. 
A multi-layer perceptron (MLP) is a popular type of artificial neural network (ANN) composed 
of fully connected feedforward neurons or nodes. MLP consists of two or more layers, 
including an input layer, one or multiple hidden layers, and an output layer, each employing an 
activation function to map non-linearly separable data (Cybenko 1989). The MLP architecture 
presented in this study includes an input layer equal to the number of observations, two hidden 
layers with 100 and 50 neurons respectively, and a single-neuron output layer that estimates 
the number of passengers arriving at each stop every 30 minutes, using a linear activation 
function for regression problems. The two hidden layers in this model are designed to learn 
complex patterns and representations from the input data. Each neuron in the hidden layers 
receives a weighted sum of the outputs from the neurons in the previous layer, applies an 
activation function (ReLU in this case), and generates an output (Figure 1). The Rectified 
Linear Unit (ReLU) activation function is used to produce positive values, choosing the 
maximum value between zero and X. 

ReLU(X) = argmax {0
𝑋𝑋}                                           (6) 
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The MLP model utilizes backpropagation for learning, an algorithm that minimizes error by 
adjusting the weights and biases of the network through each iteration, calculating the 
derivative of the loss function concerning the given parameters. In simple terms, fitting neural 
networks involves finding the best values for the unknown parameters called weights so that 
the model fits the training data well (Hastie, Tibshirani and Friedman 2017). 

 
 
Figure 1: Schematic diagram of a multi-layer perceptron (MLP) with an input layer equal to the length of 
input variables, two hidden layers of 100 and 50 neurons, and a single neuron output layer.  

2.2.4. Wasea-Lstm (Weather-Aware Smart Exponential Activation LSTM  
Long short-term memory (LSTM) is a well-known class of recurrent neural networks (RNNs). 
Unlike standard feedforward neural networks such as MLP, LSTM can process sequential data 
and remember its state over time, which makes it ideal for time series and sequential 
information. LSTM has a wide range of applications in NLP, speech recognition, image 
captioning, as well as various domains in traffic and transportation, such as demand estimation, 
arrival time prediction, bunching detection, and others. For example, (Yao et al. 2018) 
proposed a framework to capture both temporal and spatial correlations in taxi demand 
estimation, and (Ke et al. 2017) modelled three distinct dependencies: temporal, spatial, and 
exogenous for on-demand ride services using LSTM. This study proposes an innovative deep 
neural network architecture called Wasea-Lstm (Weather-Aware Smart Exponential Activation 
LSTM Estimator) that incorporates spatial and temporal correlations with finer resolutions in 
time and space. 
Time series data analysis has been challenging for years, and using variables that vary in time 
with those that change in space and/or both is very difficult. The presented methodology has 
the following advantages over the best state-of-the-art models: 

• The proposed method incorporates spatial resolution at the stop level, which is much 
shorter with higher granular resolutions than the 7x7 grids, each grid with an 
approximate length of 4.77 kilometres, as presented in (Ke et al. 2017). In contrast, the 
stop locations are mostly within 0.2-1.0 kilometres, which produces more than 10 times 
finer spatial resolutions. As per findings from (Ke et al. 2017), Pearson correlations for 
demand intensity and travel time drop significantly from 27% at a grid distance of 1 
kilometre to less than 2% as the grid distance increases to 9 kilometres. Therefore, the 
finer and higher spatial resolution in this research is expected to significantly enhance 
the model prediction and identification of non-linearity in complex interactions.  
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• The methodology in this research incorporates a temporal resolution of 30 minutes, 
which is twice as high as the best model with a 1-hour interval.  

• Lastly, temporal variables, such as time of the day, are incorporated as numerical 
variables, which can better predict the outcome than categorizing them into aggregated 
forms such as peak and off-peak periods. Aggregating to a limited number of categories 
results in losing valuable information between each category and reducing the 
dimension and resolution. 

Therefore, the proposed method is superior in accurately predicting stop-level demand for the 
tram network in Melbourne.  
The majority of proposed methodologies that deal with spatio-temporal correlation in demand 
estimation modelling combine time series (temporal) and non-time series (spatial) variables 
into a single LSTM architecture. This architecture consists of LSTM and Convolutional layers 
for each, respectively. However, this integration makes it challenging to capture spatial 
correlation in smaller sizes with larger details. When transforming to convolutional layers, 
some essential interactions between features might be lost. Therefore, in this study, we propose 
a novel architecture (Wasea-Lstm) that sequentially incorporates both spatial and temporal 
attributes. 
Wasea-Lstm is built using Keras 2.10.0. with a Sequential API, which allows stacking layers 
in a linear manner. The architecture consists of three layers: two LSTM layers and one Dense 
output layer. The first LSTM layer has 100 units and is configured to retain the sequences of 
the input information. This allows the output of this layer to be a sequence of hidden states, 
which can be fed as input to the second LSTM layer. An exponential activation function is used 
in the dense layer to strictly penalize negative outputs and preserve the non-linear relationship 
between input variables and target variables, as shown in Figure 2. Moreover, the mean squared 
logarithmic error (MSLE) is chosen instead of Mean Squared Error (MSE), as it is suitable for 
regression and non-negative target values with a large dynamic range, as demonstrated in 
relation 7. 

𝑀𝑀𝑀𝑀𝐿𝐿𝐸𝐸 = (1/𝑁𝑁)∑(log(𝑌𝑌𝑖𝑖) − log (𝑌𝑌𝚤𝚤�))2                             (7) 

The model can be scaled to both route and network levels, and it is tested using integrated 
multi-dimensional large-scale data collected from tram operations in Melbourne over three 
months, aggregated to 30-minute intervals. 

3. Case study 
3.1. Overview of the case study 
Melbourne, the capital of Victoria, is home to the world's largest operational tram network, 
boasting 250 kilometres of double track that facilitates over 200 million trips annually and 
more than 5,000 services per day (YarraTrams 2023a). The network has been operating for 
over 100 years, with more than three-quarters of its trams traveling in shared corridors with 
private vehicles, resulting in low average operating speeds of 15 kph (Currie, Goh and Sarvi 
2012). The tram network operates 24 hours a day; however, limited routes are available during 
the night shift with longer headways. Despite a 0.3% annual decline in tram patronage between 
2017-18 and 2018-19, it remains the second most used mode of public transport after 
metropolitan trains, with 205.4 million annual boardings (Victoria 2018-19). The proposed 
methodology in this paper has been trained and tested on tram route 96, which runs from East  
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Figure 2: Network diagram of Wasea-Lstm with an input layer equal to the length of input variables, two 
LSTM layers of 100 and 50 units, and a single neuron output layer with exponential activation function. 

Brunswick to St Kilda Beach and includes a total of 39 stops, with ten stops located within the 
free tram zone in the CBD (YarraTrams 2023b); see Figure 3. 
Considering multi-dimensional explanatory variables coming from different sources with 
spatial, temporal, endogenous, and exogenous public transport reliability influencing factors 
(Rezazada, Nassir and Egemen 2022) , Route 96 is chosen that is assumed to have all these 
variability in order to effectively evaluate the performance of the model. The long route of tram 
line 96 connects diverse land-use areas and traverses various traffic corridors, featuring 
multiple attractions, different tracks (exclusive and shared segments), and significantly varying 
demand profiles, which can represent spatial heterogeneity. For example, some people may 
travel from northern suburbs to the CBD, while others commute from the CBD to southwest 
suburbs, resulting in a non-linear demand profile. Key destinations along the route include 
Melbourne Museum, Carlton Gardens, Royal Exhibition Buildings and IMAX, Bourke Street 
Mall, Crown Entertainment Complex, Melbourne Sports and Aquatic Centre, St Kilda Beach, 
and Luna Park and Palais Cinema. Consequently, demand is expected to vary significantly 
across different spaces and types of land-use, such as CBD, upstream, and downstream areas. 
Demand may also fluctuate throughout the day, days of the week, and various seasons due to 
differing event schedules at key attractions. Moreover, the weather data used in this research 
is obtained for city-wide Melbourne, and since route 96 covers a substantial part of the city, 
the locality bias of the weather is alleviated.  
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Figure 3: Tram route 96 East Brunswick to St Kilda Beach. Left figure, re-synthesized from tram network 
map produced by Public Transport Victoria, and right-hand figure is produced using Google map 

3.2. Data collection and integration 
In this study, we utilized several datasets from different sources, including automatic fare 
collection (specifically, Myki card data in Melbourne), automatic passenger count (collected 
during a trial period), and weather data obtained from the Visual Crossing Weather API. We 
used hourly weather data collected for Melbourne, Australia, during a three-month period from 
February 1st, 2020, to April 30th, 2020. The dataset was acquired from the Visual Crossing 
Weather API, which provides historical and real-time meteorological information with high 
resolution (API 2020). This dataset includes numerous key weather parameters, such as 
temperature, humidity, precipitation and its probability, wind speed, wind direction, visibility, 
and UV index, among others (Table 1). The inclusion of this granular weather information, 
recorded from multiple stations, is crucial for estimating the number of passengers arriving at 
tram stops. It is hypothesized that the likelihood of using a tram on a rainy day with strong 
winds may decrease. Similarly, the potential impact of weather attributes on leisure or shopping 
trips during weekends might be stronger than work trips on weekdays. Furthermore, location 
proximity to a tram stop can be associated with arrival behaviour; hence, carrying an umbrella 
can be burdensome for some trips. Therefore, the potential impacts of meteorological 
conditions on public transport demand profiles are essential. By examining the relationship 
between weather variables and arrival rates at tram stops, we aim to develop a model that 
enhances the accuracy of demand estimation under various weather conditions. 
Myki data, an Automatic Fare Collection (AFC) system used in Melbourne Transportation 
services, includes metro, train, tram, and bus data. This study incorporates tram data from Myki 
cards, spanning a three-month period from February 1st, 2020, to April 30th, 2020. The dataset 
consists of 1,134,932 transactions, including tap-on and tap-off events for passengers 
validating their Myki cards upon boarding and alighting. The data captures vital information 
such as transaction time (in epoch format), date, transaction type (tap-on or tap-off), unique 
transaction identifier, route number, card key, vehicle number, and stop name and location 
(refer to Table 2). Notably, around 5% of tap-off transactions are missing, which were imputed 
and filled in the dataset. Nonetheless, sensitivity analyses revealed that the model predictions 
were not significantly impacted by either imputing or excluding these missing transactions. 
Furthermore, the gathered data covers the initial lockdown phase implemented in Melbourne. 
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As a result, a reduction in the count of tram commuters is evident. The decision of whether to 
incorporate the lockdown period data or not led to the execution of numerous experiments. 
Despite the deep learning model's sensitivity to capture these variations, the ultimate iteration 
focused solely on the datasets recorded prior to the lockdown.  
By integrating the Myki data with high-resolution weather data into our study, we aim to better 
understand and model the relationship between public transportation usage and various factors 
influencing it, ultimately planning, and operating reliable services that balance the trade-off 
between supply and demand. An algorithm has been developed to pre-process, filter, compute 
stop-level demand, and integrate data from different sources into an appropriate input format 
that can be fed to machine and deep learning models. In this algorithm, several data processing 
tasks are performed for stop-level demand estimation using Automatic Fare Collection (AFC), 
weather datasets, and Automatic Passenger Count (APC) data. 

Table 1: Hourly weather information for Melbourne between February 1st, 2020, to April 30th, 2020, 
retrieved from multiple station located across the city using Visual Crossing Weather API in Python 

 
Table 2: Myki datasets from tram operation in Melbourne between February 1st, 2020, to April 30th, 2020 

 
3.2.1. Stop-level demand computation 
The algorithm is designed to pre-process and convert each relevant attribute. It then identifies 
and maps each transaction to a specific date and stop. All corresponding transactions are 
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aggregated into half-hour intervals and map each transaction type (tap-on or tap-off) for that 
particular interval to each stop every day during the data collection period. The total number 
of transactions for each unique combination is counted and stored in a new column. It is 
important to note that stop-level and trip-level demand are estimated from both APC and AFC 
datasets. However, since the APC devices were installed on a limited number of vehicles and 
were only in use during trial periods in early 2020, they underestimate the demand compared 
to AFC. Therefore, AFC is the core dataset used to estimate the number of passengers arriving 
at each stop. APC datasets are only used as supplementary sources to provide additional 
information related to trips and stops, which is then mapped to the output from AFC data for 
model improvement. 
3.2.2. Stop coordinates integration 
The stop coordinates (latitude and longitude) are extracted from the AFC data and added to the 
stop-level demand dataset using a left join method. This method combines two dataframes (2D 
matrices in Pandas) based on a common key, in this case, column(s) while preserving the order 
and rows of the left dataframe. When performing a left join, the resulting dataframe will include 
all the rows from the left dataframe (stop-level demand) and matching rows from the right 
dataframe (stop information), based on the specified key column(s). If there are multiple 
matching rows in the right dataframe, all of them will be included in the result. For rows from 
the left dataframe that do not have a matching row in the right dataframe, the columns from the 
right one will be filled with NaN (Not a Number) or missing values in the resulting output. 
3.2.3. AFC and APC data fusion 
To obtain the stop order information, which is not available in the AFC dataset, a simple 
algorithm is written to pre-process, extract necessary information from APC datasets, and 
integrate it with datasets of estimated demand at the stop level using AFC data. Detecting stop 
orders facilitates the estimation of onboard loads and the reconstruction of sequential load 
profiles for each successive trip commencing from the first stop (depot). This procedure begins 
with the computation of the aggregate count of passengers boarding and alighting at every stop 
along the route, utilizing transaction data from individual users. Subsequently, this information 
with the extracted stop order is employed to deduce onboard loads for consecutive trips. 
Furthermore, employing a stop order provides an effective method to assign numerical codes 
to stop locations. This enables the model to comprehend and capture both the sequence and 
position of each stop accurately. 
3.2.4. Data pre-processing for machine learning 
A series of data pre-processing tasks is performed to prepare the dataset for different machine 
and deep learning models, such as Gradient Boosting Regression, Multi-Layer Perceptron, and 
Long Short-Term Memory that predict passengers' arrival rates at tram stops. We extract 
weekday and weekend information and convert it to categorical variables using one-hot 
encoded dummy variables (0, 1) to capture arrival behaviour during weekdays and weekends. 
To prevent models from being misled by non-homogeneous values from each explanatory 
variable, a MinMax Normalisation from the scikit-learn library is used to scale the values to a 
range between 0 and 1, which can improve the performance and convergence of the model. 
The dataset is randomly split into a training set (80% of the data) and a testing set (20% of the 
data). The proposed LSTM model requires an additional data preparation step, which 
necessitates to convert two dimensional datasets into three dimensional tensors (i.e., samples, 
timestamps, features) to match the expected input shape for the LSTM model.  
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4. Results and discussion 
4.1. Model training and feature selection 
This section presents the results of the proposed model compared to benchmarks trained on the 
same datasets. To ensure fairness in the model performance evaluation, the same input 
parameters and normalization are applied across all models, i.e., MinMax Scaler and an 80-
20% random training and test split using Sklearn train_test module, respectively. The random 
process during split serves to mitigate potential biases that may arise from the original order of 
the dataset, while also ensuring an equal chance for every data point to be allocated to either 
the training or testing subsets. Four categories of input variables are fed into the models: 

• Variables that interact both temporally and spatially, preserving sequences such as stop 
location information. This indicates that these variables exhibit variation in both 
temporal and spatial dimensions.  

• Time series variables that preserve sequences but only change temporally, like hours 
and minutes of the day  

• Variables that partially correlate in space and fully correlate in time, including weather-
related attributes. To preserve the partial spatial correlation of weather-related 
attributes, we have collected city-wide weather information from several available 
weather forecasting stations and taken the average across all stations to capture locality 
in space. In other words, temperature and other weather attributes vary only temporally 
and are assumed fixed across space (i.e., along different stops)  

• Variables that are categorically fed into the model. These variables are transformed into 
dummy variables of 0 and 1, such as weekends and weekdays 

A feature selection using relative importance, proposed by (Friedman 2001), is used to 
calculate the relative contribution of each explanatory variable from each categories in 
predicting the target variable, will be explained in details in the coming sections. The proposed 
model and benchmarks are trained on the training datasets (80%) and validated on the test set 
(20%), respectively. The structure of Gradient Boosting Machine Regression (GBMR) is 
composed of 200 weak learners (decision trees) used in the ensemble to work sequentially, 
combining these decision trees to create a strong predictive model. Various depths are tested, 
with 3 found to be optimal for balancing the model from under and overfitting while reaching 
convergence. Using PDPs, as explained in the previous section, a non-linear interaction 
between temperature and stop location is identified. Therefore, we propose a Sequential LSTM 
model along with a state-of-the-art MLP Regression to capture the complex non-linear 
interaction. The neural network that the MLP Regressor is built on comprises two hidden layers 
of 100 and 50 neurons. A ReLU activation function is used to introduce non-linearity in the 
model, and the maximum iterations are set to 500, meaning the model will go through the 
training datasets 500 times during training. 
A Sequential LSTM model is comprised of two LSTM layers with 100 and 50 units, and a 
dense layer with an exponential activation function. The model is compiled using Mean 
Squared Logarithmic Error (MSLE), which, in parallel with the exponential activation 
function, is found to be a suitable choice for regression problems. This combination strictly 
penalizes non-negative outputs and ensures that the outputs are always positive. Since the 
MSLE loss function calculates the squared logarithmic difference between ground truth and 
model prediction, it puts higher emphasis on relative error than absolute error. In other words, 
MSLE is more sensitive to underestimation than overestimation, as errors in the lower range 
have a larger impact on the loss value compared to errors in the higher range. Additionally, the 
output from the exponential activation function ranges from (0, ∞); the combination of MSLE 
and the exponential function can lead to underestimation of the output. Because MSLE is 



ATRF 2023 Proceedings 

13 

sensitive to underestimation and a small alteration can lead to rapid growth in the exponential 
non-linear function, which can significantly impact the output. To diagnose this problem, we 
propose a weight matrix and use its mean to rescale the prediction from the model to the ground 
truth to optimize a weighting parameter that can be used to tune the model output (Equation 
8). We have tested different weights using the minimum, mean, and maximum between 
predicted and ground truth values. It has been found that the mean weight produces the best 
and closest prediction. 

𝑌𝑌𝑖𝑖 = 𝑌𝑌1, …𝑌𝑌𝑁𝑁 𝑣𝑣𝑚𝑚𝑎𝑎 𝑌𝑌𝚤𝚤� = 𝑌𝑌1�  , … ,𝑌𝑌𝑁𝑁�                            (8) 

Where, 𝑌𝑌𝑖𝑖: is set of ground truth values and 𝑌𝑌𝚤𝚤� : is set of predicted values from model. 
We computed the mean of all the samples and utilized the weighting parameter obtained 
through Equation 9 and 10 to adjust the weight of output. 𝜕𝜕 is the weight parameter, and 𝑌𝑌� the 
weighted output of the model. 

𝜕𝜕 =
∑ 𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝑁𝑁

∑ 𝑌𝑌𝚤𝚤�𝑁𝑁
𝑡𝑡=1
𝑁𝑁

�                                                   (9) 

                
𝑌𝑌� = 𝜕𝜕 ∗ 𝑌𝑌𝚤𝚤�                       (10) 

4.2. Model performance comparison and findings 
To conduct a fair comparison between the proposed methodology and state-of-the-art models, 
we assume identical input parameters and standardization methods across all models. We used 
Python 3.10.9, scikit-learn 1.2.1, and Keras 2.10.0 on a base model MacBook Pro 14 with an 
Apple M1 chip. The evaluation employed four key performance metrics: Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R2 (Equations 
11-14). Where, 𝑌𝑌𝑖𝑖,𝑌𝑌𝚤𝚤� , 𝑣𝑣𝑚𝑚𝑎𝑎 𝑌𝑌�𝑖𝑖 are ground truth, model estimated output, and mean value across 
all 𝑌𝑌𝑖𝑖, respectively.  

𝑀𝑀𝑀𝑀𝐸𝐸 =  1
𝑁𝑁
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤�  )2𝑁𝑁
𝑖𝑖=1                             (11) 

𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 =  �1
𝑁𝑁
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤�  )2𝑁𝑁
𝑖𝑖=1                             (12) 

𝑀𝑀𝑀𝑀𝐸𝐸 =  1
𝑁𝑁
∑ |𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤� |𝑁𝑁
𝑖𝑖=1                             (13) 

𝑅𝑅 =  1 − ∑ (𝑌𝑌𝑖𝑖−𝑌𝑌𝚤𝚤�  )2𝑁𝑁
𝑖𝑖=1

∑ (𝑌𝑌𝑖𝑖−𝑌𝑌�𝑖𝑖 )2𝑁𝑁
𝑖𝑖=1

                                            (14) 

The features importance ranking in Figure 4 reveals that spatial features, such as the stop 
location, as the most important determinants of the target value. This parameter exhibits 
variations across both spatial and temporal dimensions, leading to nonlinearity and 
bidirectional correlations within the temporal and spatial dimensions. The incorporation of 
spatio-temporally dependent variables, such as stop locations and their sequential 
arrangements, is achieved through numerical encoding within the model. This encoding 
process enables the model to comprehend the spatial positioning of each stop based on the 
GTFS Stop Sequence, leveraged from historical information during training phase. The model's 
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architecture accommodates the indirect capture of stop characteristics and latent attributes 
through intricate configurations of hidden layers within deep neural network. These layers 
process the input of number-coded stop sequences, derived from historical demand information 
at each stop. Within this framework, even the introduction of a new, previously unobserved 
stop between two established stops can be accommodated. In such instances, the model 
extrapolates the characteristics of the new stop by considering the sequential relationships with 
preceding and succeeding stops, in conjunction with their spatio-temporal correlations with 
other attributes, such as temperature. Finally, the model adopts an approach where the stop 
sequence is encoded as an unordered numerical variable rather than an ordered continuous 
variable. This characteristic enables the model's versatility, making it adaptable to diverse 
scenarios encompassing different routes, directions, and properties. 
The deep learning framework is capable to capture non-linearities and spatio-temporal 
correlations. For example, we can clearly see that there is a strong interaction between 
temperature and stop location, as shown in Figure 5. With upstream stops, the number of 
passenger arrivals is primarily dependent on temperature, while at middle stops (CBD 
neighborhoods), it relies on both stop location and temperature (Figure 5). This can be 
expected, as passengers upstream have the option to travel when the weather is favorable to 
avoid trips during extreme rain, heat, and cold. In the CBD, considering Melbourne's rapidly 
changing weather, users may prefer to wait for a short period instead of initiating their trips 
immediately; therefore, both the location of the stop and temperature jointly affect their 
decision. In contrast, at downstream stops (excluding the last few stops), the location of the 
stop has diminishing influence, ultimately having no impact at lower temperatures. This is 
reasonable because users who transfer from another service to travel a few stops on this route 
are likely to continue their trips. Due to the proximity of various attractions downstream of 
Route 96, some users may have less flexibility in when and where to arrive, taking into account 
the event's timetable, within these locations. These findings confirm that the strong non-linear 
interactions between temperature and stop location greatly influence the passenger arrival rate 
at tram stops.  
The other important features after stop location information are the time series attribute, hours 
of the day, and weather parameters. The type of day, wind speed, and other factors contribute 
less than 5% to the relative importance. It is safe to conclude that stop location, time of the day, 
temperature, and humidity are the key influencers of passenger arrival behavior in Melbourne, 
Australia. The results in Table 3 and Figures 6-8 show that the ∂: Mean weight parameter 
produces the best predictions, outperforming all metrics, including the difference between the 
mean values of test data (µ: 𝑌𝑌𝑖𝑖) and predicted data (µ: 𝑌𝑌𝚤𝚤�), MSE, MAE, and R2, respectively. 
When moving from the minimum to mean weight parameter, the model slightly improves, 
while in contrast, with the maximum weight parameter, it significantly improves, showing a 
32% enhancement in R2 value. 
Last but not least, we compared the performance of the proposed model with the GBMR and 
MLP Regression using several indicators, as mentioned above. It can be clearly seen that the 
proposed method surpasses the benchmarks in all the given performance measures (Table 4). 
For example, Wasea-Lstm achieved a 6% and 15% improvement in R2 and MSE compared to 
GBMR and MLP, respectively. Furthermore, the prediction power of each model is compared 
with the ground truth, which helps visualize the distribution of the predictions against the tested 
dataset (Figure 9 and 10). In all scenarios, the Wasea-Lstm model demonstrates superiority 
over the benchmark models. For example, Wasea-Lstm model exhibits a dense concentration 
at the bottom, compared to the sparse concentration of GBMR and MLP in the absolute 
difference plot in Figure 9 (left-hand), and the tallest peak in the residual distribution curve in 
Figure 9 (right-hand), indicating that Wasea-Lstm produces lower errors. Ultimately, Wasea-
Lstm predictions fit the ground truth the best, as shown in Figure 9C. This superiority can be 
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attributed to the innovative framework introduced, which combines the strengths of a deep 
neural network architecture and the adept capturing of various types of dependencies. These 
dependencies include the spatio-temporal interaction rooted in stop location characteristics, the 
partially spatial and fully temporal attributes tied to weather features, as well as the temporal 
relationships inherent in time and day attributes. To summarize, the proposed architecture 
within the realm of deep learning not only outperforms the benchmark models across all 
evaluation metrics but also generates precise predictions characterized by the minimal 
residuals. Furthermore, its applicability extends to a wide array of real-world scenarios and 
case study applications. 

 

 
Figure 4: Feature importance ranking by the Mean Decrease Impurity (MDI) 

Table 3: Wasea-Lstm model comparison with different weight parameters, including Min, Mean, and Max 

Weight par-LSTM µ: 𝑌𝑌𝑖𝑖 µ: 𝑌𝑌𝚤𝚤�   MSE: 𝑌𝑌𝚤𝚤�  MAE: 𝑌𝑌𝚤𝚤�  R2: 𝑌𝑌𝚤𝚤�  
𝜕𝜕: Min 5.543 4.338 55.915 3.455 0.468 
𝜕𝜕: Mean 5.543 5.543 54.854 3.644 0.478 
𝜕𝜕: Max 5.543 9.697 121.592 5.859 0.157 

Table 4: Performance comparison  

Model  MSE RMSE MAE R2 
GBMR 69.6 8.3 4.6 0.34 
MLP 60.7 8.3 4.2 0.42 
Wasea-Lstm 54.8 7.4 3.6 0.48 

 



ATRF 2023 Proceedings 

16 

 
Figure 5: Partial Dependence Plot, shows the dependence of the number of passenger arrival on joint values 
of temperature and stop location 

 
Figure 6: Predicted (orange) values by Wasea-Lstm versus ground truth (blue), using minimum weight 
parameter. 

 
Figure 7: Predicted (orange) values by Wasea-Lstm versus ground truth (blue), using mean weight 
parameter. 
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Figure 8: Predicted (orange) values by Wasea-Lstm versus ground truth (blue), using Maximum weight 
parameter. 

 
Figure 9 (left-hand): Absolute difference between predicted and ground truth using GBM, MLP, and 
Wasea-Lstm, (right-hand): Comparison of the distribution of the absolute residuals 

 
Figure 9C: The correlation of model prediction versus ground truth 
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5. Conclusion 
In this study, we introduce a novel deep learning model, the Wasea-Lstm (Weather-Aware 
Smart Exponential Activation LSTM Estimator), designed for predicting passenger arrival 
rates at tram stops in Melbourne, Australia. This model utilizes multi-dimensional high-
resolution datasets obtained from automatic fare collection (AFC), automatic passenger count 
(APC), and weather data sources for one of the largest tram routes in Melbourne, Australia. 
The research proposes a deep neural network architecture capable of capturing spatial, 
temporal, and weather correlations at finer spatio-temporal resolutions. The developed model 
successfully captures demand non-linearity and variability along the route through the 
integration of multi-source data. 
Key factors influencing passenger arrival behaviour in Melbourne, Australia include stop 
location, time of day, temperature, and humidity. The study uncovers a strong interaction 
between temperature and stop location, with upstream stops primarily influenced by 
temperature, while middle stops (CBD neighbourhoods) are influenced by both stop location 
and temperature (Figure 5). This is expected, as passengers upstream have the option to travel 
when weather conditions are favourable, avoiding extreme heat or cold. In contrast, CBD 
passengers may choose to wait briefly rather than begin their trips immediately, considering 
Melbourne's rapid weather changes, thus both location and temperature jointly affect their 
decisions. 
Although the proposed Wasea-Lstm model surpasses benchmark models like Gradient 
Boosting Machine Regression (GBMR) and Multi-Layer Perceptron Regression (MLP) across 
all performance metrics, including R2 value, Mean Squared Error (MSE), and Mean Absolute 
Error, yet it has some limitations that can be explored in the future. For instance, this study 
does not account for service frequency's impact on passenger arrival, which could be extended 
to different services with varying or unique headways to determine frequency's effect on 
demand estimation and prediction. Moreover, weather data is collected at the city level for 
Melbourne, not at the stop level, due to the limited number of weathers forecast stations and 
the impracticality of obtaining local weather data for each route or stop. However, it is 
reasonable to assume that weather fluctuations within the same city have a negligible effect on 
behaviour at each stop, and results from multiple stations are averaged to capture this locality. 
As local weather forecasts become available in the future, exploring the spatial correlation of 
weather attributes would be interesting. Furthermore, the historical demand information 
comprises datasets gathered during the Covid-19 lockdown, exhibiting a noticeable decrease 
in user numbers. Utilizing uninterrupted data spanning the entire year will hold significant 
importance. Lastly, the look-back time window in the Wasea-Lstm architecture is set to 30 
minutes, but investigating the impact of alternative look-back intervals would be a valuable 
research topic. 
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