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1. Introduction 
Driven by the prevalence of different data collection techniques, e.g., loop detectors, and GPS 
devices, a massive amount of traffic data have been captured over many years. This has led to 
an active development of data-driven models, particularly machine learning (ML) models that 
learn patterns from historical data. Traffic data collected over a long period often reveal a long-
term evolution of traffic patterns and topological changes in road networks. This has an 
important implication that ML models developed and trained with traffic data at one point 
would need to continue to evolve over time to capture changes in traffic data. One of the key 
application areas of ML in traffic networks is real-time traffic incident prediction, which aims 
to predict the probability of incident occurrence within a specific region or road segment ahead 
of time to enable proactive traffic and incident management for preventing congestion. 
Generally, ML-based incident prediction models are capable of unveiling patterns in traffic 
network conditions, driver behaviours, and traffic flow dynamics that are associated with 
incident occurrences by mapping large amounts of incident records to traffic and driver-related 
data. The prediction results can be used to infer the potential impact or risk of incidents, monitor 
safety responses, and inform disruption management strategies. However, with the continuous 
changes in traffic data, a pre-trained ML model might be inadaptable to new traffic patterns, 
resulting in poor prediction performance. Additionally, frequent retraining and updating of the 
online model are inefficient and unnecessary when the traffic patterns remain stable. 
Consequently, solutions to efficiently capture patterns from new data while consolidating 
historical information are desirable for real-time incident prediction. 
In the literature, many ML methods have been applied in traffic incident prediction models. 
Recently, deep learning models have gained popularity, with its ability to capture non-linear, 
spatial and temporal correlations in traffic data more accurately. In particular, the discriminative 
power of graph neural networks (GNNs) has attracted the attention of transport researchers as 
road networks are essentially graphs and the relationships among road links can be effectively 
modelled using graph structure and connectivity. As such, many recent incident prediction 
models have used GNN-based methods: they are leveraged to extract spatial correlation from 
the non-Euclidean data and can be used with sequence models like RNNs mining temporal 
trends of traffic incidents. For instance, Yu et al. (2021) addressed the link-level accident 
prediction problem by proposing a graph-based model to predict link-level incident risk by 
learning spatial-temporal, external features from a graph that represents a road network. Wang 
et al. (2021) proposed a region-wide accident risk prediction model named GSNet to capture 
the geographical and semantic aspects from undirected graphs that represent different 
characteristics of a road network. In our previous work, we have proposed a Hybrid Graph-
based Neural Network (HGNN) (Tran, et al., 2021), which is specifically designed to address 
the challenge of incorporating multiple heterogeneous data sources in traffic incident prediction 
by taking as input multiple graphs with different structures representing different data sources. 
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However, the existing studies fail to consider the issue of implementing the developed model 
over a long period, where the model should adapt to long-term pattern changes in data (e.g., 
flow pattern change, addition/deletion of sensors, driver behaviour change) efficiently and 
effectively. A naïve solution is to retain the models following a fixed schedule (e.g., weekly, 
monthly or yearly) to capture new patterns. It is, however, difficult to manually find a right 
schedule; it would be inefficient to retrain large-scale models too frequently due to high 
computation costs, while retraining models too sparsely could miss important pattern changes 
that happen between retraining points. Some studies have proposed more automated retraining 
schemes, where input features are monitored during online implementation and retraining is 
recommended when significant changes occur in any of those features. This approach also has 
limitations that it is complex and time-consuming to analyse thousands of features in large-
scale models and, more importantly, some of the significant changes in input features may not 
have a direct impact on the output. Therefore, it is desirable to concentrate on important patterns 
that are likely to impact the output (incident occurrence), rather than blindly detecting all the 
changes in input features. This idea has been investigated in the recent literature. Chen et al. 
(2021) developed a streaming traffic forecasting model based on Continual Learning (CL). 
Additionally, an incremental clustering method is developed by Zhao et al. (2021) to identify 
patterns and outliers in flight data while incrementally updating its clusters as new data come 
in online. 
Motivated by this, we propose an online traffic incident prediction model with Continual 
Learning (CL) based on our previous proposed Hybrid Graph-based Neural Network (HGNN), 
which aims to detect pattern changes automatically from data streams as a trigger of model 
retraining rather than retraining in a fixed schedule. This detection mechanism selectively learns 
from only new data with new patterns while keeping stable patterns from old data. As a result, 
the model can effectively and efficiently update its knowledge on new patterns while 
consolidating the knowledge learned previously rather than using all data for retraining from 
scratch. To further justify the motivation of our proposal and study the effectiveness of 
consolidation, in this paper, we conduct a set of experiments on HGNN with streaming traffic 
data across several years. Firstly, we train and test our model using traffic data in different 
years, where the traffic patterns are potentially different, to show how the performance is 
influenced by the evolution of traffic patterns. Moreover, to consolidate historical traffic 
knowledge and transfer it to the current model for better prediction, we adopt strategies of 
parameter smoothing from data and model perspectives. The results of our experiments 
demonstrate the effectiveness of consolidation and the potential of detecting changes in traffic 
patterns with high efficiency over the long-term period, which will be addressed in the full 
paper version. 

2. Framework Overview 
In our work, we aim to develop an online framework that can support real-time incident 
prediction with continual learning. Previously, we have developed a data-driven model, named 
HGNN that predicts the occurrence of traffic incidents within a given sub-area during a future 
time interval (e.g., next 15, 30, and 60 minutes) by flexibly merging different data sources 
capturing various aspects of the area’s road conditions. In particular, HGNN, which is a 
network-wide model, takes the spatio-temporal information over a certain period (e.g., 30 
minutes) backing from the prediction time stamp for any given sub-area as input and outputs 
the incident probability of that area by training with data from randomly sampled sub-areas 
within the whole study network. We consider different types of features, including traffic 
features (e.g., flow, occupancy, speed), link features (e.g., length of link), and temporal features 
(e.g., time of day, holiday), where the underlying network structure might be different. As a 
result, graph neural networks are used to encode the correlations from network structures, and 



ATRF 2022 Proceedings 

3 

different features for incident prediction. To support real-time prediction, at this stage, we train 
HGNN based on historical data from previous years and make use of the trained model to 
predict real-time incident risk for any given sub-area. However, it has significant challenges in 
dealing with pattern changes from complex inputs over a long-term period thereby producing 
more false alarms and being low efficient. As a result, our current goal is to develop an online 
framework where incident predictors can effectively learn new and old data with significantly 
reduced processing time and memory usage. 
Our framework mainly consists of two components. The first component concentrates on 
efficiently consolidating historical knowledge. Specifically, this part contains two main 
modules including Information Replay or Rehearsal and Regularization Module. Information 
Replay helps the trained model to remember old patterns by learning from a small proportion 
of all of the old data. The regularization module leverages the loss function using the loss term 
to help consolidate knowledge in the learning process for new patterns and retain existing 
knowledge. As for the second component, we aim to build a module that automatically detects 
the changes in traffic pattern from newly captured data and make use of the new patterns for 
model retrain. A straightforward way of detecting the pattern changes is to measure the 
differences in the embedded features between historical and new representations learnt by our 
original model. However, our model is only able to capture pattern changes at the sub-area 
level. Thus, we have to tackle this issue by introducing a module that can detect the pattern 
changes dynamically and globally within the study network. For the rest of the paper, we first 
introduce the methodology of the first component, and then we show some experimental results 
correspondingly. The effectiveness of the first component and the potential solution for the 
second component will be discussed at the end of this paper. 

3. Historical Data Knowledge Consolidation 
Intuitively, the historical data patterns could help predict the current incident probability as 
similar cases might occur years apart. However, the existing models may forget previous 
knowledge it has learned when the patterns from new data are captured by these models, since 
they concentrate on those new patterns only. This phenomenon is usually defined as 
catastrophic forgetting. To mitigate such a phenomenon, a common way is to track back to the 
sources where this knowledge is from by retaining the model with both historical and current 
captured data. Rather than making use of all the historical data resulting in high computational 
cost, in our work, we introduce an information replay module that only considers a small part 
of the historical data while capturing knowledge from old patterns. On the other hand, the 
regularization module is introduced to consolidate data knowledge from model perspectives by 
preserving important parameters. 

3.1 Information Replay Module 
One straightforward way to alleviate catastrophic forgetting is to make use of a portion of the 
old data to be interleaved with the data from the current task, so that the graph-based model 
does not forget existing knowledge. In our work, to consider the trade-off between efficiency 
and effectiveness, we perform a simple strategy where only a limited number of historical data 
(i.e., 5%) is used for model retraining as a replay so that existing knowledge is maintained. 

3.2 Regularization Module 
Let 𝜏	 ∈ 	 {1, 2, . . . , 𝒯} be a long time interval that the traffic patterns and network structure 
remine stable within 𝜏. Assume that for each 𝜏, we have a trained model Ψ! ideally capturing 
the patterns from 1,2, … , 𝜏. Thus we have a series of models  {Ψ"	, Ψ#	, … ,Ψ𝒯} over time.  Each 
time to retrain the current model Ψ!, the regularization module forces the current training model 
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to remember useful knowledge from the previously trained model Ψ!%".  In order to preserve 
previous knowledge, we adopt the strategy elastic weight consolidation (EWC) derived from 
Kirkpatrick, et al., (2017), which adds a exquisite smoothing term to the loss fuction, formulated 
as follows. 
 

Here 𝜆 is the weight of the smoothing term and 𝐅& is the importance of the 𝑖-th parameter in the 
model, Ψ!%", which is estimated using Fisher Information as follows: 
 

where g is the first-order derivative of the loss and 𝑋 denotes the input featuers. Particularly, in 
Equation (1), the weight of the less essential parameters for historical trained model is smaller, 
and these parameters can better adapt to the new patterns. On the other hand, the more important 
parameters for historical model have higher weights, ensuring the preservation of historical 
knowledge. 

4. Preliminary Results & Discussion 
To verify the effectiveness and efficiency of our framework, we conduct experiments on a real-
world dataset. Particularly, we use incident data from Brisbane, Australia. We select two-year 
data from 2017 and 2020 respectively based on the availability of data. And more importantly, 
the traffic patterns in these two years are potentially different since the ones in 2020 might be 
influenced by the impact of COVID-19.  

4.1 Experimental Settings 
In our experiment, our model is evaluated by five metrics: AUC (Area Under the Curve), Acc 
(Accuracy), Precision, Recall and F1 (F1-score), which are formulated as follows (TP:True 
positive; TN:True negative; FP:False positive; FN:False negative). 

Acc = 	
TP + TN

TP + TN + FP + FN , Precision = 	
TP

TP + FP, 

	Recall =
TP

TP + FN , F1 =
2 ∗ Precision ∗ Recall
Recall	 + 	Precision  

We adopt the same traffic data sources, methods to construct features, and parameter setting in 
our previous work, i.e., HGNN (Tran, et al., 2021). Following settings in our previous work, 
data for each year contains 1600 generated samples and is split into training, validation and 
testing sets with a ratio of 60%, 20%, and 20%. Our task is to predict whether there will be an 
incident in the following 15 minutes by making use of up to 30 minutes of historical traffic data. 
Please refer to HGNN (Tran, et al., 2021) for more details on data preprocessing and feature 
extraction. Adam is used as the optimizer with a learning rate of 0.001. The batch size is 32 and 
the total number of epochs is 100 for each year with early stopping to accelerate the training 
process. The random search strategy is applied to find the best hyperparameters for the models.  

4.2 Prediction Performance 
First of all, we train and test HGNN on data captured in 2017 to obtain a trained model, denoted 
by HGNN-17 and the corresponding performance results are illustrated in Table 1, which is in 
line with the performance shown in the original paper.  

																				ℒ' = 𝜆D𝐅&(Ψ!(𝑖) − Ψ!%"(𝑖))#,
&

																																																												(1) 

𝐅 =
1

|𝑋!%"|
D (	𝑔(Ψ!%"	; 	𝑥)	𝑔(Ψ!%"	; 	𝑥))	),																																								(2)

*	∈	,!"#
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Table 1: Prediction Performance of trained model based on 2017 data. 

Then, HGNN-17 is updated by retraining with training data from 2020 incorporating knowledge 
consolidation (information replay and regularization) strategies before being tested using data 
from 2017 and 2020 respectively. For comparison, we also retain our model with training data 
from 2020 while no knowledge consolidation technique is applied. We denote the model with 
knowledge consolidation as HGNN-17(KC) and the one without knowledge consolidation as 
HGNN-17(NC). Table 2 shows the performance results of the retrained models. As can be seen 
in Table 2, after retraining the model with new data (from 2020), the performance of the models 
HGNN-17(NC) and HGNN-17(KC) testing on data from 2017 is worse than the ones shown in 
Table 1, while incorporating the knowledge consolidation strategies in model HGNN-17(KC)  
helps to improve the performance to some extend, e.g., the AUC increases from 0.6311 to 
0.6869. Considering the performance of models testing on data from 2020. The performance of 
model HGNN-17(NC) is worse than HGNN-17(KC) in all metrics, which shows the 
effectiveness of the knowledge consolidation. Indeed, the information replay keeps some 
historical data while preventing the scenario where all the historical data is used with memory 
constraints. The regularization module helps to penalize changes in the most important weights 
for the previous model based on the computation of the importance of each weight (fisher 
information) and a squared regularization loss while not using any of the previous data. 
Table 2: Prediction Performance of HGNN-17 after using training data from 2020 data. 

Models Test data AUC Acc F1 Precision Recall 

HGNN-17(NC) 2017 0.6311 58.12 0.4682 0.6413 0.3687 

HGNN-17(NC) 2020 0.9287 86.88 0.877 0.8206 0.9437 

HGNN-17(KC) 2017 0.6869 64.69 0.5603 0.7422 0.4500 

HGNN-17(KC) 2020 0.9437 89.06 0.8979 0.8415 0.9625 

While Table 2 shows experiments where HGNN-17 is retrained or updated by using only data 
from a single year (i.e., 2020), Table 3 describes the scenario where HGNN-17 is retrained by 
using all training data from both years (i.e., 2017 and 2020), denoted by HGNN-17(A). 
Particularly, in Table 3, the results show that model HGNN-17(A) performs not too bad when 
testing each year separately. However, comparing the ones training with single-year data 
(HGNN-17, HGNN-17(NC) and HGNN-17(KC)) the performance drops slightly, which is 
interesting. The potential reason could be the combination of traffic patterns forces the model 
to be more adaptable to various conditions while losing the pertinency for specific patterns. 
Table 3: Prediction Performance of HGNN-17 after using training data from 2017 and 2020 data. 

Models Test data AUC Acc F1 Precision Recall 

HGNN-17(A) 2017 0.9041 86.25 0.8650 0.8670 0.8562 

HGNN-17(A) 2020 0.8986 85.31 0.8668 0.7927 0.9562 

4.3 Discussion 
From the preliminary experimental results, we observe that training the model with data 
containing different patterns can induce a decrease of performance, which shows the evidence 

Models Test data AUC Acc F1 Precision Recall 

HGNN-17 2017 0.9118 86.25 0.8650 0.8493 0.8812 
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of the catastrophic forgetting and highlights the motivation of our work to develop an online 
prediction model with continual learning. On the other hand, the results also demonstrate the 
superiority of the online model with knowledge consolidation (information replay and 
regularization) strategies compared to the existing offline models since given running time and 
memory constraints, experiments show better performance of the proposed online framework 
in dealing with dynamically growing data. Based on the promising preliminary results, our next 
step is to extend the model by introducing a module that is capable of detecting the pattern 
changes automatically, from which we retrain our model making use of the new patterns while 
consolidating the knowledge from the historical data. 
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