
Australasian Transport Research Forum 2022 Proceedings

28-30 September, Adelaide, Australia

Publication website: http://www.atrf.info

1

Ridespace: Predicting short-term rail passenger

crowding using Machine Learning

Richard Rossmann1, Saul Gare1, Sam Pardy1

1Department of Transport, 1 Spring Street, Melbourne 3000

Email for correspondence: sam.pardy@transport.vic.gov.au; saul.gare@transport.vic.gov.au

Abstract

Public transport users’ preferences to avoiding crowded public transit services is increasingly

becoming a concern for governments as we continue to transition into a post pandemic world.

The impact of high crowding levels at rail stations and inside trains on waiting time, perceived

travel time, and passenger wellbeing is of significance, especially during and post Covid-19

pandemic. Considering the influence of on-board crowding on travel behaviour and the

importance of providing users with more information on public transit service occupancy levels,

the Department of Transport in Victoria, Australia launched the Ridespace initiative in 2021,

which provides estimated service occupancy for all metropolitan rail services across the next

two operating days, as well as platform and station crowding for the current operating day. To

achieve this, a deep neural network machine learning model was implemented and trained on

historical patronage data. The model uses real-time timetable changes such as service

cancellations and delays to update predictions throughout the day. A critical requirement of the

model was to prevent underpredicting of crowding levels, so an additional cost matrix is applied

to adjust quantile forecasts during the inference stage. This paper will discuss in detail how this

methodology was applied in the context of near real-time public transport occupancy

forecasting, what input datasets were used (both historical datasets for training, as well as real-

time network data to update the predictions), and how the obtained results were validated.

http://www.atrf.info/
mailto:sam.pardy@transport.vic.gov.au
mailto:saul.gare@transport.vic.gov.au

ATRF 2022 Proceedings

2

1. Introduction

This paper first outlines the datasets used in section 2. Datasets. The predictions are generated

using a deep learning model based on (Lim et al. 2019)’s Temporal Fusion Transformers (TFT)

architecture, which is discussed in 3. Methodology and 4. Results. We then briefly discuss some

of the shortcomings and possible improvements, as well as how this work applies to the greater

transport context in 5. Limitations and 6. Applications, respectively.

1.1 About Ridespace

A sharp decrease in public transport ridership has been observed during the Covid-19 pandemic

around the world. Passengers are now likely to alter their behaviour with huge focus on key

factors that contribute to the risk of transmission of Covid-19. Due to the unparalleled temporal

and spatial scale of this catastrophe, some of the changes in travel behaviour may be continued

even after a pandemic. To encourage a post Covid-19 restrictions return of patrons to the public

transport (PT) network, the Department of Transport in Victoria (DoT) launched an initiative

in 2021 to provide real-time and future predicted crowding at metropolitan rail stations,

platforms and on train services. This initiative was successfully launched as “Ridespace” and

features a web-based interface to surface predicted crowding levels as one of four categories:

very quiet, not busy, busy, and very busy (see Figure 1 for definitions).

The predictions are generated using an implementation of the TFT machine learning model for

timeseries prediction. We utilized the open-source library PyTorch Forecasting (Beitner, 2020)

to have access to the TFT architecture via a high-level python API, and to easily set up our

datasets as a timeseries dataset class. Data processing, model training and real-time inference

were all automated on the Databricks platform. See 3.2 Predicting Service Occupancy for

details of our real-time inference methodology.

2. Datasets

The model was trained on several datasets, including historical public transport ticketing

transactions with Myki cards, actual train arrival and departure times as well as headways

between services, and the Train Service Usage Model (TrainSUM) – a statistical service

assignment model developed by DoT to accurately estimate historical train boardings,

alightings, transfers and service loads. More background on TrainSUM is provided in Appendix

Figure 1: Occupancy Level Definitions (DoT, 2021)

ATRF 2022 Proceedings

3

A. The training data covered all metropolitan train stations and services from January 2018 to

October 2021.

The TrainSUM data provides passenger loads by service and is regularised into an ordinary

time series with 15-minute intervals by calculating the mean passenger load for services within

a 30-minute window (15 minutes either side). This allows us to approximate typical service

loads over the course of the day for each line and station combination.

Myki transactions (ScanOns, ScanOffs) were lagged by 1 day, and trainSUM data (Average-,

Log- and SquareDepartureLoad, as well as Average-, Log- and SquareLoadOn) by 7 days. This

was to simulate the actual inference vector, as the model would only have access to Myki data

up to the day prior, and the TrainSUM model operates on a weekly schedule.

Table 1: Model Training Features

Static Categoricals

StopName

Direction

Line

Grouping for each individual predictive timeseries. Direction is either inbound or

outbound, while Stop and Line specify the spatial locations and connections.

Static Reals

StopSequence (𝑆) Numerical value incremented by 1 for each stop between 1 and 𝑆𝑚𝑎𝑥, the number of

stops for the service.

Time Varying Known Categoricals

DayTypeCategory

Month

DayOfWeek

Peak

Features to capture the periodicity and seasonality of PT patronage. Day Type includes

normal weekday, weekend and public holiday; peaks are split across each 24 hour period

into am, pm, inter and off peak.

Time Varying Known Reals

TimeIdx (𝜏)

Year

Headway*

HeadwayLine*

SinTime*

CosTime*

Disrupted*

Covid

Index starting at 0 that is incremented by 1 for each time step

Numerical year e.g. 2021

Time in seconds since previous service at current stop

Time in seconds since previous service with same headsign at current stop

Cyclical time features to better capture day and night cycles, as shown

in (Chakraborty & Elzarka 2019)

Dummy variable to indicate occurrences of partial train line closures

Value between 0 and 4 to represent the current Covid-19 Restriction levels in Victoria

Time Varying Unknown Reals

AverageDepartureLoad

LogDepartureLoad

SquareDepartureLoad

AverageLoadOn

LogLoadOn

SquareLoadOn

AverageLoadOff

AvgDepartureLoadByStation

AvgLoadOnByStation

ScanOns

ScanOffs

Derivations of Departure Load, the number of passengers on board the service at time of

departure; lagged by 7 days.

Derivations of Load On, the number of passengers boarding the service at the current

stop; lagged by 7 days

Average number of passengers alighting the service at the current stop; lagged by 7 days

Monthly historical average departure loads and boardings respectively at the current stop

Total hourly myki ticketing transactions at the current stops’ ticket readers during the

same hour on the previous day.

* Updated in real-time

ATRF 2022 Proceedings

4

3. Methodology

3.1 TFT Model

Temporal Fusion Transformer is a deep neural network (DNN), attention-based architecture for

multi-horizon forecasting. It was introduced by (Lim et al. 2019). Our implementation follows

the original closely, and we make no major changes to the proposed architecture. Our main

contribution is successfully applying TFT in the domain of public transit passenger flow

prediction.

Our implementation makes use of the Pytorch Forecasting (Beitner, 2020) high-level API to

construct classes for our input dataset, training module and the TFT architecture itself. The

parameters set for each class are specified in Table 2.

The input features specified in Table 1 are transformed into a time series dataset class, which

can be passed to a DNN model in batches during training. Data was grouped and normalized

by StopName, Direction, and Line. The TFT treats the input timeseries as continuous steps in

time, based on the time index specified. In our case however, each time step is one service

departure for a particular stop, line and direction combination. This means we construct a

separate timeseries for each group α, i.e. 𝜏𝑎 ∈ {1, … , 𝜏𝑎𝑚𝑎𝑥
}, where 𝜏 is the time index of each

departure in chronological order.

We used a V100 16GB GPU for all our model training. The batch size was determined based

on what would give us the best results without overloading the GPU during model fitting. As

we want the model to always make predictions for an entire operating day, the maximum

prediction length is set to 250, which is slightly more than the maximum number of service

departures within any stop grouping observed in the training data. The maximum encoder length

is similarly determined to cover 1 week of services (including on average five weekdays and

two weekends with lower service frequencies).

Training was set up to run for a maximum of 200 epochs, however with an early stopping

mechanism if the validation loss did not decrease across any 30-epoch training loop.

Hyperparameters for gradient clipping, hidden size, dropout, hidden continuous size, attention

head size and learning rate were optimized using Optuna (Akiba et al., 2019) hyperparameter

tuning. For calculating losses, we used the same quantile loss as defined in (Lim et al. 2019),

except instead of focusing only the 10th, 50th and 90th quantiles, we generated output for all 100

quantiles between the 0th and 99th quantile: 𝑄 ∈ {0.00, … ,0.99}. The main purpose for this was

so that we could reconstruct the probability density for each occupancy level category during

post-processing, which is further explained in section 3.3.

Table 2: Data, Training and Model Class Parameters

Time Series Data Loaders

Target Normalizer

Groups

Transformation

Center output to 0

Eps (numerical stability)

Maximum Prediction Length

Maximum Encoder Length

Batch Size

GroupNormalizer

StopName, Direction, Line

Softplus

True

1.0

250

1650

128

ATRF 2022 Proceedings

5

Pytorch Lightning Trainer

Maximum Epochs

Gradient Clipping

Early Stop Callback

Monitor

Minimum Delta

Patience

200

0.4112*

EarlyStopping

Validation Loss

0.0001

30

Temporal Fusion Transformer

Hidden Size

Dropout

Hidden Continuous Size

Attention Head Size

Learning Rate

Output Size

Loss

Quantiles

Reduce on Plateau Patience

56

0.2274*

25

1

0.0119*

100

Quantile Loss

{0.00, … ,0.99}

4

*rounded

3.2 Predicting Service Occupancy

At the beginning of each operating day, occupancy predictions are generated using the TFT

Model for each service for the full current- and next-operating days using inference data derived

from static timetable data. In order to make more accurate predictions as network conditions

change throughout the day, the inference data is updated with real-time network information

ingested from the PTV Timetable API (PTV, V3).

The PTV API provides direct access to Public Transport Victoria’s public transport timetable

data. The API can be queried to return scheduled timetable, route and stop data for all public

transport modes. The API also gives access to real-time timetable updates for public transport

services. Most important in this context is the ability to access real time metropolitan train

timetable updates.

The data returned by the PTV API indicates whether a particular service has been cancelled, its

expected arrival time changed, or it has been otherwise disrupted. This information is used to

update the inference data, specifically the time varying known reals Headway, HeadwayLine,

SinTime, CosTime, and Disrupted. The PTV API is called every 30 seconds and written to a

database table using an update query.

Inference is conducted continuously in batches, where each batch contains all metropolitan train

timetable information for the current operating day. Each batch of predictions takes between 10

and 15 minutes to generate and is picked up by the front-end website via an API. As soon as

one batch completes, new timetable data is read, and a new inference job kicks off.

We make no attempt to predict the occurrence of unplanned disruptions, which are by their

nature difficult to predict, so our ability to inform patrons of service occupancy in the presence

of disruptions ahead of time is limited. However, when making predictions on disrupted

services our model is able to capture the flow-on effects of disruptions and generate predictions

ATRF 2022 Proceedings

6

that include the impact that disruptions have across the network, and into the future timetabled

services.

3.3 Quantile Cost Matrix

Although the aim of the model was to classify how busy a train was, we chose a regression

model as our historical service load estimates are a continuous variable. We could have binned

the historical estimates and used a traditional classification model, but this would effectively be

discarding a lot of information (e.g., how close the ‘busy’ train was to being ‘very busy’), which

would reduce the accuracy of the model. We confirmed this intuition by creating a classification

model and comparing the results.

Our original intent was to take the point-estimate from the model (which was an estimate for

the median conditional on the independent variables) and simply use which-ever occupancy

level that prediction fell into as our output that would appear in the application. We realised

this approach had some serious shortcomings. The outputs consistently erred on the side of

being conservative. The prediction class distribution looked different from the training data,

being much less likely to predict ‘busy’ and virtually never predicting ‘very busy’. These

classes were rare in the training data, so it is not unexpected that this was the case, but we

nonetheless wanted to have a more balanced class distribution. In a traditional classification

model one can often adjust thresholds to deal with a class skew in the training data, but we had

to find another approach given we were using a regression model.

A crude solution would have been to adjust the boundaries of each bin to artificially inflate or

deflate the different categories. However, we also wanted to take into account the uncertainty

associated with each prediction, e.g. if service A had a predicted service load of 200 (placing it

as ‘very quiet’) and service B has one of 210 (also ‘very quiet’) it does not necessarily follow

that service B had a greater chance of falling into a higher category. The TFT model might be

very confident on its prediction about service B, in which case it would make sense to keep it

as ‘very quiet’. Conversely, there might be a risk of greatly underestimating service A due to

high uncertainty, in which case we might want to bump up it up a category to prevent

underestimation.

Our solution was to utilize quantile forecasting and generate predictions for all 100 percentiles.

From this we could roughly reconstruct the probability density for each prediction, and then

calculate the probability of each class for each prediction. For instance, if the predicted 90th

percentile equalled the cut-off between ‘busy’ and ‘very busy’ we could say that there was an

approximately 10% chance of it being ‘very busy’.

With the probabilities of each class, we could now make some adjustments so that the prediction

class distribution was more to our liking. In particular we had two major goals:

1. The original predictions were overly conservative, leading to more under-estimation

than over-estimation. We wanted the opposite to be the case, as commuters would be

upset if the train was much busier than they anticipated.

2. We also wanted to hedge our bets and prefer the two central categories over the two

more extreme categories, all else being equal. This means we wanted to punish instances

where the predicted class was *very wrong*, i.e. more than one class away from the

actual class, more so than when it was somewhat wrong, i.e. predicted an adjacent class.

We achieved this by creating a cost matrix. For each combination of predicted class and actual

class, we have a cost. The cost where the predicted class = actual class is always zero, so the

matrices have 0s along the diagonals. A cost matrix which simply chooses the class with

maximum probability will be:

ATRF 2022 Proceedings

7

A = [

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

]

 as each incorrect prediction is penalised equally.

Keeping in mind our goals of preferentially over-estimating and choosing the two central

categories, we might choose a cost matrix that is skewed in one direction:

𝐵 = [

0 2 4 8
1 0 2 4
2 1 0 2
4 2 1 0

]

where the asymmetry comes from us wanting to bias our predictions upwards, and the numbers

get larger the further away from the diagonal to penalise predictions which are more egregiously

incorrect.

Suppose for a single service at a station we have predicted a probability vector that looks like

x = [0.5 0.4 0.1 0]𝑇, which means we think half the time it will be ‘very quiet’, 40% of

the time it will be not busy, etc. The simple approach of choosing the most likely class would

be equivalent to

Ax = [

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

] [

0.5
0.4
0.1
0

] = [0.5 0.6 0.9 1]

and then we choose the minimum cost prediction, which is ‘very quiet’ at 0.5.

Using the cost matrix, which is designed to achieve our goals, B, the same equation yields:

Bx = [

0 2 4 8
1 0 2 4
2 1 0 2
4 2 1 0

] [

0.5
0.4
0.1
0

] = [1.2 0.7 1.4 2.9]

 and the minimum cost prediction is now the second category, ‘not busy’ at 0.7. The cost matrix

has moved our prediction up by a category, which is probably a good idea, not least because

there’s a 10% chance the true category is actually ‘busy’ and we really want to avoid predicting

‘very quiet’ when the true class is ‘busy’.

The cost matrix can be adjusted to taste so as to achieve the desired class distribution and

confusion matrix, or even adjusted over time, if necessary, including in cases where pandemic

restrictions wreak havoc on transport patronage and class skew.

3.4 Preventing Model Drift

Each week the model undergoes a retraining procedure, where the current best model according

to the evaluation metric is loaded and fine-tuned for several epochs, using the same early

stopping mechanism described in 3.1 to decide when to end the retraining. Afterwards, the new

model’s evaluation score is compared to the previous model’s score. If the new model has

produced a better score on the evaluation metric, it is then pushed to production, and the

previous model version is archived. Otherwise, the new model is archived instead. The

evaluation criterion is defined as follows:

ATRF 2022 Proceedings

8

√𝑀𝐴𝐸 × 𝑆𝑀𝐴𝑃𝐸

Where MAE is the mean absolute error, and SMAPE the symmetrical mean absolute percentage

error. Both metrics are calculated using the newly added training data only. MAE is dependent

on the actual mean departure boardings, which may vary week-to-week. Therefore, we take the

square-root and multiply this by the percentage error term to reduce the variance.

4. Results

Key indicators of model accuracy are summarised in Table 3. Instead of having a single TFT

model trained and fitted across all metropolitan train services, we have divided the rail network

into four sub-networks, separated based on where each train line enters the central city loop.

Melbourne’s rail network is circular, with all train lines eventually merging in this central loop.

Each train line grouping is defined by which of the four city loop tunnels that particular line

usually enters the city loop as follows:

Burnley tunnel group: Alamein, Belgrave, Glen Waverley and Lilydale lines

Caulfield tunnel group: Cranbourne, Frankston, Pakenham and Sandringham lines

Clifton Hill tunnel group: Hurstbridge and Mernda lines

Northern tunnel group: Craigieburn, Sunbury, Upfield, Werribee and Williamstown lines

The line groupings are also highlighted visually in Appendix B. This has advantages in allowing

us to compare model performance for separate sections of the network and retrain individual

models for better prediction accuracy. However, the main purpose of this is to allow us to fit

longer encoder sequences into each training batch, while staying within the memory limits of

our GPU hardware.

Table 3: Training Results for all 4 TFT models

 Burnley Caulfield Clifton Hill Northern

Parameters

Epochs

Loss

MAE

SMAPE

342,000

76

7.66

21.21

0.41

343,000

94

6.66

18.33

0.51

342,000

78

5.70

15.88

0.38

343,000

83

5.67

15.54

0.54

While the TFT models predict train service departure loads at each stop as a continuous

variable, the predictions seen by end users are transformed crowding categories, which are

generated by the quantile cost matrix as explained in section 3.3. Therefore, the key metric we

use to measure model accuracy is adjacent category accuracy, where we label a prediction as

“correct” if it was at most one category away from the actual observed crowding level. Our

intention is not necessarily to predict the exact level of crowding as often as possible; instead,

we want to avoid under-estimating the actual level of crowding primarily.

Figure 2 shows the category accuracy matrix. It can be observed that the true category

distribution is heavily skewed towards one end, with roughly 90% of all station departures being

categorised as ‘very quiet’, while only 0.16% of all services are ‘very busy’. Predictions from

all four TFT models combined were exactly accurate 86.2% of the time and had an adjacent

category accuracy of 99.1%. We can see that the biggest error is when the model predicted

‘busy’ but the actual category was ‘very quiet’, which occurred 0.55% of the time. This error

in overestimation could be addressed by not applying our cost matrix to the predictions, but as

our intention was to minimize under-prediction, we instead accept this trade-off.

ATRF 2022 Proceedings

9

Figure 2: Category accuracy matrix for predictions from May 2022. Adjacent category accuracy is shown in the green

areas, while errors are shown in red and pink regions.

The ‘very busy’ category is hardest to predict – only one in four ‘very busy’ services was

correctly classified, and the majority of these correct predictions are in the adjacent category

‘busy’. One key limitation of the model, which is discussed in more detail in section 5 is the

inability to accurately estimate crowding due to special events such as sporting events or

concerts. This is highlighted in Figure 3, where the network models are unable to predict the

‘very busy’ services occurring between 10 pm and midnight. Figure 4 shows results for a week

in May 2022 without any major events. Here the models were able to predict within one

category for ‘very busy’ services 63.7% of the time.

4 Very Busy 3 Busy 2 Not Busy 1 Very Quiet

Figure 3: Distribution of actual (left) and predicted (right) crowding category at each hour of the day.

ATRF 2022 Proceedings

10

Figure 4: Category level accuracy from days in May 2022 without major

disruptions or special events. Here green = prediction matches actual, light blue

= predicted category is one below or above the actual category (i.e. adjacent)

and red = the prediction is more than one category away from the actual.

5. Limitations

The main limitations of our modelling approach are caused by difficulties accessing data.

Firstly, while the model does ingest real-time timetable data, due to hardware limitations it has

no access to real-time ticketing or patronage data and ingests ticketing data only the day after

it occurs. Ideally, a solution would access ticketing or automatic passenger counting data in

near real time to detect unusual spikes or troughs in patronage and modify predictions

accordingly. This kind of data would enable a spike in trips at the beginning of a service to be

communicated to passengers further down the line (or across the network) in the form of

updated predictions. Currently, the solution is unable to react to real-time fluctuations in

passenger loads.

Further, the introduction of more datasets to the model would enable greater accuracy in

predicting crowding levels as a result of special events, or unplanned disruptions. For example,

large spikes in patronage around events such as football games are relatively predictable if data

can be provided to the model regarding the upcoming schedule of such events. In particular, we

have observed that when an AFL game is played at the Melbourne Cricket Ground (MCG) at

night-time on a weekday, the increased patronage displays a predictable pattern if the game is

known about, but in the absence of this information the model cannot generate accurate

predictions. This kind of ‘special events’ dataset does exist (and importantly includes expected

attendance), and work is being done to incorporate it into future iterations of the model.

Similarly unplanned disruptions such as accidents or other incidents that cause major delays or

cancellations are not directly labelled in our training data. Instead, the model must infer when

these occur based on changes in headways between train services - far from ideal. Unexpected

incidents are extremely hard to anticipate, but with knowledge of when these events have

happened in the past, the TFT would have the ability to learn how to react in such situations,

which would significantly improve the time it takes for crowding estimates to update and adjust

in real-time.

ATRF 2022 Proceedings

11

6. Applications

The TFT architecture is flexible and has been applied to several timeseries forecasting problems

in (Lim et al. 2019), including electricity prices, retail sales and traffic volumes. However, these

are all more or less toy examples and do not bear any considerations for scaling to large datasets.

Our work has extended this by showing how to successfully implement a production ready TFT

model that can generate and update predictions in real-time.

Our implementation could easily be transferred to other public transport networks, the only

requirements are input data on passenger boardings and train loads, as well as timetables of

scheduled services. For real-time inference, the only additional requirement is that timetable

information is updated with delays and cancellations at a reasonable frequency. If historical

data on special events and unplanned disruptions was also available, the majority of the current

limitations could also be addressed. Additional real-time data feeds such as ticketing

transactions or passenger counts would help improve the accuracy and speed at which

predictions could be adjusted based on actual network usage.

Another key application is in short term rail planning. The model is able to analyse rail timetable

schedules and train frequencies to determine the possibility of extreme crowding. The model is

sensitive to both the headway of each individual train route, and also the headway between all

services travelling in the same direction at a given stop. This means the model is able to deal

with complex timetable changes, including shifting services from one line to another. Because

the model was trained on data during Victoria’s Covid-19 recovery, it is also able to be used

for scenario planning, i.e. modelling expected crowding when lifting pandemic lockdown

restrictions.

ATRF 2022 Proceedings

12

Citations

Bryan Lim, Sercan O. Arik, Nicolas Loeff &Tomas Pfister (2019) Temporal Fusion

Transformers for Interpretable Multi-horizon Time Series Forecasting, arXiv, DOI:

10.48550/ARXIV.1912.09363

Debaditya Chakraborty & Hazem Elzarka (2019) Advanced machine learning

techniques for building performance simulation: a comparative analysis, Journal of Building

Performance Simulation, 12:2, 193-207, DOI: 10.1080/19401493.2018.1498538

Department of Victoria (2021) Ridespace, Ridespace Website:

https://ridespace.coronavirus.vic.gov.au/

Jan Beitner (2020) Pytorch Forecasting, GitHub Repository:

https://github.com/jdb78/pytorch-forecasting

PTV API (V3) Licensed from Public Transport Victoria under a Creative Commons

Attribution 4.0 International Licence. https://www.ptv.vic.gov.au/footer/data-and-

reporting/datasets/ptv-timetable-api/

Public Transport Victoria (2018) Victorian Train Network Map, PTV Website:

https://www.ptv.vic.gov.au/assets/PTV-default-site/Maps-and-Timetables-

PDFs/Maps/Network-maps/0c96079d1f/Victorian-train-network-map.pdf

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama (2019)

Optuna: A Next-generation Hyperparameter Optimization Framework, in KDD, DOI:

10.1145/3292500.3330701

https://doi.org/10.48550/arXiv.1912.09363
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19401493.2018.1498538
https://ridespace.coronavirus.vic.gov.au/
https://github.com/jdb78/pytorch-forecasting
https://www.ptv.vic.gov.au/footer/data-and-reporting/datasets/ptv-timetable-api/
https://www.ptv.vic.gov.au/footer/data-and-reporting/datasets/ptv-timetable-api/
https://www.ptv.vic.gov.au/assets/PTV-default-site/Maps-and-Timetables-PDFs/Maps/Network-maps/0c96079d1f/Victorian-train-network-map.pdf
https://www.ptv.vic.gov.au/assets/PTV-default-site/Maps-and-Timetables-PDFs/Maps/Network-maps/0c96079d1f/Victorian-train-network-map.pdf
https://doi.org/10.1145/3292500.3330701

ATRF 2022 Proceedings

13

Appendix A: Train Service Usage Model Algorithm

Statistical model that combines total patronage (station entries and exits) with the actual service

timetable departure and arrival times, to assign users to the most likely train service (and any

transfers if applicable) for their journey. After assignment, the model calculates boardings,

alightings, arrival loads, departure loads and transits for every train service at every stop

(station).

The model generates 3 types of trips:

• Paired trips (p)

o Passengers touch on and off.

• Unpaired trips (n)

o Passengers did not touch off.

• Ghost trips (g)

o Passengers did not touch on at all.

We know ghost trips exist due to our Touch On Rate Survey results that infer patronage. The

model creates them by splitting the boost factor from each trip into two components:

• A single trip, representing the passenger who touched on

• The remainder of the boost factor (ie. boost factor - 1)

For example, a transaction with a boost factor of 1.25 would be split into a single trip with a

weight of 1.0, and a ghost trip of weight 0.25.

Passengers travelling to the CBD are much more likely to touch-on as they know they are likely

to have to touch-off at the gated CBD station. To reflect this, in the imputation model that infers

missing touch-offs, ghost trips are prevented from going to gated stations. Unpaired trips are

still permitted to have their touch-off imputed to be a gated station.

The imputation model is needed to create synthetic touch-offs for ghost and unpaired trips. It

works by creating a 'sampling frame' of all paired trips, and grouping them by:

• Touch On Station

• Touch Off Station

• Day Type

• Touch On Time Period (0-5am, 5-10am, 10-3pm, 3-8pm, 8pm-midnight)

The model is usually run in weekly batches, so the sampling frame will represent a week's worth

of sampling data. The average journey time is calculated for each group, and each

unpaired/ghost transaction is randomly assigned a touch off station within the same grouping.

Each unpaired/ghost touch-on is randomly assigned a paired trip from the sampling frame

within the same group (i.e. same touch on station, same day type, and same touch on period).

This assigns a touch-off station to the unpaired/ghost touch-on. While the vast majority of trips

are imputed using this method, the model then iterates through this again for any trip that was

not successfully imputed, but without the condition on the time period to try and match all

remaining trips. Once a touch-off has been assigned to each unpaired/ghost touch-on, the

average journey time is added to the touch-on time to impute the touch-off time.

ATRF 2022 Proceedings

14

Appendix B: Melbourne Train Network Line Groupings (PTV, 2018) 1

Northern

Clifton

Hill

Burnley

Caulfield

