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Abstract 

Bunching affects both public transport users and operators adversely. It increases waiting time 

at stops and onboard, reduces travel speed and comfort, costs more, and substantially 

deteriorates service reliability. This paper reviews the definition of bunching, underlying 

causes, modeling, and control strategies. Terminology is to classify demand and supply-related 

bunching determinants based on spatio-temporal and static and dynamic variability, which is 

overlooked in the existing literature. Furthermore, seven potential control strategies are 

examined within a systematic classification of control methods for qualitative assessment 

purposes. In this assessment, various passenger and operator attributes are utilized to examine 

the performance of each method based on findings from a comprehensive survey of the relevant 

articles in the state-of-the-art. Headway and schedule-based holdings, speed control, stop 

skipping & boarding limit, and short turning strategies are grouped within operator-oriented-

method (OOM). Real-time demand control, as the only passenger-oriented method (POM), has 

also shown promising results in reducing bunching incidents and service reliability 

improvement. The lack of a practical classification of control methodologies and not capturing 

spatio-temporal variation of contributing factors led to an imbalance in the number of studies 

explored each method. OOM such as holdings are well researched, but demand-related control 

strategies are overlooked. Exploring dynamic demand control and hybrid micro behavioral 

management paramount research for the future. This review can assist policymakers in 

adopting the most appropriate strategy. 

1. Introduction 

1.1. Bunching definition 

Bunching is one of the key contributors to Public Transport Reliability (PTR) deterioration 

(Rashidi et al. 2017). It is a complex problem to be solved analytically, which received 

particular attention as a service deteriorator (Daganzo 2009; Turnquist 1980). Bunching can 

make the schedule useless, spreading network-wide with minor disruptions and a positive 

feedback loop to service disturbance (Xuan et al. 2011; Daganzo and Pilachowski 2011). As a 

result of service bunching, travel time increases, and system instability indicators deteriorate, 

including headway variability and schedule deviation. Also, in bunching conditions, 

passengers and operators encounter extra costs such as excessive waiting time and in-vehicle 

time, degraded travel experience in crowded vehicles with fewer passenger seats, a surge in 

operating costs, and inefficient resource allocations for operators. Bus bunching reduces the 

popularity of public transport, reflected in the number of users who have already switched/are 
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likely to switch in the future. The bunching phenomenon is defined as two or more public 

transport vehicles that serve the same line in pairs or very close to each other as a result of 

deviation from originally published headways or schedules. Earlier studies suggest a stationary 

threshold, (Feng and Figliozzi 2011) considered three minutes of headway between two 

consecutive buses to identify bunching. Any headways below the given value are considered 

bunched. More recent works propose a dynamic threshold based on the type of service and 

temporal variability  (Gong et al. 2020). Bunching is strongly associated with high frequency 

and high demand services. Controlling bunching incidents as a common contributor to PTR 

planning and operation can explain reliability improvement. It is therefore crucial to understand 

bunching, its occurrence, underlying causes, consequences under no control conditions, 

modeling and prediction in research, and policy studies implications in practice.  

1.2. The effect of bunching on sustainability 

Bunching as a PTR variable can indirectly promote transport sustainability by increasing PT 

popularity. The transport sector accounts for 26% of global CO2 emissions (Chapman 2007), 

mostly from private vehicles. Research revealed that in the short term, the policy to change 

travel behavior is more important than technological solutions for transport sustainability 

(Anable and Boardman 2005). For instance, modal shift onto sustainable transport alternatives 

such as PT can help stabilize the transport sector’s carbon emissions (Chapman 2007). 

Reliability has been reported to be an essential feature in passengers' perception of PT services 

compared to other elements such as frequency, type of vehicle, and driver behavior (Balcombe 

et al. 2004). Additionally, instability in public transport operations challenges PT operators to 

deliver credible services (Ceder 2007). A slight decrease in service reliability caused by 

bunching may translate into a reduction in popularity and number of users, substantially 

burdening the cost-revenue of the service. In line with transport sustainability indicators 

summarized in Litman's paper, it is crucial to improve service reliability by controlling 

bunching occurrences (Litman 2021). 

1.3. Literature review 

PT bunching has received well attention in transport literature since the early nineteen sixties, 

and it has been considered a potential factor in PT service quality. Since then, extensive 

research has studied bunching formation, causes and consequences, and controlling strategies. 

(Newell and Pott 1964) modeled bus bunching for the first time, and(Osuna and Newell 1972) 

investigated an optimal strategy to reduce the average waiting time per passenger. (Nagatani 

2001) simulated bunching under different conditions to understand bunching behavior, and 

(Hammerle et al. 2005) used AVL and APC data to study bunching. Numerous researchers 

focused on control strategies, stochastic holding control model (Hickman 2001), headway-

based holding method (Daganzo 2009), and many others studied holding methods further. 

(Daganzo and Pilachowski 2011; Sun and Hickman 2005) suggested speed control and stop 

skipping, respectively. (Delgado et al. 2012) examined hybrid model combining boarding limit 

and holding. (Currie and Shalaby 2008; Shalaby et al. 2002) analyzed signal priority for the 

streetcar (tram). Few others applied the potential of new technologies and automated data from 

Automatic Passenger Count (APC), Automatic Fare Collection (AFC), and Automatic Vehicle 

Location (AVL) to relieve vehicle platoon in real-time. (Ma et al. 2021) developed a real-time 

predictive control strategy (Berrebi et al. 2018) evaluated holding method with and without 

real-time predictions, and  (Moreira-Matias et al. 2016)’s online model predicts and controls 

bunching before it happens. More recently, some researchers studied the impact of passenger 

choice on controlling bus bunching (Wang et al. 2021; Drabicki et al. 2021; Drabicki et al. 

2022). This scheme studies the implication of passenger’s Willingness-To-Wait (WTW) for 

the next arrival on travel experience improvement and bunching.  
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Despite various studies, a critical review to conduct a comprehensive analysis exploring the 

overview of the bunching phenomenon, an in-depth examination of the causes, and the 

performance of control methods in achieving defined objectives are missing in the literature. 

In the absence of a critical review focusing on methodology per the given set of objectives, 

some promising methods are being overlooked. Also, the absence of proper terminology in 

classifying the contributing factors leads to an imbalance in the number that studied specific 

factors in-depth while some others. Systematic classification of control strategies for 

performance evaluation and benchmarking within similar groups were absent. This review 

paper aims to classify the proposed methodologies and causes in the literature to identify the 

overlooked potential research directions. It proposes a benchmark for similar strategies to 

evaluate their outputs with methods having similar features and objectives. Lastly, it assists the 

direction for policymakers to implement the methodology that suits the specific objectives and 

groups, as explained in Table 1 in section 4. In section 2, the contributing factors that cause 

and amplify bunching scenarios are reviewed, and section 3 summarizes the bunching 

modeling approaches. A practical framework analyzing bunching control methods has 

presented in section 4, which is followed by conclusions and recommendations in section 5.   

2. Contributing factors: An inclusive classification 

Understanding the cause of a problem will help to choose the right solution. In bunching 

studies, it is essential to understand what contributes to bunching. Based on the type of 

occurrence, they are defined as systematic (Endogenous) and non-systematic recurrent 

(Exogenous) problems, which are addressed through operational planning (OP) and operational 

control, respectively (Moreira-Matias et al. 2016). The endogenous causes in the system have 

a positive feedback loop which substantially progresses to bunching. It is classified into 

demand and supply classes based on the source of influence (Gong et al. 2020). The lack of a 

comprehensive classification leads to an imbalance in the number of studies dealing with each 

category; some are sufficiently surveyed, while some others are disregarded. Also, because of 

the diversity of influencing parameters in bunching, the enclosure of all the inducing factors in 

modeling is computationally infeasible. Therefore, an explicit understanding of parameters 

may help to address this gap. In this study, a systematic classification of bunching contributors 

based on spatio-temporal variability and user heterogeneity is presented. It is anticipated that 

the classification helps to understand the specificity of the causes to formulate the exact 

problem and solution than testing in a trial-and-error manner. This classification contains three 

main categories: 1. Demand-related, 2. Supply-related, and 3. Exogenous factors as shown in 

Figure 2.  

 

 

 

 

 

 

 

2.1. Demand related variables 

Demand variables are one of the primary sources of bunching and reliability problems, divided 

into three types: first, demand variability in different spaces: high and low traffic segments and 

type of land use. Second, demand variability at different times, i.e., weekdays, weekend, peak, 

off-peak, and intra-peak. Third, heterogeneity of users such as seniors, adults, and youth. 

Bunching identification only solves part of the question but understanding the associated 

Influencing 
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Figure 2: Classification of bunching contributive factors based on the reviewed articles 
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attributes can help to answer the following question fully. Are bus bunching attributes the same 

for different route segments during different times of the day? (Feng and Figliozzi 2011). 

(Chioni et al. 2020) found that number of traffic lanes at the stop level is negatively associated 

with bunching in less congested areas, in contrast to the positive correlation in heavy traffic 

segments. The bunching rate increases with an increase in the distance from a subway stop in 

the outer part of the city. (Iliopoulou et al. 2020) analyzed the factors that affected bunching 

duration and severity and discovered that temporal factors, such as weekends and afternoon 

peaks, affect bunching duration. (Degeler et al. 2020) Examining bunching probability patterns 

for workdays and weekends, and (Gong et al. 2020) showed that bunching behavior differs 

during peak and off-peak.  

 

Therefore, it is inefficient to utilize the same control method for different places and times of 

the day and days of the week. Based on the variability of bunching duration, pattern, and 

behaviour, it is more likely to cost higher if the bunching solution for peak or densely populated 

areas applies to less concentrated or off-peak and vice versa. Unfortunately, there is a limited 

number of studies exploring spatio-temporal variability of bunching and its determinants; 

further research is required to understand it fully. Different types of users have specific dwell 

times and behaviour. An elderly passenger may prefer to wait for a less crowded bus with seats 

and safer boarding in a less crowded situation. Based on passenger trip purpose and trip length, 

the perception of ignoring onboard comfort for short trips and trips in the morning is higher 

than the counterparts. Therefore, it is critical to consider variability in time, space, and among 

users in bunching problem modelling and solution adoption.  

2.2. Supply related variables 

Bunching is closely associated with high demand and high-frequency services. Thus, 

accounting supply-related factors are critical. It can help to understand where and when bus 

bunching will happen (Gong et al. 2020). Demand side influencing factors dynamic variation 

in space and time affect bunching, whereas static, physical, and design factors also tend to 

stimulate bunching as supply-related parameters. For example, without any change to the 

original architectures improper network design, irregular fleet design, and type of vehicles can 

cause bunching. Also, using double-deck buses, different types of fare payment may influence 

bunching incidents.  

 

Therefore, a detailed analysis based on the static and dynamic nature of the supply contributing 

factors is required. It will help to adapt the relevant control strategy that may effectively 

mitigate bunching. Not appropriately using static and dynamic components may also mislead 

the models in bunching prediction and correction. The static parameters triggering bunching 

are the service route design, network layout and alignment, type (interchange, stop), number 

of routes and overlays, spacing between stops, inappropriate number of stops, proximity with 

the signalized intersection, the fleet size and type, the payment method, dwelling time, and 

curbside parking conditions. The dynamic components that change in time and space are 

service frequency and headway, schedule, dispatching discrepancy, dynamic interaction 

between departing and arriving vehicles, speed variability, and driver's behavior. Knowing the 

contributing factors' type and nature simplifies the method's usage that can relieve the problem. 

For example, as described by (Daganzo and Pilachowski 2011), only adjusting the cruising 

speed in some cases can help prevent bus bunching without additional measures to reduce cost.  

2.3. Exogenous factors 

Exogenous disruptions also play a role in degrading the quality of PT service. It may cause 

variability in travel time, leading the vehicle to arrive early or late at the upstream stop or affect 
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Figure 3: Core components in bunching studies for articles reviewed 

the dwell time for late arrival with more passengers accumulating downstream. Traffic 

accidents and jams can affect running time in the mixed-use right-of-way and left/right turning 

traffic (Moosavi et al. 2020). Because of the complex nature of the surrounding circumstances 

and uncertainty in when and where the disruption happens, it is more difficult to predict and 

react to exogenous service reliability deteriorators (Moreira-Matias et al. 2016). Signal timing, 

adverse weather, and vehicle breakdown are some other potential exogenous disruptions that 

cause bunching.    

3. Bunching modelling 

There are three core components in bunching problem modeling and analysis in public 

transport: the input (data type and source), mathematical & statistical formulation, and control 

method, as illustrated in Figure 3. 

   

 

 

3.1. Data type 

The development of information and communication technologies (ICT), portable GPS, 4G, 

5Gs, GTFS, and automated data in transport enabled researchers to study bunching problems 

at a mega-scale. In the last decade, AFC, AVL, and APC data have been the most common 

datasets used in bunching research. It generally lays into two groups based on its collection, 

storage, and availability: offline (historical) and real-time (streaming) data. A significant 

number of studies developed bunching models on top of offline datasets. Whereas, with the 

power of real-time data in recent years, more researchers are deviated to work on real-time data 

provision for better accuracy, prediction, and prevention. For instance, (Jiang et al. 2019) 

modeled the number of waiting for passengers at stops based on bus speed and historical data 

from the smart card. (Yu et al. 2016) used smart card data to detect bus bunching via predicted 

headway pattern at stop level. (Rashidi et al. 2017) utilized AVL bus data to estimate and model 

bunching. (Du and Dublanche 2018) conducted a series of studies from bunching identification 

to solution development using large-scale data from the smart card. (Moreira-Matias et al. 

2012) mined AVL and historical data to find Bunching Black Spot (BBS); the sequence of bus 

stops where systematic bunching occurs. With advanced technology on the rise and 

digitalization of the physical world, automated and big data will play a critical role in transport 

planning and operation. Nonetheless, modeling based on data fusion from different sources and 

real-time demand data at scale is still in the early stages. It is expected that data integration 

from various sources such as fare cards, GPS, passenger count, and interconnected 

signalization will attract a significant number of studies for future research development. To 

date, (Wang and Sun 2020) suggested using real-time passenger demand information globally 

for all bus stops in machine learning for better performance. Previously,(Varga et al. 2018) 

identified the incorporation of real-time traffic signalization and public transit priority in their 

model as interesting future work. (Yu et al. 2016) also advised GPS location data integration 

with smart cards to generate more reliable results in bunching studies and dwell time 

estimation.  

3.2. Theoretical formulation 

In the theoretical formulation of bunching, various variables and numerous methodologies are 

used to model and predict bunching in real-time and offline. Different tools and techniques 

such as mathematical and statistical models, machine learning and deep learning models, and 
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simulation are used to solve and optimize developed models. Because bunching could not be 

modeled directly, different bunching determinants are analyzed instead. These are headway, 

schedule, speed, arrival time, synchronization, and many more. (Hickman 2001) developed 

convex quadratic programming to optimize holding time. (Daganzo 2009; Daganzo and 

Pilachowski 2011) modeled headway as a bunching determinant using stochastic law of motion 

and (Xuan et al. 2011)  extended and optimized Daganzo’s model of control motion law. 

(Ibarra-Rojas and Rios-Solis 2012) modeled and solved bus synchronization timetabling 

problem to reduce bunching. (Xin et al. 2021) constructed different bus propagation models 

using Finite State Machine. (Wu et al. 2017) formulated dynamic passenger queue swapping 

behaviour, vehicle overtaking, and capacity constraint. (Hernández et al. 2015) developed 

optimization model considering bus interaction in a multiple lines network. (Andres and Nair 

2017) used data-driven headway prediction to reduce headway deviation. (Sirmatel and 

Geroliminis 2018) considered a dynamic model including both continuous and binary states of 

the system and (Dai et al. 2019) built a headway-based model based cooperative game theory. 

(Li et al. 2019) defined bus motion with delay disturbance and passenger demand uncertainties 

as a state space model. (Yu et al. 2017) incorporated bus headways, travel time, and passenger 

demand as time series problems to estimate the probabilistic prediction of headway. (Fonzone 

et al. 2015) proposed passenger arrival decision and waiting time in a bus system with 

overtaking possibility. And (Cats et al. 2010b) conducted a Mesoscopic simulation model to 

reproduce bunching. As seen, headway as a primary explanatory variable for bunching has 

been widely studied in the literature. In addition, other variables are also studied, including 

schedule, bus synchronization, passenger demand uncertainty, arrival pattern, waiting time, bus 

motion propagation, delay disturbance, travel time, and so on.  

3.3. Solution techniques & algorithms 

Numerous techniques containing analytical, optimization, machine learning, deep learning, and 

simulation strategies are vastly used in the literature to find an optimal solution for bunching 

models. With the growing popularity of high-performance GPUs and superpower 

computations, reinforcement and deep learning is ramping up as the popular algorithms capable 

of capturing more complex scenarios and realistic representation of the public transit system. 

Because it is computationally expensive, there is a trade-off in choosing between cost and 

performance in the research and practice. Different researchers adopted different techniques 

based on the operator's need, size and complexity of the network, availability of the data, the 

severity of the bunching problem, and specificity of the objective. For simplicity and lack of 

supercomputers, simple hypothetical networks with strict assumptions were ubiquitous in the 

past, but with recent advancements in telecommunications and computational power, the 

direction is shifting to use more robust algorithms.   

 

Some of the most commonly used techniques are listed below. Artificial Neural Networks, 

regression analysis, Probabilistic Reasoning, and Perceptron’s learning for bunching prediction 

and control method deployment (Moreira-Matias et al. 2016). Support Vector Machines (SVM) 

and Bayes Networks (BN) in predicting bus travel speed based on real-time traffic information 

(Julio et al. 2016). Multi-agent deep reinforcement learning (MDRL) to capture the agent’s 

(bus) interaction with the following/leading buses for achieving efficient global coordination 

in long-term bus operation (Wang and Sun 2020). The application of reinforcement learning 

(RL) in the tram (streetcar) bunching control automation (Ling and Shalaby 2005). Multi-agent 

reinforcement learning (MARL-H) in bunching mitigation (Chen et al. 2016; Gong et al. 2020). 

Bunching pattern extraction using unsupervised machine learning (Degeler et al. 2020). Usage 

of new multi-agent deep reinforcement learning (MDRL) framework to establish reliable 

holding policy accounting for the whole transit system instead of a single cause on which the 
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previous MDRL models are mainly built (Comi et al. 2022). Q-learning algorithm deployment 

in optimizing holding time (He et al. 2022). Maintaining schedule adherence and headway 

regularity problems by using distributed deep reinforcement learning (DRL) (Shi et al. 2021). 

Formulation of route-level bus fleet control using asynchronous multi-agent reinforcement 

learning (ASMR) problem (Wang and Sun 2021). Detection of bunching at stop-level using 

several SVM algorithms (Yang et al. 2019). And (Yu et al. 2017) estimated bus headway and 

travel speed using Relevance Vector Machine (RVM) and a novel deep learning method, 

variational mode decomposition long short-term memory (VMD-LSTM), respectively.  

 

These are some potential research works that benefited from the power of machine learning. 

Nevertheless, the implementation of deep learning and reinforcement learning techniques is at 

an early age, and there is still room to improve the model performance, prediction accuracy, 

and optimized computational time and cost using different methods, distributions, and solution 

algorithms. Research further in this area for future transit sector contributions. Likewise, the 

control strategy is crucial in bunching modelling and analysis. With the positive feedback loop 

among bunching determinants such as headway, number of passengers, and dwell time, it is 

unlikely the bunching to be solved without any control strategy application.   

4. Control strategies: a practical framework analyzing control 

methods in bunching 

Various control methods to reduce bunching are proposed in the literature under various 

solution themes, including technical, strategic, and policy. Based on input attributes, specific 

methods perform better for particular objectives. Wherein some methodologies are studied 

well, a few other control schemes with similar or even better performance in bunching 

reduction are understudied. Similarly, a potential benchmark to evaluate different practices is 

absent in the qualitative assessment of bunching control strategies. The performance of 

different approaches is benchmarked versus the no-control situation and bus holding method. 

It is an insignificant comparison because of the variability in input, objective, limitations, and 

set of assumptions present in each methodology. This section presents a practical framework 

to classify existing bunching control strategies based on how well the given objectives are 

executed. This will help to conduct a comprehensive qualitative assessment in developing a 

unique performance benchmark for different methods within the same class and unveils 

overlooked promising control strategies for the future research direction. Finally, it has policy 

implications helping policymakers target certain groups from user and operator or trade-offs. 

Passenger-oriented methods (POM) help passengers, operator-oriented methods (OOM) are 

more in favor of operators, and common methods (COM) trade-off to balance between two 

sides. 

 

The contribution of each control scheme to different attributes of passengers and operators is 

qualitatively assessed and presented in Table 3. The left lists are existing control methods in 

the literature classified as demand and supply control management. Associated objectives to 

each method are on the top, classified as passenger or operator’s attributes. The corresponding 

number of (+) or (–) demonstrate how good or bad the method performs in achieving that 

objective, respectively, based on the reported outcomes in the original articles. Scopus and web 

of science databases are used in this search, and no time range limit is applied. In this 

assessment, NA denotes not applicable, NR: not detected in this review or biased in the 

identification of the relevant articles by author, (+): acceptable results and covered slightly, (+ 

+): promising results and covered relatively, (+ + +): significant results and covered sufficiently 

in three or more original works. The rightest column classifies the control approach based on 
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the target beneficial group: (POM), (OOM), and (COM). In this assessment, seven potential 

approaches in two groups of supply and demand control managements are evaluated by the 

given set of objectives.  

Table 1: Authors synthesized qualitative assessment of control methodologies in bunching mitigation 

based on type of intervention and passenger/operator attributes  
Beneficiary Passenger Operator  

 

Class 
Objective Waiting 

time at 

stop (+) 

Waiting 

time on-

board  

Trip 

experience 

& comfort 

Volunteer/forced 

criterion index  

(+ & -)  

Headway 

regularity 

Schedule 

adherence/ 

recovery 

Effective 

resource 

allocation 

Travel time/speed 

improvement  

Control method 

Headway-
based 

holding 

S
u
p
p
ly

 C
o
n
tr

o
l 

M
an

ag
em

en
t 

+ + + – – – NA + + + + NR – OOM 

Schedule-

based 

holding 

+ + – – NA + + + + NR – OOM 

Signal 

priority 

+ + + + + NA + + + NR + +  COM 

Speed 

control  

+ + + + NA + + + + NR + + + OOM 

Short 
turning 

+ + + NR NA + + + NR + OOM 

Stop 

skipping 

and 

boarding 
limit 

D
em

an
d
 C

o
n
tr

o
l 

M
an

ag
em

en
t 

     + + + + NR            – – + + NR + + + + + OOM 

Real-time 

demand 

control 

+ + + + + + + + + + + + + + + NR POM 

 

In the fifth column, volunteer to forced criterion index, (+): means voluntarily choosing to wait 

for the next arriving vehicle without any external interference. (–): forcibly denied boarding 

through boarding limit or stop skipping policies. In essence, (+) is translated into a positive trip 

experience, and (–): a negative perception toward using PT services. Assumed double (+ +) 

rating for voluntarily willing to board the next vehicle comes from a reduced associated cost 

for both: crew scheduling and fleet scheduling costs through improving resource allocation 

evenly.   

 

Summing the total number of (+) and (–) corresponding to user’s attributes and subtracting 

from the total number of operator’s features in Table 1, can be done to classify each method’s 

orientation, if (+passenger > +operator) passenger-oriented (POM), else if (+passenger < 

+operator) operator-oriented (OOM), else (+passenger = +operator) common-method (COM). 

Because headway-based holding (HH) requires longer holding time, it increases in-vehicle time 

roughly twice as schedule-based holding (SH). It is doing better in headway regularity and less 

effective in schedule recovery than SH. Signal priority is expected to improve waiting time 

more than speed control as facing fewer delays at traversing intersections, and further research 

is required to understand better. Stop-skipping and boarding limit strategies are supposed to 

effectively reduce in-vehicle time while solely adding burden to waiting passengers who are 

left behind. Finally, despite the stop skipping methodology’s excellent performance from the 

user, it is primarily designed for speed and headway maintenance and leaves waiting 

passengers behind; it is considered an OOM. In Table 1, some parameters, i.e., effective 

resource allocation, trip experience, and comforts, are assumed in this review. In essence, those 

are none/less observed parameters in majorities of the discussed strategies, and future studies 

are needed to quantify impacts. A few other parameters regarding short-turning, real-time 

demand control based on passenger choice behavior are unknown and assumed based on 

general findings from the literature survey.  
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4.1. Supply control management  

4.1.1. Headway-based holding (HH) 

(Koffman 1978) is amongst the earliest who tested holding the buses to control headway in a 

hypothetical single bus routes simulation. Since then, several researchers have investigated 

headway-based holding control to improve headway. Conventionally, a static headway 

threshold was defined to trigger bus holding at control points, and (Rossetti and Turitto 1998) 

extended it to a dynamic threshold. With the availability of real-time demand data (Abkowitz 

and Lepofsky 1990) implemented a headway-based control method in real-time. (Eberlein et 

al. 2001) formulated holding as deterministic quadratic programming, and (Fu and Yang 2002) 

optimized the number and location of control points based on forward and backward-looking 

headways-based holdings. (Puong and Wilson 2008) discussed train holding problem as a non-

linear program. (Daganzo 2009) analyzed adaptive holding control based on real-time headway 

information. Later (Cats et al. 2010a) deployed HH to a large-scale BusMezzo simulation 

model.  

 

Various researchers examined hybrid models integrating the holding method with other 

bunching strategies. (Delgado et al. 2012) integrated with boarding limit to improve operational 

speed. (Nesheli and Ceder 2014) combined with stop skipping and (Wu et al. 2017) tested 

holding considering vehicle overtaking and passenger boarding behavior. (Koehler et al. 2019) 

and (Seman et al. 2020) combined headway with priority control. Moreover, (Manasra and 

Toledo 2019) optimized holding and speed change control. The results have shown the hybrid 

model’s superiority in reducing waiting time over the holding method alone. It also improved 

operational speed, headway regularity, in-vehicle times, and schedule adherence. Several 

works have been devoted to optimizing the number and location of control stops and holding 

time. As is shown by (Cats et al. 2012) that holding and dispatching buses from a limited 

number of control stops was not effective in improving the bus’s regularity along the route. 

(Hickman 2001) pioneered in modeling optimal holding time stochastically (Dai et al. 2019; 

Berrebi et al. 2018; Cats et al. 2014) more recently explored the topic further.  

4.1.2. Schedule-based holding (SH) 

Despite promising results from the HH method in maintaining even headways and reducing 

waiting time, holding methods based on headways alone cannot help buses adhere to the 

published schedule (Xuan et al. 2011). Therefore, a dynamic holding control based on schedule 

deviation is proposed. (Li et al. 2019) integrated holding with operating speed control 

considering congestion delay and passenger demand uncertainties to improve headway 

regularity and schedule adherence. With the development of smartphone technologies and the 

availability of real-time transport-related information such as arrival and departure times and 

onboard crowding levels, it is expected that schedule-based services are getting more attention. 

On the contrary, research revealed that people do not plan their trips and arrive randomly at 

stops for services with short headways of 10-minute or less (Currie et al. 2012). 10-15 minutes 

were considered as a transition point from random to non/less random passengers arrival (Fan 

and Machemehl 2009; Fan and Machemehl 2002). Thereby, analyzing users’ arrival behavior 

at stops with the availability of real-time information through smartphones, considering trip 

purpose and type of users, will be a meaningful research question to explore in the future.  

 

Various holding methods are studied sufficiently; hence, integrating the holding method with 

new strategies is still a profound research direction. Concluding based on the findings from the 

cited articles, headway-based holding is found to be more effective in reducing waiting time 

for passengers (Fabian and Sanchez-Martinez 2017), regularizing even headways (Daganzo 

2009), but requires long holding times (Berrebi et al. 2018) and is less effective in schedule 
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recovery (Wu et al. 2018). On the other hand, schedule-based holding is promising in schedule 

adherence and recovery, requiring less holding time but unable to regularize even headways. 

Both methods reduce operational speed (Xuan et al. 2011) and increase in-vehicle time for 

onboard passengers while holding the vehicles at control stops. Since waiting time is observed 

to have a higher perceived cost value than in-vehicle time, this drawback could be traded off 

or reduced by hybrid models by combining holding with other methods (Esfeh et al. 2021).  

4.1.3. Signal priority & speed control  

Signal priority control is mainly integrated with the holding method to overcome bunching. 

This method decreases user waiting time and delays (Chandrasekar et al. 2002; Delgado et al. 

2015) and regulates headways (Chow and Li 2019). It is simple and applicable to real-time 

applications (Koehler et al. 2019) and can reduce bunching and onboard waiting time (Seman 

et al. 2020). Besides, speed control through cooperation between leading and following buses 

by adjusting their speed to keep evenly spaced headways (spring-effect) and faster travel time 

(Daganzo and Pilachowski 2011). It is further integrated with signal adjustment (Bie et al. 

2020), and holding control (He 2015) yielded higher headway & schedule reliability and speed 

improvement with less slack added to the schedule.  

 

Additionally, cruising speed alteration in a road segment is more practical and shortens waiting 

times at stops and onboard (He et al. 2019). (Deng et al. 2020) using real-time data revealed 

similar findings, which improved travel time and headway regularity. Short-turning strategy 

(ST) is specifically effective for longer routes with traffic congestion in some segments along 

the routes, which convert a few regular trips to short turning trips to minimize schedule 

deviation and waiting time (Tian et al. 2022; Tian 2021). ST is reported to be effective in 

schedule adherence and waiting time. Because ST is not sufficiently researched yet, its impact 

on other bunching determinants requires further research.  

4.2. Demand control management 

4.2.1. Stop skipping & boarding limit 

Stop skipping (SS) as a form of service operation treatment appeared in (Eriksen 1972) paper 

for the first time and was tested in a hypothetical situation by (Koffman 1978). SS method is 

frequently used in combination with holding and speed control (Cortes et al. 2010; Moreira-

Matias et al. 2016). It has been reported that SS can reduce total waiting time, in-vehicle time, 

and travel cost, maximize the number of transfers, reduce the number of buses in use, and 

increase bus lane capacity (Liu et al. 2013; Yu et al. 2013; Ceder et al. 2013; Feng et al. 2013; 

Cao and Ceder 2019; Levinson and Jacques 1998). Similarly, the combination of boarding limit 

and holding reduces bunching and excess waiting time, maintains even headways, and 

improves travel time and level of service (Delgado et al. 2012; Zhao et al. 2016). Nevertheless, 

both methodologies perform in favor of operators and only partially take passengers into 

account. Frustrated passengers waiting at the stop that arriving bus is going to skip will become 

more dejected about uncertainty in the next arrival. Because of the higher value of waiting time 

over in-vehicle time, the trade-off by this method should be explored further as it solely places 

the burden on waiting passengers. Researchers recently approached to more user-centric 

practice, so-called bottom-up decision-making architecture (Drabicki et al. 2021). In this tactic, 

planners leave the choice to passengers to board the current bus or wait for the next by 

informing them about the real-time arrival time of the next service and its crowding conditions.   

4.2.2. Real-time demand control provision 

A few works explored the association and impact of demand variability on reliability issues 

using real-time and offline demand information (Enayatollahi et al. 2019; Li et al. 2019; Ma et 

al. 2021; Fonzone et al. 2015; Estrada et al. 2021; Chen et al. 2012). However, the vast majority 
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of the control strategies focus on controlling the service's supply side in tackling bunching 

problems, and demand control, especially in real-time, is very new in transport literature. The 

existing format mainly enforces the demand aspect, such as capacity constraints and stop-

skipping measures. The popularity of user-centric approaches that account for passengers’ 

choice behavior and willingness to board currently crowded or waiting for the arrival of the 

less crowded vehicle, is receiving attention in recent years (Drabicki et al. 2021; Wang et al. 

2021; Wang et al. 2019; Drabicki et al. 2022). In this approach, researchers provide real-time 

information such as next arrival time, crowd level, the difference in fare, and other helpful 

information to facilitate choice scenarios to users for compensating a few more minutes waiting 

for the sake of seat availability, trip comfort, and easy boarding and alighting with respective 

short dwell time. This strategy has proved sophisticated in regulating headways, reducing 

bunching, improving trip quality, and allocating resources efficiently by evenly distributing 

passengers among vehicles. However, since a limited number of works studied this approach, 

further research is recommended to analyze its impact on other variables and test using real-

time demand data. A hybrid model integrating dynamic demand control (DDC) and micro 

behavioral management (MBM) measures to improve service quality, and reliability is absent 

in the public transport state of the art. This paper identifies DDC & MBM as potential research 

directions for future works. It is expected that the mechanism of offering incentives to waiting 

for passengers through dynamic fare management on top of real-time information provision 

will significantly help to sustain service reliability. 

5. Conclusion and recommendation 

This review paper presents bunching definitions, an in-depth analysis of the underlying causes 

using novel terminology, bunching modeling and formulations, and a practical framework 

focusing on classifying the existing standard methodologies. Next, future research works and 

policy implications for transport operators and policymakers are explained.  

5.1. Bunching causes and modeling 

Firstly, several studies observed different bunching behavior considering spatio-temporal 

variability and user heterogeneity (Iliopoulou et al. 2020; Degeler et al. 2020; Gong et al. 2020). 

So, it is critical to consider time and space variability in associated factors with bunching in 

future research. On the one hand, using the same control method for peak and high concentrated 

road segments to off-peak and low concentrated zones is cost inefficient. On the other hand, 

trip comfort and boarding behavior are perceived to differ among users at different times of the 

day. Besides, bunching formation patterns are different spatially and temporally. Secondly, 

real-time bunching modeling based on the fusion of different data sources at scale is one of the 

hot topics in bunching analysis, yet in its early stages. 

 

Further research is required to enhance the quality and accuracy of modeling prediction while 

reacting proactively to bunching incidents in real-time. Lastly, few original works explored the 

potential of deep learning and complex reinforcement learning in bunching studies. With 

technology development, super-powered GPUs, ICT, portable GPS devices, and availability of 

real-world demand data at a large-scale, exploiting deep learning potentials would be an 

exciting research objective.  

5.2. Control methodologies in bunching analysis  

With the availability of real-time transport-related information such as arrival and departure 

times and onboard crowd level, schedule-based services are expected to gain more popularity. 

At the same time, previous research findings revealed random arrival of passengers at stops for 
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headways of ten minutes or less (Currie et al. 2012; Fan and Machemehl 2002; Fan and 

Machemehl 2009; Esfeh et al. 2021). Understanding users’ arrival behavior and trip planning 

with the availability of real-time information through smartphones in the age of technology 

explosion will be a meaningful research question. With a few works available (Drabicki et al. 

2022; Drabicki et al. 2021; Wang et al. 2019), the real-time information provision stimulates 

passenger behavior change in improving service reliability, and bunching mitigation has shown 

promising results. It helps headway regularity, reduces waiting time and bunching, and 

improves resource allocation and travel experience. A positive trip experience could be 

translated into attracting more passengers, which promotes PT. Thereby, studying the impact 

of real-time information provision on different attributes of service reliability such as bunching 

is paramount for future works. 

 

Research findings indicate the potential of providing real-time information in invigorating 

passengers’ behavior. In this review, a hybrid model integrating dynamic demand control 

(DDC) and micro behavioral management (MBM) measure to improve service quality and 

reliability is proposed for the first time. This paper identifies DDC & MBM as potential 

research directions for future transport enthusiasts. It is expected that offering incentives to 

waiting passengers through dynamic fare management on top of real-time information 

provision will have phenomenal results helping sustain service reliability and promote PT 

transit as a sustainable alternative. Lastly, the qualitative assessment in this paper can help in 

deciding which control strategies to use for policy implications in practice. It enables 

policymakers to choose the method/s which is explicit to users and operators or balance 

between two based on project need and scope.  
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