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Abstract

Micro-simulated demand models require turning choice probabilities into a definitive out-
come. This is commonly done by employing standard Monte Carlo methods. However, this
method is inconsistent with random utility theory at the individual level. Since many demand
models are based on random utility theory, this can lead to counter intuitive results when com-
paring single realisations of two scenarios. We here show how this can be avoided by freezing
randomness at the individual utility level for the multinomial and nested logit models. We
also implement the methodology in the ActivitySim framework and demonstrate its merit on a
large-scale road capacity scenario in Brisbane.

1. Introduction

Modern econometric activity-based models (ABMs) require simulation during application: The
calculation of all possible combinations of choice probabilities is computationally infeasible
due to the shear number of alternatives and instead at each model step a discrete choice is
performed. In practice, the components of econometric ABMs are mostly multinomial logit
(MNL) and nested logit (NL) models. These have closed-form solutions for the probability of
choices and therefore drawing from these is often performed in a Monte Carlo way without
drawing from the distribution of the unobserved part of utility directly, as described in Cas-
tiglione et al. (2015) and implemented in ActivitySim (2016). To remove simulation noise
from results, the randomness of each model step is frozen such that if nothing changes, two
runs will produce identical results. However, when comparing two scenarios, this methodology
can lead to unexpected changes, as we will discuss in section 2. We elucidate the reason for
this and propose a methodology to avoid this, based on standard multinomial and nested logit
theory, in sections 2.1 and 2.2. In section 3, we will demonstrate the merits of our method-
ology on a real-world model scenario: We implement the methodology in ActivitySim and
apply it to a model of South-East Queensland, comparing work location choice changes for a
road capacity scenario for both the standard Monte Carlo ActivitySim choice method and our
behaviourally more consistent method. Section 4 gives an outlook on future work before we
conclude in section 5.

2. Methodology

We here motivate our methodology with a simple example before deriving it mathematically.
Following the methodology in Castiglione et al. (2015) (Section 3.1.8.3), a possible way to turn
a probabilistic choice into a definitive outcome is by performing a Monte Carlo draw from the
probabilities of alternatives:
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Write down the cumulative probability by ordering all alternatives in some prescribed way,
then draw a standard uniform random number and pick the alternative associated with the
cumulative probability at that number. We illustrate this in Fig. 1:

Figure 1: Counter-intuitive choice switching example between a base and scenario case for a mode choice model.
Improving the choice probability of the Walk alternative from 25% in the Base (upper plot) to 30% in the Scenario
(lower plot) induces a switch from PT to Car for this particular draw of 0.77 of the random number (blue line), even
though the attributes of those two alternatives did not change.

0.77
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Base |7 | ° |1|
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The upper plot (Base) lines up three alternatives and their corresponding choice proba-
bilities; Walk with probability 0.25, Car with probability 0.5, and PT with probability 0.25.
Drawing a random uniform number, 0.77 here (blue number and arrow) determines the choice
to be PT. Now imagine a scenario where the Walk alternative improves such that its choice
probability is now 0.3; the other two alternatives decrease in probability accordingly. Freez-
ing the random number generator for reproducibility means the choice maker in this example
switches from PT to Car, as depicted in the lower plot (Scenario). This however is not expected
because neither the attributes of the PT nor the Car alternative have changed and in a scenario
comparison all variations not due to the introduction of the change in the scenario should be
eliminated.

One way to avoid this switching is by utilising the econometric nature of the underlying
models: Human behaviour is often modelled as a utility maximising process, see e.g. Ben-
Akiva et al. (1985); Train (2009); Hensher et al. (2005): Given a choice between i mutually
exclusive and exhaustive alternatives, a decision maker n will choose the one with maximum
utility. In random utility theory, utility U,; consists of two parts, an observable deterministic
part V,;; and an unobservable random part €,;. Assumptions on the distribution of € lead to
different models. ActivitySim implements two kinds of discrete choice models, MNL and NL,
see ActivitySim (2016). Instead of using the choice probabilities and drawing in the Monte
Carlo way described earlier, we propose to draw the random error term directly. By fixing
the random seed between scenarios, decision makers will always have the same unobserved
preferences and will only change choices when the deterministic part of utility improves such
that another alternative has maximum total utility. We describe how to achieve this in the
following.

2.1 Logit model

For the multinomial logit model (MNL), the unobserved terms are assumed to be independent
and identically distributed (i.i.d.) of type Gumbel. The Gumbel or EV1(A, i) distribution with
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location A and scale y has cumulative distribution function (CDF)

F(x; A, 1) = exp(— exp(—%)) (1)

Drawing values from the underlying probability density function is then straight forward, see
e.g. Train (2009): The inverse CDF is given by

Fl'(x) =2 —uln(—In(x)) (2)

and drawing i times from a uniform distribution on (0, 1) and applying the inverse CDF leads to
the desired distribution of error terms for an individual. Fixing the unobserved random part of
utility between two scenarios can be achieved like for the Monte Carlo technique by ordering
alternatives in a consistent way and freezing the random seed of the uniform distribution for
each decision maker. Note that compared to the Monte Carlo method, which requires one
random number per decision maker, we here need one random number per decision maker and
alternative.

2.2 Nested logit

The NL model is a generalisation of the MNL model allowing for correlations of the unob-
served term between alternatives within groups. This means the error terms are not independent
and drawing from an inverse univariate CDF, as done for the MNL, is not possible anymore.
However, following Ben-Akiva et al. (1985), the error term of the NL model can be decom-
posed into conditionally independent terms and drawing from the NL distribution becomes
possible. Throughout this paper, we work with utility-maximising representation and RU2
scale normalisation, see e.g. chapter 7.4.3 of de Dios Ortuzar and Willumsen (2011).

2.2.1 Two levels

Following Ben-Akiva et al. (1985), we decompose the probability of choosing alternative j in
nest k into the marginal probability of choosing nest k (marginalised over all alternatives j in
k) and the conditional probability of choosing j given that nest k£ was chosen. To be concrete,
we here work with two alternatives in two nests. For a given realisation of the error term, the
probabilities are indicators /[x], where I[x] = 1 if x is true and O otherwise. Nest 1 will be
chosen if it contains the maximum utility, i.e.

I[maxU;; > maxUsj| = I[malej +e;> maXVz, + & (3)
JEB) i€By

Ben-Akiva et al. (1985) conjectured that the error term could be written as

€j = &+ €k 4)

where €, are i.1.d. E V (0, 1), and & is independent of €jjx- The existence of this decom-
position was proven to exist by Cardell (1997); Galichon (2022), and the authors showed that
there is generally no finite closed-form expression for the probability density function of &.
We do not need to know its distribution here because it will drop out in the next steps. Using
Eq. 4 inside the left-hand indicator of Eq. 3 leads to

rré%xV1]+81]—maxV1J+81+81‘1—81+maxV1J+ |1 &)
J&b1 J€
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because & does not vary over alternatives in nest 1. Ben-Akiva et al. (1985) showed that

max V;+¢€;; ~ EV1(y *log Z exp(V;/u1), ), (6)
JeBi JEB)
where we used ~ to denote "distributed as". Shifting all alternatives by the inclusive value,
also called logsum,

Vg, =log Y exp(V;/w), (7)
JEB;

leaves the maximum unchanged and using

axe+C~EVI(aA+C,u/a) for a,CERT, e ~EV1(A,u) (8)

in Eq. 5 we arrive at

& +?é%xvlj+£j|1 =&+ U1V, —f—éj“ = U1V, + €p,, 9)
1

where

ep, ~EV(0,1) (10)

by definition in Eq.(4). Performing the same calculation for nest 2 and plugging the results
into Eq.(3) leads to

IlmaxU;; > maxUs,;| = I[u11Vp, + €p, > U2IVp, + €p,], (1T)
JEB] i€B;
where eg ~ EV1(0,1). This equation is independent of €;;. We can therefore draw from
€p, by using Eq.(2) and then choose the nest with maximum composite utility w/Vp, + €g, .
The conditional choice within the chosen nest k = chosen can then be determined by again
using Eq.(2) to draw €;)c50n ~ EV1(0, Ueposen)- This is due to & in Eq.(4) being constant in
each nest and therefore removing it does not change the alternative with maximum utility in a
given nest.

2.2.2 Three or more levels

The results from the previous section extend to more levels, see Ben-Akiva et al. (1985). We
do not show this here, but note that the results can be read off existing works on closed-form
probability solutions for NL models, see e.g. Newman et al. (2018): The probabilities of al-
ternatives are given by products of independent marginal and conditional probabilities, which
are all of MNL-type. Therefore, using the corresponding composite utility expressions, draw-
ing from EV'1(0,1) at each level and then further "walking down the tree" from the maximum
composite alternative utility expression until one reaches a leaf (fundamental alternative) will
lead to a sample from the NL probability density.

In summary, we have explicitly shown how to draw from both MNL and NL error terms
directly and therefore how to make explicit choices in econometric ABMs consistent with ran-
dom utility theory at the individual level for the MNL model, and nearly completely consistent
for the NL model. Some edge cases still exist for the latter, due to using logsums. This could
be avoided by not drawing conditionally, however this requires drawing from a distribution
specified by its Laplace transform as described in Galichon (2022) and references therein and
we have not explored this yet. We will return to this topic in section 4.
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3. Practical Example

To illustrate the merits of our method in practice, we here briefly investigate a road capacity
scenario with VLC’s ActivitySim model of South-East Queensland, see Zill et al. (2021) for
details on the model and van Vuren et al. (2022) for more details on the scenario. In summary,
we increase the capacity on one of inner Brisbane’s busiest roads, Coronation Drive, by two
lanes in both directions. We perform four runs; a base and scenario run with the standard
ActivitySim choice methodology and another base and scenario run with the methodology
presented in section 2. To that end, we implemented this method in the ActivitySim software,
making use of its open source nature by forking the project on github, see Zill (2022). In the
following, we investigate the changes in workplace location choice across scenarios for each
methodology. We chose the workplace location choice model because it is the first model for
workers and the inputs to the runs are therefore the same for both methodologies; the skims
differ of course between base and scenario.

Figure 2: Difference in workplace location choice between road capacity scenarios for ActivitySim’s standard choice
method (Monte Carlo) and our method presented here (FRU) at different levels of spatial aggregation.

Choice method Difference at SA4 Difference at SA3 Difference at SA? Difference at TAZ

Monte Carlo 801 2037 6563 12657
FRU 721 1135 1586 1734
ratio FRU f MC 0.90 0.58 0.24 0.14

In figure 2, we show the total change in workplace locations at different levels of spatial
aggregation as defined by the Australian Statistical Geography Standard, as well as at the travel
analysis zone (TAZ) level. At the most aggregate level of SA4s, the difference in workplace
locations between scenario and base is very similar for both the standard ActivitySim method-
ology (Monte Carlo) and our methodology (FRU). Looking into the spatial distribution (not
shown here) confirms a very similar p attern. However, the more granular the spatial analysis
unit becomes, the more the two methodologies start to differ: At the TAZ level, the Monte
Carlo method leads to 12657 different workplace locations. In contrast, our method, which
only leads to changes when the random utility of another location is larger in the scenario,
shows 1734 changes. The large number of changes for the Monte Carlo method can be under-
stood with the help of figure 1: Our model has 4380 TAZs and many of these will have small
choice probabilities; correspondingly, their borders on the cumulative probability line will be
very close. Any random number falling within that range will easily move to a different choice
upon changes to the probability in any other zone, even when they are far away.

4. Current and future work

We saw in the previous section that freezing randomness at the individual utility level leads
to more much more stable workplace location choices. This is the first choice model in our
ActivitySim model, which has many more downstream choice models. Each of these models
should be more stable by themselves due to our methodology. Additionally, they will also have
the same initial "starting point" more often (i.e., the same choices in upstream models). We are
currently investigating what the implications for overall model convergence are.

Another area of interest is economic benefit calculation. These can currently be calculated
either by logums and aggregation, i.e. accessibilities by population segments by mode and time
period (hour here), or by the rule of half across choice dimensions like destinations, modes,
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and time periods. Using logsums, i.e. expectation values, will remove simulation noise but our
methodology could still be helpful by ensuring better convergence. For the rule of half, our
methodology could be helpful by removing simulation noise.

Finally, Galichon (2022) showed how to write the NL error term as a sum of independent
error terms without recourse to conditional drawing. In other words, the author showed how to
draw from Ben-Akiva’s "intermediate distribution", c.f. equation 4. This potentially opens the
door to consistent benefit calculations at the individual level for micro-simulated models.

5. Conclusions

We showed a simple way of drawing from the unobserved utility of MNL and NL models
directly. The motivation for this was shown to come from econometric, micro-simulated ABMs
where the current standard methodology can lead to inconsistent results for scenarios at the
individual level. We explained this with a simple toy mode choice example. We also showed
its relevance in practice by implementing the methodology in the ActivitySim framework and
applying it to a large-scale road capacity scenario in Brisbane. We investigated the changes in
workplace location across scenarios for both the standard Monte Carlo random draw strategy
and our random utility draw strategy. The results showed that both methodologies agreed
at very aggregate spatial units, but at the granular zonal level our methodology was much
more stable. We also summarised our current efforts and future work, which is centred around
investigating the influence of the methodology on model c onvergence and e conomic benefit
calculation. Last but not least, we hope this work will help with communicating model results
to a non-technical audience, where seemingly illogical results can lead to distrust of models.
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