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1. Introduction 

Real-time queue length at signalized intersections has long been acknowledged as an essential 

parameter for traffic management and control. The literature on real-time queue length 

estimation comprises two distinct domains based on the underlying theory. First domain of 

models is based on the analysis of cumulative traffic input-output to a signal link based on the 

conservation law that was first proposed by (Webster, 1958) and later improved by many other 

researchers. Although these models are conceptually quite simple, there are several important 

limitations. Specifically, cumulative input-output models can capture the queue length 

accurately only when the rear end of the queue does not exceed the detector site. Further, this 

category of models cannot be utilized for the estimation of queue lengths that appear due to 

over-saturated traffic conditions. The second model domain is based on the propagation of 

traffic shockwaves. The shockwave model may successfully explain both the temporal and 

spatial dimensions of a complex queuing process. However, this model includes significant 

assumptions regarding the propagation of shockwaves and require vehicle arrivals data, which 

cannot be collected on most roadway sections.  

Various model-based approaches exist in the literature for estimating the length of a queue in 

real time utilizing different data sources that offer either Eulerian or Lagrangian measurements. 

Nevertheless, with the increasing availability of high-resolution event-based detector data 

recently, consideration was given to exploiting such data to recover the event history of a traffic 

signal and to provide a foundation for analyzing the relationship between signal phase changes 

and traffic flow during the queue formation and discharging processes (Liu et al., 2009; Wu et 

al., 2010; Wu & Liu, 2011). Specifically, such high-resolution data exposes "break points" that 

detect traffic flow pattern variations (traffic state changes). Of particular interest for our study, 

(Liu et al., 2009) suggested a breakpoint-based queue length estimating approach for queue-

over-detector (QOD) scenarios, where queues grow beyond the advance detectors. The critical 

step in their method was to identify the breakpoints indicating the transition of traffic states 

during queuing process at the detector location, situated sufficiently away from the intersection 

stop line. The maximum queue length was then estimated by reconstructing shockwave profiles 

in accordance with the theory of shockwaves. The limitations when applying the breakpoint-

based model to estimate lane specific, cycle-based maximum queue lengths are identified as: 

 

i. The incorrect identification of break points resulting in estimation inaccuracies.  

ii. The vehicle detector must be positioned far enough from the intersection stop line 

iii. Inability to perform sequentially in both under-saturated and over-saturated conditions 

 

To overcome the above limitations, this paper presents a novel Kalman filter framework that 

can combine several measurement types in a time-varying way to estimate the cycle-based 

maximum queue length. This framework considers the measurement errors and uncertainties in 

the state variables (i.e., maximum queue length). 
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2. Methodology 

2.1. Breakpoint Identification and deterministic models  
 

Traffic states are defined by the vehicle flow, q (veh/h) and the corresponding density, k 

(veh/km). The transition of traffic states within each signal cycle can be depicted 

spatiotemporally using the traffic shockwave diagram, aligning with the signal phases of each 

cycle. The time at which traffic transitions from one state to another is defined as a “break 

point”. If the 𝑛𝑡ℎ signal cycle is under-saturated (cycle condition 1 of Figure 1), three main 

break points named as break point A, B and C could be identified and if the 𝑛𝑡ℎ signal cycle is 

over-saturated (cycle condition 2 of Figure 1) another break point called break point D will 

appear instead of break point C. To distinguish each of the break points A, B, C, and D using 

2s occupancy data, distinct threshold values were established. The time that point “A” appears 

(𝑇𝐴) is the moment that the queuing shock wave 𝑉1
𝑛 propagates upstream and crosses the loop 

detector site. Between 𝑇𝑟
𝑛 (start of red phase) and 𝑇𝐴, the vehicles pass the loop detector with 

the arrival traffic state (𝑞𝑎
𝑛, 𝑘𝑎

𝑛) while between 𝑇𝐴 and 𝑇𝐵, no vehicle can pass the loop detector 

because of the jam traffic condition (0, 𝑘𝑗). In this study, based on our observations, if there is 

an occupancy change from less than 100% to 100% occupancy and if the occupancy value is 

kept at 100% for more than 4 s (2 of 2-seconds time intervals) within red phase, it can be 

categorized as break point “A”. Point B represents the time (𝑇𝐵 ) at which the discharge 

shockwave, 𝑉2  reaches the detector location. Between effective green start 𝑇𝑔
𝑛  and,  𝑇𝐵  the 

traffic state over the detector is (0, 𝑘𝑗); after 𝑇𝐵, vehicles are discharged at saturation flow rate 

and traffic state changes to (𝑞𝑚, 𝑘𝑚). Based on our observations, if the occupancy remains 

100% at least for two consecutive time intervals and then drops to a lower value than 100% 

occupancy within green phase, it can be categorized as a “B” break point. Identification of point 

“C” is the most 

challenging step. Point C 

indicates the time ( 𝑇𝐶 ) 

when the rear end of 

queue passes the 

detector. Before point C 

appears, vehicles 

discharge at the 

saturation flow rate at the 

location of loop detector, 

i.e., the traffic state is 

( 𝑞𝑚 ,  𝑘𝑚 ). After the 

departure shockwave 𝑉3
𝑛  

propagates to the 

detector location, the 

traffic state changes to 

(𝑞𝑎
𝑛 , 𝑘𝑎

𝑛 ). Based on our 

observations, having 0% 

occupancy for at least 

two consecutive 2 

seconds time intervals 

(4s) in a green phase assure 

the appearance of point C. 

In over-saturated cycles, due to the residual queue occupying the detector site the departure 

Figure 1. Possible signal cycle conditions 
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wave 𝑉3
𝑛 will not be crossing the detector site and thus breakpoint C will be unobservable at 

the detector site. Instead, a breakpoint “D” will appear which defines the traffic state transition 

from saturation state (𝑞𝑚, 𝑘𝑚) back to jam state (0, 𝑘𝑗). Breakpoint D appears when the queue 

discharging at a saturation flow rate is unable to clear during the green phase and becomes 

stationary. Breakpoint D was identified through the occupancy change happening at a beginning 

of a signal cycle from a value between 20% -80% occupancy (corresponding to the saturation 

flow rate according to the simulation results) to 100% occupancy and continues for at least 2 

consecutive time steps when a point C is not detected in the previous signal cycle. It should be 

noted that the threshold values of point A and point D are very similar and that could result in 

misidentification of point A as D and vice versa. Hence, it is important to investigate the 

appearance of point C in the (𝑛 − 1)th signal cycle to confirm whether the identified point is 

point A or point D at the beginning of 𝑛th signal cycle. Four possible signal cycle conditions 

were determined when studying the observed break points described above (please see Figure 

1). The cycle conditions indicate all possible traffic state transitions in signal cycle 𝑛 that can 

occur in relation to the conditions in the previous cycle (𝑛 − 1) and the next cycle (𝑛 + 1), as 

described below.  

 

Cycle condition 01: Both (𝑛 − 1)
𝑡ℎ

 cycle and 𝑛𝑡ℎ cycle   is under-saturated, hence the beginning 

of the 𝑛𝑡ℎ cycle is not impacted by a residual queue nor the end of 𝑛𝑡ℎ cycle (beginning of  

(𝑛 + 1)
𝑡ℎ

 cycle). Therefore, breakpoints A, B and C appears sequentially.  
 

Cycle condition 02: (𝑛 − 1)
𝑡ℎ

 cycle is under-saturated but 𝑛𝑡ℎ cycle   is over-saturated, hence 

the beginning of the 𝑛𝑡ℎ cycle is not impacted by a residual queue but the end of 𝑛𝑡ℎ cycle 

(beginning of  (𝑛 + 1)
𝑡ℎ

 cycle). Therefore, breakpoints A, B and D appears sequentially. 
 

Cycle condition 03: (𝑛 − 1)
𝑡ℎ

 cycle is over-saturated but 𝑛𝑡ℎ cycle   is under-saturated, hence 

the beginning of the 𝑛𝑡ℎ cycle is impacted by a residual queue but not the end of 𝑛𝑡ℎ cycle 

(beginning of  (𝑛 + 1)
𝑡ℎ

 cycle). Therefore, breakpoints D, B and C appears sequentially. 
 

Cycle condition 04: Both (𝑛 − 1)
𝑡ℎ

 cycle and 𝑛𝑡ℎ cycle   is over-saturated, hence the beginning 

of the 𝑛𝑡ℎ  cycle and the end of 𝑛𝑡ℎ  cycle (beginning of  (𝑛 +1)
𝑡ℎ

 cycle) is impacted by a 

residual queue. Therefore, breakpoints D, B and D appears sequentially. 

 

We developed four models (eq. 1-5) to estimate the cycle-based maximum queue length (𝐿𝑚𝑎𝑥
𝑛 ) 

based on the identified breakpoints A, B, C, and D and the signal cycle conditions. The cycle-

based maximum queue length (𝐿𝑚𝑎𝑥
𝑛 ) is the vertical distance between the intersection stop line 

and the place where three shockwaves (𝑉1
𝑛, 𝑉2 and 𝑉3

𝑛) intersect. Hence, using any of these two 

waves, the coordinates of the intersection point of these three waves can be determined.  

 

𝑳𝒎𝒂𝒙
𝒏 =

𝒒𝑩𝑪
𝒏

𝒌𝒋
+ 𝑳𝑫                                                        (1) 

𝐿𝑚𝑎𝑥
𝑛 = 𝐿𝐷 + (𝑇𝐶 − 𝑇𝐵)𝑛 (

1

𝑉2
+

1

𝑉3
𝑛)⁄              (2) 

𝐿𝑚𝑎𝑥
𝑛 = 𝐿𝐷 + (𝑇𝐴 − 𝑇𝐵)𝑛 (

1

𝑉2
−

1

𝑉1
𝑛)⁄        (3) 

𝐿𝑚𝑎𝑥
𝑛 =

𝑉1
𝑛𝑉2 (𝑇𝐷

𝑛−𝑇𝐵
𝑛)

(𝑉1
𝑛−𝑉2)

+ 𝐿𝑚𝑖𝑛
𝑛−1        (4) 

Where,   𝐿𝑚𝑖𝑛
𝑛−1 =

𝑉2[𝐿𝑚𝑎𝑥
𝑛−1 +𝑉2𝑇𝑚𝑎𝑥

𝑛−1−𝑉3
𝑛−1𝑇𝑟

𝑛]

(𝑉2+𝑉3
𝑛−1)

      (5) 
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2.2. Design and implementation of multivariate time-varying Kalman 

filter  
 

We relied only on readings collected from loop detectors when detecting traffic state changes. 

Specifically in the case of high-resolution detector data, it can cause significant inaccuracies in 

flow and occupancy measurements. To overcome this problem, this study proposes a novel 

approach that employs the four deterministic models introduced in the previous section as 

measurement models in a multivariate Kalman filter framework. In this application, we 

consider the cycle-based maximum queue length (𝐿𝑚𝑎𝑥
𝑛 ) and the cycle-based minimum queue 

length (𝐿𝑚𝑖𝑛
𝑛 )  as the unknown or hidden state variables. The four models (eq. 1-5) are 

incorporated as linear measurement models which describes the relationship between the state 

variables (𝐿𝑚𝑎𝑥
𝑛  and 𝐿𝑚𝑖𝑛

𝑛 )  and measurements. The Kalman filter is often interpreted as two 

different phases: "Predict" and "Update." The predict phase uses the state estimate from the 

previous time step (a priori) to produce an estimate of the state at the current time step. In the 

update phase, the current a priori prediction is combined with current observation information 

to refine the state estimate. This improved estimate is termed the a posteriori state estimate.  

 

The standard Kalman filter model assumes the true state at time 𝑡 is evolved from the state at 

(𝑡 –  1) according to a process model of:  

𝑥𝑡 = 𝐹𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝜔𝑡        (6) 

Where:  

• 𝐹𝑡 is the state transition model which is applied to the previous state (𝑡 –  1) 

• 𝐵𝑡 is the control input model which is applied to the control vector 𝑢𝑡 

• 𝜔𝑡 is the process noise which is assumed to be drawn from a zero-mean multivariate 

normal distribution, 𝛮, with covariance, 𝑄𝑡 : 𝜔𝑡~Ν(0,𝑄𝑡) 

At time 𝑡  an observation (or measurement) 𝑧𝑡  of the true state 𝑥𝑡  is made according to a 

measurement model of: 

𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝜐𝑡         (7) 

Where: 

• 𝐻𝑡 is the observation model which maps the true state space into the observed space  

• 𝜐𝑡is the observation noise which is assumed to be zero-mean Gaussian white noise with 

covariance 𝑅𝑡: 𝜐𝑡~Ν(0,𝑅𝑡) 

When considering 𝐿𝑚𝑎𝑥
𝑛  and 𝐿𝑚𝑖𝑛

𝑛  as the state variables, the process model should describe how 

the state variable evolves over time. The behavior of 𝐿𝑚𝑎𝑥
𝑛  and 𝐿𝑚𝑖𝑛

𝑛  is indeed a complex 

process that is challenging to model when a fixed sampling interval is considered. Therefore, a 

simple random walk model is assumed to be the process model that defines the time evolvement 

of the state variables, 𝐿𝑚𝑎𝑥
𝑛  and 𝐿𝑚𝑖𝑛

𝑛  with a fixed sampling interval equal to the signal cycle 

length. It should be noted that for the design simplicity of the Kalman filter, 𝐿𝐷, which is the 

distance from the stop line to the detector site was incorporated into the state variable matrix as 

a constant. In our case study, 𝐿𝐷 =35m. Therefore, the process model of this system is defined 

as: 

𝐿𝑚𝑎𝑥
𝑛 =  𝐿𝑚𝑎𝑥

𝑛−1 + 𝑒1−1                           (8)                                        

𝐿𝐷 = 𝐿𝐷 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)                                           (9)                                                        

𝐿𝑚𝑖𝑛
𝑛 =  𝐿𝑚𝑖𝑛

𝑛−1 + 𝑒1−2                                            (10)     

Where:  
• 𝑛 is the time step which is equal to the signal cycle length (150 seconds) 

• 𝑒1−1, 𝑒1−2 are white process noises~𝑁(0,𝑄)  
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The four deterministic models (equations 1, 2, 3, and 4) generated in the preceding section were 

used as measurement models for the Kalman filter. By arranging the measurements to be on the 

left side of the equations, the model equations are reorganized as follows.  

 

 

𝑞𝐵𝐶
𝑛 = 𝑘𝑗 ∗ 𝐿𝑚𝑎𝑥

𝑛 − 𝑘𝑗 ∗ 𝐿𝐷 + 𝑒2       (11) 

(𝑻𝑪 − 𝑻𝑩)𝒏 = (
𝟏

𝑽𝟐
+

𝟏

𝑽𝟑
𝒏) ∗ 𝑳𝒎𝒂𝒙

𝒏 − (
𝟏

𝑽𝟐
+

𝟏

𝑽𝟑
𝒏) ∗ 𝑳𝑫 +  𝒆𝟑           (12) 

(𝑻𝑨 − 𝑻𝑩)𝒏 = (
𝟏

𝑽𝟐
−

𝟏

𝑽𝟏
𝒏) ∗ 𝑳𝒎𝒂𝒙

𝒏 − (
𝟏

𝑽𝟐
−

𝟏

𝑽𝟏
𝒏) ∗ 𝑳𝑫 +  𝒆𝟒           (13) 

(𝑻𝑫 − 𝑻𝑩)𝒏 = (
𝟏

𝑽𝟐
−

𝟏

𝑽𝟏
𝒏) ∗ 𝑳𝒎𝒂𝒙

𝒏 − (
𝟏

𝑽𝟐
−

𝟏

𝑽𝟏
𝒏) ∗ 𝑳𝒎𝒊𝒏

𝒏−𝟏 +  𝒆𝟓       (14) 

 

In the proposed Kalman filter framework, all 4 models (eq. 1-4) are considered together as 

measurement models thus it is called a multivariate Kalman filter. Hence, the measurements 

matrix (𝑧𝑡 ) and the measurement function matrix (𝐻𝑡 ) can be written as follows for the 

multivariate-time varying Kalman filter with the state variable matrix, 𝑋 . 𝑅𝑡  is the 

measurement covariance matrix.  

 

𝑋 = [

 𝐿𝑚𝑎𝑥
𝑛

𝐿𝐷

𝐿𝑚𝑖𝑛
𝑛

]                                                         𝑧𝑡 =

[
 
 
 

𝑞𝐵𝐶
𝑛

(𝑇𝐶 − 𝑇𝐵)𝑛

(𝑇𝐴 − 𝑇𝐵)𝑛

(𝑇𝐷 − 𝑇𝐵)𝑛]
 
 
 
 

 

𝐻𝑡 =

[
 
 
 
 
 
 

𝑘𝑗 −𝑘𝑗 0

(
1

𝑉2
−

1

𝑉1
𝑛) −(

1

𝑉2
−

1

𝑉1
𝑛) 0

(
1

𝑉2
+

1

𝑉3
𝑛)  −(

1

𝑉2
+

1

𝑉3
𝑛)  0

(
1

𝑉2
−

1

𝑉1
𝑛) 0 −(

1

𝑉2
−

1

𝑉1
𝑛)]

 
 
 
 
 
 

        𝑅𝑡 =

[
 
 
 
𝑅𝑒2 0 0 0
0 𝑅𝑒3 0 0
0 0 𝑅𝑒4 0
0 0 0 𝑅𝑒5]

 
 
 
  

 

𝑅𝑒2, 𝑅𝑒3, 𝑅𝑒4 are the covariances of 𝑒2, 𝑒3, and 𝑒4 corresponding to the measurement errors. A 

significant difference exists in measurement model 2, 3 and 4 (eq. 12-14) compared to 

measurement model 1 (eq. 11). The measurement function (𝐻𝑡) is a constant in eq.11 which is 

𝑘𝑗 , the jam density of the road segment while in eq. 12-14, 𝑉1
𝑛 and 𝑉3

𝑛 parameters are embedded 

which are time dependent. As the 𝑉1
𝑛 and 𝑉3

𝑛 shockwave speeds rely on the arrival traffic flow 

of each signal cycle and hence these two parameters should be updated during each epoch of 

the estimation. In our algorithm, these two parameters are updated during each epoch which 

makes the filter a “time varying” filter. Thus, the final algorithm developed under this study is 

called multivariate time-varying Kalman filter.   

3. Simulation results and analysis 

Results generated through a 3-hour simulation for the mixed traffic condition (contains all cycle 

conditions) is shown in Figure 2 below. The signal cycles belonging to the respective cycle 

conditions described in Figure 1 are depicted in different colors and labeled 1,2, 3, and 4 

corresponding to the respective cycle condition in Figure 2. Figure 2 also indicates the 

performance of the rule-based models for comparison.  
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Figure 2. Performance of the Multivariate time-varying Kalman filter 

The results of the mixed traffic condition indicates that the Kalman filter framework performs 

with a significant accuracy resulting in a MAPE value of 14.27 with acceptable estimation for 

the over-saturated cycles. The covariance values, 𝑃, 𝑄 𝑎𝑛𝑑 𝑅 (act as hyper parameters of the 

Kalman filter) were selected through engineering intuition considering the real performance of 

the dynamic system.  

4. Conclusion 

The Kalman filter estimator performs significantly well in all defined cycle conditions. As a 

future step, we will validate the methodology with real world data obtained via STREAMS 

platform available for Brisbane. Additionally, advanced prediction models instead of the 

random walk model will be further investigated as an expansion to the current study.  Further, 

a prior optimization algorithm to choose the optimal hyper parameter values of the Kalman 

filter will increase the adaptability of the algorithm in different real-world applications. 
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