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1. Introduction
Land use and transport have a long and complex history of mutual influence. The invention of
steam engine locomotives led to the opening of the first railway in 1825 (Vuchic, 2005). After the
onset of the Industrial Era, due to the location of job opportunities like factories in urban areas,
rural populations began to migrate to cities, causing large scale urbanization and urban expansion
(Lierop et al., 2017). As walking distances increased, new modes of transport were deployed to
move the labor force across growing urban areas.
The transit systems enable mass movement, and as such, they enable higher densities for certain
activities in some places. By increasing the ability of firms (and jobs) to cluster in the urban core,
transport networks are simultaneously creating a push factor decreasing housing densities in those
places by making housing in the core more expensive and a pull factor giving housing outside the
core greater accessibility. Transport-land use interaction is theorized to be a joint development
process of infrastructure and land development location as a positive feedback cycle: transport in-
frastructure produces accessibility that induces land development which induces transport demand
and increases accessibility increasing the production of transport networks (i.e. inducing supply)
and further intensifying land development (D. Levinson, 2007; D. Levinson and Xie, 2011; King,
2011; D. M. Levinson, 1998; Anderson, D. Levinson, and Parthasarathi, 2013; Kasraian, Maat, and
Wee, 2016).
In most analyses, the relationship between infrastructure and travel demand has been considered
as a one-way process with infrastructure network (supply) as the explanatory variable and traffic
(demand) as the dependent variable (D. Levinson, 2007). While these studies provide some un-
derstanding of the characteristics of transit networks, there is a lack of knowledge on how transit
networks and land use evolve into their current unique state, form, and structure patterns as they
are born, grow, mature, and decline over time. It is widely believed that high population density
is an important factor in the success of transit systems (density represents potential ridership, high
ridership allows higher frequency of service lowering wait times, and density allows tighter spac-
ing between services, thus reducing the time to access the transit service, both reinforcing demand
in what is referred to as the Mohring effect (Mohring, 1972; Bar-Yosef, Martens, and Benen-
son, 2013)). However, just because transport depends on high population density for success does
not necessarily mean that either high density areas generate public transport investment or transit
creates high-density areas around stations (D. Levinson, 2007). Although a variety of actors are
involved in developing an urban transit networks that pursue their interest (Cats, 2017), there is a
research gap to understand the co-evolution of land use and large-scale transit systems.
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Figure 1: Land use and transit network interaction

This paper aims to investigate the theory of interaction between land use and rail network (Badoe
and Miller, 2000; Wegener, 2021) and disentangle the questions of induced development and in-
duced supply. It examines whether the growth of a suburb encourages the construction of a new
rail stop, or whether the rail system acts as a centralized (or decentralized) influence in determin-
ing population density. We investigate the direct and indirect links between land development and
transit investments using the concept of accessibility. We develop an empirical model to capture
the Greater Sydney area’s historical evolution of land use and rail networks.

2. Theory and hypothesis
We test whether the interaction between land use and transport network is a positive feedback loop:
improvements on one side lead to more on the other side, though with different speeds and time
lags. This interaction has been conceived as a complex system with many components which is
well discussed in the literature (Wegener, 2021). However, this study posits that the interaction
between land development and transport investment can be conceived as a simplified feedback
loop through the concept of accessibility as a potential force that dictates travel behaviors. To
investigate the causal relationship between land use and transit development, accessibility can be
used as a medium to justify the spatio-temporal co-development process in an urban environment.
Throughout this article, the term ‘land use’ refers to population density.
The co-development or co-deployment theory being tested in this study is whether land use devel-
opment leads to the future development of transit networks or in converse, the expansion of the
transit network drives land use. When and how much the development of one leads to more devel-
opment of the other is still a question. This has been brought to light in the literature. In the core
of London, existing development lead to the improvement of railway system which in turn enhance
the commercial development which leads to more rail investment. However, in the periphery of
London, the transit network increase the population density which attracts more investments on the
network and essentially leads to more land development (D. Levinson, 2007).
Other cases are also possible. One expects that rail promotes suburbanization, shifting the popula-
tion from the Sydney CBD to the periphery where land is significantly less expensive than the CBD,
since the value of land in the Sydney CBD appreciated for commercial activities benefiting from
agglomeration economies, while decreasing for residential activities as the periphery supplies more
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land for development within an accessibility travel time threshold. This will drop the residential
density significantly for the Sydney CBD while increasing it in the periphery.
In this study, we model the co-development of land use and transit networks with two different
approaches. We describe a direct relationship between land use and transit elements in the first
approach, in which both are the main driving forces of each other. The second approach tests an
indirect interaction where both transit and land use create potential forces to attract each other in a
positive cycle. We consider this possibility as a link between land development intensity and transit
network development since it is, by definition, analogous to the concept of accessibility. We also
test the hypothesis that both direct and indirect elements exist in a model.

2.1. Accessibility
Accessibility is the ease of reaching desired activities for the residents of a city. Calculating acces-
sibility is a way to measure the number of opportunities reachable in a specific time threshold.
Due to the lack of historical employment data, this study focuses on population data as a surrogate,
as locations with higher job access tend to have higher population access as well (Wu and D. Levin-
son, 2019). Therefore, the accessibility to population (Equation 1) will be measured to investigate
the primacy of each suburb and how favorable they are to attract people and transit services.

Ai =
J∑

j=1

Pjf(Cij)) (1)

Where: Ai gives the cumulative opportunities of block i, Pj is the population of block j, Cij is the
generalized travel cost (in terms of time) from region i to region j, and f(Cij) is the impedance
function:

f(Cij) =

{
1 if Cij ≤ T

0 otherwise

The access (accessibility) is measured at the mesh block level for four time thresholds (15-, 30-,
45-, and 60-minute) by transit including trams (and then light rails), trains, and buses. In order to
aggregate the access measures to the suburb level, a person-weighted average of the mesh blocks
in each suburb is calculated as Equation 2.

AI =

∑
(Pi × Ai)∑I Pi

∀i : i ∈ I (2)

where AI is the access of suburb I , and Pi is the population of the blocks inside suburb I .

2.2. Spatial correlation and spatial weights
The spatial proximity among neighbors creates spatial dependence and numeric similarity among
their observed attributes. This spatial interaction is referred to as spatial lag and is considered in
the panel data regression. The spatial dependence means some characteristics of an area are corre-
lated with its adjacent neighbors and to capture that effect in the regression analysis, a neighbors-
weighted measure of the independent variable can be considered as another regressor. The weights
are based on the adjacency matrix and how it has been defined. Different definitions and types of
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Table 1: Hypotheses

Population density is Tram stop density is Train station density is
positively associated with: positively associated with: positively associated with:

lagged:

Common population density tram density train density
assumption neighbors population density neighbors tram density neighbors train density

change in:

H1: direct interaction density of tram stops population density population density
density of train stations density of train stations density of tram stops

H2: indirect interaction 30-min access 30-min access 30-min access

H3: mixed 30-min access 30-min access 30-min access
indirect density of tram stops population density population density
interaction density of train stations density of train stations density of tram stops

neighborhood exist in the literature including the ones that are based on the shared edges and ver-
tices (such as Rook, Bishop, Queen neighbors) and some distance-based measures (such as KNN
and binary distance functions). In this study, the weights are based on adaptive distance measure
using a triangular decay function. Equation 3 formulates the weights of each neighbor in the weight
matrix.

wi,j = 1− di,j
maxK(di,j)

: i ̸= j (3)

where di,j is the euclidean distance between the suburb centroids and maxK(di,j) is the maximum
distance to the k nearest neighbors. For the sake of simplicity, only 4 nearest neighbors have been
considered for each spatial entity. To have average-weighted values, we transform the weights into
row-standardized format as Equation 4.

w′
i,j =

wi,j∑J
j=1 wi,j

(4)

2.3. Panel regression model
A series of hypotheses (Table 1) are evaluated based on historical data to study the effect of rail-
ways on land use and how population density changes transit networks. The hypotheses are divided
into direct, indirect, and mixed interactions. Direct interaction reflects the direct influence of transit
on land use and vice versa. The indirect interaction takes the accessibility as an interface between
transit and land use. In a mixed interaction, both direct and indirect relationships are used simulta-
neously.
These hypotheses have both temporal and spatial (space-time) lagged exogenous components. The
temporal lag reflects the effect of previous state of a variable in time (temporally dependent on past
values), whereas the spatial lag (or spatial dependency) considers what is the current condition of
the adjacent spatial units (e.g. suburbs). Using the spatial lag of the dependent variables can capture
some of latent unobservable factors (LeSage and Pace, 2009). The general form of a balanced
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data panel consists two dimensions and the space-time interaction is achieved through separability.
There is no spatial spillover between time periods since the spatial weights remain constant over
time. The general format of space-time interaction is shown by Equation 5.

yt = α + ϕyt−1 + γWNyt−1 +Xt−1β + ϵt t = 1, ..., T (5)

In order to consider both temporal heterogeneity and spatial correlation, several panel models are
defined to predict residential density, tram stops density, and train stations density. As the density
changes slowly, a one period (10 years) lag structure is considered to conduct the causality test. The
result will test the listed hypotheses of the hypothesized mutual relationship between railway and
land use development. A cross-sectional database has been generated at the suburbs geographical
level to estimate the stated models. Equation 6 shows the general form of H3 model for predicting
the population density based on the lagged population and changes in the accessibility and network
density. The variables in H1 and H2 models would be a subset of the general form of the equation.
Equation 7 and Equation 8 predict the density of tram stops and train stations, respectively (both in
H3 format).

Pi,t = α1Pi,t−1 + α2

N∑
j=1

WNPj,t−1 + α3∆Ai,t,t−1 + α4∆Ti,t,t−1 + α5∆Ri,t,t−1 + β (6)

Ti,t = α1Ti,t−1 + α2

N∑
j=1

WNTj,t−1 + α3∆Ai,t,t−1 + α4∆Ri,t,t−1 + α5∆Pi,t,t−1 + β (7)

Ri,t = α1Ri,t−1 + α2

N∑
j=1

WNRj,t−1 + α3∆Ai,t,t−1 + α4∆Ti,t,t−1 + α5∆Pi,t,t−1 + β (8)

where:
Pi,t denotes the population density of district (i) at time t;
Pi,t−1 is the lagged population density in the previous time of district i;
∆Pi,t,t−1 is the change in the density of population on region i for one lag period (between t and
t− 1);
Ri,t indicates the density of train stations in region (i) at time t;
Ri,t−1 is the lagged train density in the previous time of district i;
∆Ri,t,t−1 is the change in the density of train stations on region i for one lag period (between t and
t− 1).
Ti,t represents the density of tram stops in region (i) at time t;
Ti,t−1 is the lagged tram density in the previous time of district i;
∆Ti,t,t−1 is the change in the density of tram stops on region i for one lag period (between t and
t− 1);
∆Ai,t,t−1 is the change in 30-minute access of region i for one lag period (between t and t− 1);

2.4. Granger causality
Granger causality is a method for analyzing the causal relationships among variables across time
series. The general equation (Equation 5) shows the observations of stationary variables of individ-
uals in a time period t with one lag time step. The procedure to determine the existence of causality
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Figure 2: The evolution of Sydney transit networks

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000
18

55

18
65

18
75

18
85

18
95

19
05 19
15

19
25

19
35

19
4

5

19
55

19
65

19
75

19
85

19
95

20
05

20
15

Sydney Trams Network Length [km] Tram Patronage (annual passengers)
Sydney Trains Network Length [km] Train Patronage (annual passengers)
Sydney Bus Network Length [km] Bus Patronage (annual passengers)
NSW Private Vehicle Registration Petrol Price [A c/l]

is to check for meaningful and significant effects of lagged values of X on the present value of y
(Lopez and Weber, 2017; Granger, 1969).

3. Data
3.1. Network data
The historical public transit systems in Sydney included tram, train, bus and ferry network. Due to
the lack of historical schedule and route data, ferries are excluded from this study. Although, the
technology of railways and buses had evolved over time, only the presence of the network and the
provided services are considered. Therefore, all the stations, stops, and track lines were digitized
and geo-coded with the opening and closure dates, and, all the schedules and operating routes have
been transformed into a general transit feed specification (GTFS) format. Where applicable, the
tram and train average speeds are considered to be 20 and 30 km/h, respectively. The geographical
information is summarized on the currently defined state suburbs of New South Wales, Australia.

3.2. Population Data
Alongside the network data, the historical population data are required to estimate the co-development
model. The historical census data were available at large-scale boundaries (usually at statistical or
local government boundaries). Moreover, the jurisdiction boundaries were not consistent during
time and changed many times. In order to test the discussed hypotheses using the proposed meth-
ods, boundaries must be rectified to be consistent across the study periods.
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To address this challenge, first, all the historical census data were digitized within the original
published boundaries for the census date. Second, to redistribute the population, the population is
re-distributed across a finer mesh blocks (approx. equal to 100m by 100m cells in central business
districts) proportional to the number of dwellings in each block as of 2016. Then the block popu-
lation is re-aggregated into modern suburb boundaries. This transformation can be written as the
Equation 9 respecting control totals.

PSi,t
=

K∑
k=1

PCt∑J
j=1 DMj,2016

×DMk,2016
: ∀Mk ∈ Si, ∀Mj ∈ PC (9)

The reason for using 2016 dwelling information is twofold. Firstly, the number of dwellings is
more correlated to the population distribution rather than the area of each boundary. Secondly,
most dwellings remain in place since they were built, though older dwellings may be torn down
and replaced with higher density development. This method probably overstates population away
from the current suburb centers of activity in early years, but no historical population distribution at
the block level is available, and we expect the errors in suburb level population are relatively small
and do not unreasonably bias the analysis.
After the population distribution, the population density of each suburb is organized as panel data.
It is worth mentioning that population is interpolated where necessary to account for missing data.
In this study, 916 suburbs within the Greater Sydney boundary are considered.
As mentioned earlier, the census boundaries were not constant historically, and many regions were
undeveloped rural or bush areas prior to the dispersion of the population. There is no specific
data about when exactly a region (or suburb) got developed and effectively became part of greater
Sydney. However, the population for Sydney and surrounding local government areas are recorded
(Coghlan, 1897).

4. Results
As discussed in the previous section, the historical land use and transit network have been digitized
and the access to people has been calculated at the mesh block level for four different time thresh-
olds (15-,30-,45-, and 60-minute). Results indicate that with the growing population and expanding
transit networks, access has expanded from the central business district (CBD), where the City of
Sydney was established, to the outskirts and evolved to today’s state (illustrated in Figure 3). To
compare the access in different years, the average person weighted access is recorded. Person
weighted access by transit peaked in the 1940s, then fell and rose again to reach its current state.
The reason for this could be that tram lines were removed, decreasing access, and it took some time
to reclaim the lost access.
The dataset is separated into multiple time periods due to the distinct life-cycle trends of transit
modes (as shown in Figure 2), including tram growth (1879-1930), the tram decline (1931-1961),
the whole tram period (1879-1961), and the whole train period (1856-2016). The three hypotheses
for modeling population density, tram stop density, and train station density at the suburb level
of Greater Sydney were then investigated using Panel OLS regression for four time slices. The
following subsections are organized by the explanatory variable these models test.
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Figure 3: The historical average person weighted access (PWA) for 15-,30-,45-, and 60-minute time thresholds
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4.1. Predicting population density
Table 2 shows the results for predicting population density for the City of Sydney and periphery
within the tram period. Not surprisingly, overall population density of region i at time t is positively
and significantly correlated with the lagged (10 years) population density of that region in all three
hypotheses. In the first hypothesis (H1), the population density of periphery is positively associated
with the lagged increase in the tram stops and train stations density. This finding corroborates
our expectation that a new tram stop or train station drives an increase in the population density.
However, in the City of Sydney, the tram and train were a decentralizing force to population.
This could be due to the fact that non-residential land use outcompeted residential uses. Another
significant predictor of population density in periphery is change in 30-minute access. Results
for second hypothesis (H2) indicate that the indirect interaction outperforms the direct relationship
between transit and land use. However taking both direct and indirect variables into account slightly
increases the R2. When considering access, the tram network acts as a decentralizing force for the
population of a region. Also, there is no meaningful population spillover from/to adjacent neighbors
in H1. In H2 and H3 the sign is negative, indicating a rise a neighbor population leads to a reduction
in local population, in other words, neighboring suburbs act as substitutes.

4.2. Predicting tram stops density
Table 3 presents the results for the tram growth period. As expected, the dependent variable is
highly correlated with the lagged tram stops density. In the periphery, the temporal and spatial
lagged tram density (neighbors tram density in the previous ten years) has significant positive im-
pact on tram density of region i at time t. Tram stops in neighbor suburbs are complements to
stops in the suburb of interest. This is not true for City of Sydney suburbs. The lagged 10-year
tram density of neighbors has negative impacts on tram density of others, although insignificant.
In the first hypothesis, changes in lagged population density is positive in predicting the tram stops
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density of the periphery, whereas the lagged change in the train stations density is not significant.
Furthermore, the lagged 30-minute access supports to be a significant explanatory variable (H2) in
the development of the tram network. Similar to the population results, accounting for both direct
and indirect variables slightly improves the R2.

4.3. Predicting train stations density
Table 4 shows the results for train stations density models in the train growth period. The train
stations density is highly correlated with the lagged train stations density. In the periphery suburbs,
it is correlated with the lagged 10-year train stations density of the neighbors, so train stations are
complements. The changes in population density and changes in access were the driving forces in
the adding a train station in a region, corroborating H1 and H2. However, the lagged changes in
the tram density is not able to explain the changes in the train network significantly. This finding
negates the hypothesis that train network density is positively associated with changes in tram
density. Taking both direct and indirect variables into account improves the R2 marginally, similar
to prior results.

5. Conclusion
Land development and network expansion have always been intertwined. Transport-land use in-
teraction theory states that the co-development process of infrastructure and land use is a positive
feedback cycle. The relationship can be conceived as direct connection between land use and tran-
sit elements, and indirect interaction through the concept of accessibility. This research tests three
models to investigate the relationship between land use and the transit network historically. We ex-
amined the population growth and public transit networks expansion in Sydney between the years
1851 to 2016. Historical census and the transit network data were generated in GIS, and GTFS
formats and the historical access to population were measured. The three panel regression models
for explaining the population, tram, and train density in four different time horizons were estimated
at the suburb level.
Results from the three models suggest that the expansion of the tram network and train railways
led residential construction (increasing population density), and profoundly shaped the Sydney
landscape. The results also support the hypothesis that the tram network expanded in response to
the increased demand and where the train network acted as a complimentary mode. This result
satisfy the the Granger causality analysis showing the causation effects between transport and land
use. The Granger causality analysis aids in understanding the significance of causation effects
in the context of statistical regression (Xie and D. Levinson, 2009). On the other hand, access
to population was evaluated as an explanatory component in justifying the interdependencies of
land use and transit network expansion. Results indicate that changes in 30-minute access have
significant impact on the distribution of population density and the evolution of transit network.
This article found that the tram network both was a predecessor to population growth and that
increases in the population density drove the tram network in turn. Dissimilarly, the Sydney train
network partially had a smaller role in public transport since most of Sydney’s population was
well served by trams. This trend changed upon the opening of the Harbour Bridge (1932) and the
City Circle extension to Sydney Trains. Today’s conditions differ, and clearly population in greater
Sydney is far more concentrated around train stations than elsewhere, and new growth is more
likely to occur in train station catchment areas (Lahoorpoor and D. M. Levinson, 2020).
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It is important to note that, unlike initial expectations, changes in tram density could not predict
the train network (and vice versa). The reason might be threefold. First, they have experienced
different life cycles. Second, the role of the train network differed since it was initially developed
for the intercity travel and freight movements, and its deployment appears largely independent of
tram change in the study period. Third, the design of the train network was much more a top-down
decision-making process, and other factors were involved at the design stage, in particular serving
freight and inter-city passenger markets rather than commuters.
There are some research suggestions that need to be discussed. First, in this study, the predic-
tion models were developed based on accessibility to population. Accessibility to employment
opportunities would increase the performance of the regression models, if historical employment
by location data can be obtained. Second, future research should consider other factors involved in
the co-development of land use and transit network. Considering other modes of transport such as
private vehicles would also be beneficial, if localised vehicle ownership data can be found. Finally,
in this study, the number of train stations and tram stops in a suburb were considered as the tram
and train network in that suburb. More sophisticated indices, such as the number of stations/stops
reachable in the 15-minute walk from the suburb’s centroid (Lahoorpoor and D. M. Levinson, 2020)
may increase the accuracy of the prediction.

References
Anderson, Paul, David Levinson, and Pavithra Parthasarathi. 2013. “Accessibility futures”. In:
Transactions in GIS 17.5, pp. 683–705.
Badoe, Daniel A and Eric J Miller. 2000. “Transportation–land-use interaction: empirical find-
ings in North America, and their implications for modeling”. In: Transportation Research Part D:
Transport and Environment 5.4, pp. 235–263.
Bar-Yosef, Asaf, Karel Martens, and Itzhak Benenson. 2013. “A model of the vicious cycle of a
bus line”. In: Transportation Research Part B: Methodological 54, pp. 37–50.
Cats, Oded. 2017. “Topological evolution of a metropolitan rail transport network: The case of
Stockholm”. In: Journal of Transport Geography 62, pp. 172–183.
Coghlan, Timothy Augustine. 1897. The wealth and progress of New South Wales. 10. Government
printer.
Granger, Clive WJ. 1969. “Investigating causal relations by econometric models and cross-spectral
methods”. In: Econometrica: journal of the Econometric Society, pp. 424–438.
Kasraian, Dena, Kees Maat, and Bert van Wee. 2016. “Development of rail infrastructure and its
impact on urbanization in the Randstad, the Netherlands”. In: Journal of Transport and Land Use
9.1, pp. 151–170.
King, David. 2011. “Developing densely: Estimating the effect of subway growth on New York
City land uses”. In: Journal of Transport and Land Use 4.2, pp. 19–32.
Lahoorpoor, Bahman and David M Levinson. 2020. “Catchment if you can: The effect of station
entrance and exit locations on accessibility”. In: Journal of Transport Geography 82, p. 102556.
LeSage, James and Robert Kelley Pace. 2009. Introduction to spatial econometrics. Chapman and
Hall/CRC.
Levinson, David. 2007. “Density and dispersion: the co-development of land use and rail in Lon-
don”. In: Journal of Economic Geography 8.1, pp. 55–77.
Levinson, David and Feng Xie. 2011. “Does first last? the existence and extent of first mover
advantages on spatial networks”. In: Journal of Transport and Land Use 4.2, pp. 47–69.

10



ATRF 2022 Proceedings

Levinson, David M. 1998. “Accessibility and the journey to work”. In: Journal of Transport Geog-
raphy 6.1, pp. 11–21.
Lierop, Dea van et al. 2017. “Evolution in Land Use and Transportation Research”. In: Planning
Knowledge and Research. Routledge, pp. 130–151.
Lopez, Luciano and Sylvain Weber. 2017. “Testing for Granger causality in panel data”. In: The
Stata Journal 17.4, pp. 972–984.
Mohring, Herbert. 1972. “Optimization and scale economies in urban bus transportation”. In: The
American Economic Review 62.4, pp. 591–604.
Vuchic, Vukan R. 2005. Urban transit: operations, planning, and economics.
Wegener, Michael. 2021. “Land-use transport interaction models”. In: Handbook of regional sci-
ence, pp. 229–246.
Wu, Hao and David Levinson. 2019. “Access across Australia”. In.
Xie, Feng and David Levinson. 2009. “How streetcars shaped suburbanization: a Granger causality
analysis of land use and transit in the Twin Cities”. In: Journal of Economic Geography 10.3,
pp. 453–470.

11



ATRF 2022 Proceedings

Ta
bl

e
2:

Pr
ed

ic
tin

g
po

pu
la

tio
n

de
ns

ity
.T

ra
m

pe
ri

od
:1

87
9

to
19

61

Pe
ri

ph
er

y
C

ity
of

Sy
dn

ey
E

xp
la

na
to

ry
va

ri
ab

le
s

N
um

be
ro

fo
bs

er
va

tio
ns

:
14

19
2

N
um

be
ro

fo
bs

er
va

tio
ns

:
46

4
C

oe
ff

.
St

d.
E

rr
.

T-
st

at
P-

va
lu

e
R

2
C

oe
ff

.
St

d.
E

rr
.

T-
st

at
P-

va
lu

e
R

2

L
ag

ge
d

po
pu

la
tio

n
de

ns
ity

(L
10

)
1.

04
54

0.
00

95
10

9.
56

0
1.

00
64

0.
03

52
28

.5
79

0
L

ag
ge

d
ne

ig
hb

or
s

po
pu

la
tio

n
de

ns
ity

(L
10

)
0.

01
48

0.
00

54
2.

72
68

0.
00

64
-0

.0
38

0.
02

16
-1

.7
62

6
0.

07
86

H
1

C
ha

ng
e

in
tr

am
st

op
s

de
ns

ity
(L

10
)

78
.3

33
3.

94
02

19
.8

8
0

0.
93

65
-2

.4
97

1
37

.2
24

-0
.0

67
1

0.
94

65
0.

97
71

C
ha

ng
e

in
tr

ai
n

st
at

io
ns

de
ns

ity
(L

10
)

29
8.

44
28

.1
47

10
.6

03
0

-1
47

.3
61

4.
88

-0
.2

39
6

0.
81

08
C

on
st

an
t

78
.8

02
3.

13
18

25
.1

62
0

10
60

.9
21

2.
09

5.
00

19
0

L
ag

ge
d

po
pu

la
tio

n
de

ns
ity

(L
10

)
1.

03
31

0.
00

82
12

6.
13

0
1.

00
55

0.
03

51
28

.6
12

0
H

2
L

ag
ge

d
ne

ig
hb

or
s

po
pu

la
tio

n
de

ns
ity

(L
10

)
-0

.0
06

5
0.

00
47

-1
.4

04
3

0.
16

03
0.

95
32

-0
.0

37
2

0.
02

15
-1

.7
26

6
0.

08
49

0.
85

41
C

ha
ng

e
in

30
-m

in
ut

e
ac

ce
ss

(L
10

)
0.

02
44

0.
00

03
75

.8
53

0
0.

00
32

0.
00

47
0.

67
75

0.
49

84
C

on
st

an
t

51
.5

37
2.

71
29

18
.9

97
0

98
1.

96
23

0.
72

4.
25

6
0

L
ag

ge
d

po
pu

la
tio

n
de

ns
ity

(L
10

)
1.

03
39

0.
00

82
12

6.
46

0
1.

00
58

0.
03

52
28

.5
36

0
L

ag
ge

d
ne

ig
hb

or
s

po
pu

la
tio

n
de

ns
ity

(L
10

)
-0

.0
07

4
0.

00
47

-1
.5

99
3

0.
10

98
-0

.0
37

5
0.

02
16

-1
.7

34
6

0.
08

35
H

3
C

ha
ng

e
in

30
-m

in
ut

e
ac

ce
ss

(L
10

)
0.

02
48

0.
00

03
71

.6
78

0
0.

95
34

0.
00

38
0.

00
5

0.
75

19
0.

45
25

0.
85

41
C

ha
ng

e
in

tr
am

st
op

s
de

ns
ity

(L
10

)
-1

6.
33

2
3.

62
48

-4
.5

05
6

0
-1

2.
74

3
39

.6
57

-0
.3

21
3

0.
74

81
C

ha
ng

e
in

tr
ai

n
st

at
io

ns
de

ns
ity

(L
10

)
14

0.
92

24
.2

14
5.

81
99

0
-1

70
61

5.
92

-0
.2

76
0.

78
27

C
on

st
an

t
50

.4
91

2.
71

2
18

.6
17

0
98

7.
92

23
3.

31
4.

23
43

0

12



ATRF 2022 Proceedings

Ta
bl

e
3:

Pr
ed

ic
tin

g
tr

am
st

op
de

ns
ity

.T
ra

m
gr

ow
th

pe
ri

od
:1

87
9

to
19

30

Pe
ri

ph
er

y
C

ity
of

Sy
dn

ey
E

xp
la

na
to

ry
va

ri
ab

le
s

N
um

be
ro

fo
bs

er
va

tio
ns

:
88

70
N

um
be

ro
fo

bs
er

va
tio

ns
:

29
0

C
oe

ff
.

St
d.

E
rr

.
T-

st
at

P-
va

lu
e

R
2

C
oe

ff
.

St
d.

E
rr

.
T-

st
at

P-
va

lu
e

R
2

L
ag

ge
d

tr
am

st
op

s
de

ns
ity

(L
10

)
0.

73
09

0.
01

81
40

.3
88

0
1.

00
42

0.
09

07
11

.0
69

0
L

ag
ge

d
ne

ig
hb

or
s

tr
am

st
op

s
de

ns
ity

(L
10

)
0.

16
66

0.
01

29
12

.9
47

0
-0

.0
42

4
0.

06
26

-0
.6

77
5

0.
49

87
H

1
C

ha
ng

e
in

po
pu

la
tio

n
de

ns
ity

(L
10

)
0.

00
06

2.
90

E
-0

5
19

.9
57

0
0.

68
05

-2
.3

3E
-0

5
7.

69
E

-0
5

-0
.3

03
5

0.
76

17
0.

66
59

C
ha

ng
e

in
tr

ai
n

st
at

io
ns

de
ns

ity
(L

10
)

-0
.1

09
3

0.
06

72
-1

.6
27

7
0.

10
36

-1
.0

78
9

0.
95

66
-1

.1
27

9
0.

26
04

C
on

st
an

t
0.

04
89

0.
00

87
5.

6
0

2.
17

09
0.

30
98

7.
00

68
0

L
ag

ge
d

tr
am

st
op

s
de

ns
ity

(L
10

)
0.

77
44

0.
01

67
46

.2
7

0
0.

94
28

0.
08

41
11

.2
08

0
H

2
L

ag
ge

d
ne

ig
hb

or
s

tr
am

st
op

s
de

ns
ity

(L
10

)
0.

09
65

0.
01

18
8.

17
68

0
0.

72
70

-0
.0

33
3

0.
05

77
-0

.5
77

8
0.

56
39

0.
71

45
C

ha
ng

e
in

30
-m

in
ut

e
ac

ce
ss

(L
10

)
4.

65
E

-0
5

1.
05

E
-0

6
44

.4
45

0
5.

58
E

-0
5

8.
00

E
-0

6
6.

97
68

0
C

on
st

an
t

0.
02

46
0.

00
8

3.
07

87
0.

00
21

0.
36

59
0.

37
28

0.
98

15
0.

32
72

L
ag

ge
d

tr
am

st
op

s
de

ns
ity

(L
10

)
0.

77
54

0.
01

68
46

.2
75

0
0.

94
52

0.
08

42
11

.2
28

0
L

ag
ge

d
ne

ig
hb

or
s

tr
am

st
op

s
de

ns
ity

(L
10

)
0.

09
89

0.
01

2
8.

23
08

0
-0

.0
36

1
0.

05
78

-0
.6

24
2

0.
53

3
H

3
C

ha
ng

e
in

30
-m

in
ut

e
ac

ce
ss

(L
10

)
4.

80
E

-0
5

1.
23

E
-0

6
39

.0
26

0
0.

72
74

5.
60

E
-0

5
8.

01
E

-0
6

6.
98

84
0

0.
71

63
C

ha
ng

e
in

po
pu

la
tio

n
de

ns
ity

(L
10

)
-5

.8
4E

-0
5

3.
13

E
-0

5
-1

.8
63

7
0.

06
24

-3
.8

7E
-0

5
7.

10
E

-0
5

-0
.5

45
5

0.
58

59
C

ha
ng

e
in

tr
ai

n
st

at
io

ns
de

ns
ity

(L
10

)
-0

.1
81

9
0.

06
21

-2
.9

29
7

0.
00

34
-1

.0
81

1
0.

88
31

-1
.2

24
1

0.
22

19
C

on
st

an
t

0.
02

85
0.

00
81

3.
51

94
0.

00
04

0.
42

92
0.

37
94

1.
13

13
0.

25
89

13



ATRF 2022 Proceedings

Ta
bl

e
4:

Pr
ed

ic
tin

g
tr

ai
n

st
at

io
n

de
ns

ity
.T

ra
in

pe
ri

od
:1

85
6

to
20

16

Pe
ri

ph
er

y
C

ity
of

Sy
dn

ey
E

xp
la

na
to

ry
va

ri
ab

le
s

N
um

be
ro

fo
bs

er
va

tio
ns

:
28

38
4

N
um

be
ro

fo
bs

er
va

tio
ns

:
92

8
C

oe
ff

.
St

d.
E

rr
.

T-
st

at
P-

va
lu

e
R

2
C

oe
ff

.
St

d.
E

rr
.

T-
st

at
P-

va
lu

e
R

2

L
ag

ge
d

tr
ai

n
st

at
io

ns
de

ns
ity

(L
10

)
0.

98
55

0.
00

38
25

9
0

1.
00

78
0.

02
19

46
.0

79
0

L
ag

ge
d

ne
ig

hb
or

s
tr

ai
n

st
at

io
ns

de
ns

ity
(L

10
)

0.
00

93
0.

00
28

3.
34

41
0.

00
08

-0
.0

07
9

0.
01

88
-0

.4
19

4
0.

67
5

H
1

C
ha

ng
e

in
po

pu
la

tio
n

de
ns

ity
(L

10
)

8.
11

E
-0

6
1.

22
E

-0
6

6.
66

65
0

0.
90

21
1.

89
E

-0
6

2.
82

E
-0

6
0.

66
98

0.
50

32
0.

91
16

C
ha

ng
e

in
tr

am
st

op
s

de
ns

ity
(L

10
)

-0
.0

00
1

0.
00

07
-0

.1
90

8
0.

84
87

0.
00

02
0.

00
23

0.
09

47
0.

92
46

C
on

st
an

t
0.

00
43

0.
00

05
8.

34
36

0
0.

02
34

0.
00

69
3.

38
25

0.
00

07

L
ag

ge
d

tr
ai

n
st

at
io

ns
de

ns
ity

(L
10

)
0.

98
56

0.
00

38
25

9.
22

0
1.

00
73

0.
02

18
46

.1
16

0
H

2
L

ag
ge

d
ne

ig
hb

or
s

tr
ai

n
st

at
io

ns
de

ns
ity

(L
10

)
0.

00
78

0.
00

28
2.

79
17

0.
00

52
0.

90
23

-0
.0

07
7

0.
01

88
-0

.4
10

6
0.

68
14

0.
91

17
C

ha
ng

e
in

30
-m

in
ut

e
ac

ce
ss

(L
10

)
5.

53
E

-0
7

5.
97

E
-0

8
9.

25
7

0
2.

39
E

-0
7

2.
58

E
-0

7
0.

92
41

0.
35

57
C

on
st

an
t

0.
00

42
0.

00
05

8.
23

5
0

0.
02

17
0.

00
73

2.
99

16
0.

00
29

L
ag

ge
d

tr
ai

n
st

at
io

ns
de

ns
ity

(L
10

)
0.

98
56

0.
00

38
25

9.
27

0
1.

00
76

0.
02

19
46

.0
55

0
L

ag
ge

d
ne

ig
hb

or
s

tr
ai

n
st

at
io

ns
de

ns
ity

(L
10

)
0.

00
76

0.
00

28
2.

74
37

0.
00

61
-0

.0
08

1
0.

01
88

-0
.4

29
2

0.
66

79
H

3
C

ha
ng

e
in

30
-m

in
ut

e
ac

ce
ss

(L
10

)
5.

05
E

-0
7

6.
84

E
-0

8
7.

39
2

0
0.

90
24

2.
36

E
-0

7
2.

72
E

-0
7

0.
86

64
0.

38
65

0.
91

17
C

ha
ng

e
in

po
pu

la
tio

n
de

ns
ity

(L
10

)
4.

05
E

-0
6

1.
34

E
-0

6
3.

03
42

0.
00

24
1.

62
E

-0
6

2.
83

E
-0

6
0.

57
15

0.
56

78
C

ha
ng

e
in

tr
am

st
op

s
de

ns
ity

(L
10

)
-0

.0
01

6
0.

00
08

-2
.1

28
3

0.
03

33
-0

.0
00

4
0.

00
24

-0
.1

63
5

0.
87

02
C

on
st

an
t

0.
00

39
0.

00
05

7.
49

76
0

0.
02

14
0.

00
73

2.
91

79
0.

00
36

14


	Introduction
	Theory and hypothesis
	Accessibility
	Spatial correlation and spatial weights
	Panel regression model
	Granger causality

	Data
	Network data
	Population Data

	Results
	Predicting population density
	Predicting tram stops density
	Predicting train stations density

	Conclusion

