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Abstract
Efficient estimation of modeling crash counts is complex and requires advanced knowledge,
experience, ad hoc, and time-consuming processes. Challenges involved in developing the
model include; identification of significant road factors for model specification, an adequate
functional form and the type of models such as Poisson or Negative Binomial with the inclusion
of random parameters. To overcome these barriers, the model specification is selected using a
simulated annealing algorithm to identify the likely contributing factors to crashes on roads in
Queensland, AU. The applicability of the approach is demonstrated by comparing it with the
results found in Behara et al. (2021). As a result of the solution algorithm, human biases are
minimized since decisions are updated based on goodness of fit rather than context-specific
information. Additionally, time is reduced as more models can be tested more efficiently, and
new solutions that are worse than the incumbent solution are considered, which enables the
escape of local optimal regions that an analyst may not be able to identify.

1. Introduction
Statistical models such as Poisson regression (Arndt, 2004), Negative binomial (NB) or its vari-
ants (Yu et al., 2019), are the most common approach for estimating crash counts (Mannering
and Bhat, 2014). This is because they are easy to estimate and can be derived to handle overdis-
persion in the model. These models only handle linear relationships between features and do
not allow parameter estimates to vary between observations; recent studies have emphasized the
need to account for unobserved heterogeneity in the data (Malyshkina and Mannering, 2010;
Zeng et al., 2017). In these approaches, the distribution of the random parameters and the
selection of potential explanatory variables must be assumed before estimation. This model
specification process is highly dependent on human judgement to include context-specific in-
formation in the model. Furthermore, it is time-consuming, subject to ad hoc trial-and-error
approaches, of which local-optima solutions are likely to be proposed. Therefore, a method that
reduces the time and effort required to find an efficient solution while avoiding human biases
with the available information is desirable.

The simulated annealing (SA) algorithm was inspired by the metal annealing process
(Kirkpatrick et al., 1983). High temperatures cause metals to become liquidized and mold into
a new structure during the annealing process. The temperature is gradually reduced until the
new structure solidifies, allowing the metal to retain its newly acquired qualities while reduc-
ing structural flaws. SA was selected for this problem due to its success in similar problems
(Khadka et al., 2020), convergence capability, and few hyperparameters that can be easily tuned
(Lokupitiya et al., 2005).
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This study proposes the SA solution algorithm to find the best model specification by
optimizing the Bayesian information criterion (BIC). BIC is a criterion for model selection that
prevents overfitting by penalizing the number of parameters (Markon and Krueger, 2004). The
specification includes the most significant explanatory variables, the functional form, type of
model, and selection of distributions for the random parameters. The specification is therefore
a set of decision variables and thus can be formulated as a mathematical program.

2. Methodology
2.1. Notation

The following notation is used to formulate the problem into a mathematical program:

Table 1: Notation and definitions.

Notation Definitions
N number of road observations
X vector of potential explanatory variables (road factors)
K number of explanatory variables
xk The explanatory variable, ∀k ∈ K
x̂k The transformed explanatory variable, ∀k ∈ K
αk Indicator variable taking value 1 if potential explanatory variable xk

is included; 0 otherwise
rk Indicator variable taking value 1 if potential explanatory variable xk

has an associated random parameter; 0 otherwise
D set of distributions
dk variable to select a distribution from D applied to the associated ran-

dom parameter.
M Set of possible model types (e.g Poisson).
T set of transformations
τk variable to select the transformation from T applied to αk

β vector of coefficients for potential explanatory variables

The problem is formulated as a bilevel optimization problem. The lower-level objective
function is maximum simulated log likelihood (MSL) to find β, constrained by the following
decisions:

• αk: the explanatory variables that specify the model
• τk: the transformations on αk to create the functional form
• rk: the indication that an explanatory variable has an associated random parameter
• dk: the distribution drawn for the random parameter

The objective function at the upper level is minimizing BIC.

2.2. Mathematical Program

Min BIC =− 2ln(L) + ζln(|I|)) (1)

subject to:
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αk =

{
1, if xk is included;
0, otherwise

∀n ∈ N (2)

rk =

1,
if xk is signified having a ran-
dom parameter;

0, otherwise
∀n ∈ N (3)

x̂k = f(τk, xk) ∀k ∈ K,n ∈ N (4)
αk ≥ rk ∀n ∈ N (5)
ρk ≤ U ∀n ∈ N (6)
ρk ≥ 0 ∀n ∈ N (7)

ζ =
∑
k∈K

(αk + rk) + q (8)

f(m) = Mm (9)
m ≤ |M | (10)

f(dk) = Ddk ∀k ∈ K (11)
dk = |D| ∀k ∈ K (12)

q =

{
0, if f(m) = Poisson;
1, otherwise

(13)

2.3. Data

Transport Main Roads provided the data, which detail head-on collisions in the state of Queens-
land. This contains 1875 unique road segments with 67 explanatory variables that may explain
a head-on collision. The data was used to compare with an analyst to find the best model in a
previous study (Behara et al., 2021). In the analysts study, it was found that a random parame-
ter model following the Lindley distribution provides better estimation ability as opposed to a
traditional Normal distribution. Therefore, we aim for SA to reveal a similar result in order to
save time and effort in future models with different datasets. For a complete description of the
data, see Behara et al. (2021), we have provided a summary of the number of head-on collisions
in Figure 1.

Figure 1. Excessive zeros for QLD crash data.

2.4. Optimisation Algorithm

In this study, we use the SA algorithm with a heuristic that calculates the initial temperature,
as seen in Ahern et al. (2022). Calculating the initial temperature using a heuristic reduces the
number of sensitive hyperparameters in the algorithm. Subsequently, our termination criterion
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is time-based with 50000 seconds of CPU time dedicated. Other hyperparameters, such as the
temperature reduction factor and the number of iterations before reducing the temperature, re-
quire tuning. Due to the sensitivity of these hyperparameters, a covering array was constructed
and five seeded experiments were carried out for each value of the covering array. The experi-
ment that contained the lowest mean BIC value was reported and compared with (Behara et al.,
2021), which appears in Table 21.

Table 2. Behara (2021) NB-Lindley model calculated with MSL; BIC is 747.24
Effect Coefficient Std. Error z-values Pr |z| > Z
Constant -12.03409 1.18888 -5.00 0.0000***
US 1.93452 0.82065 2.36 0.0184*
RSMS 2.26579 1.03969 2.18 0.0293*
LNMCV 9.03728 1.33912 6.75 0.0000***
RSHS 3.89542 0.76918 5.00 0.0000***
LNAADT 2.55426 1.17746 2.17 0.0301*
Curve50 -0.75197 0.52946 -1.42 0.1555
RSHS (Std.Dev.) Lindley -0.60642 0.20195 -3.00 0.0027**
LNAADT (Std.Dev.) Lindley 0.01078 0.14085 0.08 0.9390
Curve50 (Std.Dev.) Lindley 0.33032 0.31032 1.06 0.2871
NB ScalParm 0.21355 0.30613 0.70 0.4854

In order for SA to work, we must define the sets in Table 1, which can be observed as
follows:

• D = {uniform, normal, triangular, lindley, gamma}
• T = {fixed, log, sqr, factorial, exp, squared, cubed}
• M = {Poisson,NB,GP,COMP}

The best hyperparameters for the SA algorithm were found using the covering arrays, which
deduce that the temperature reduction factor α and the steps taken before the temperature is re-
duced Tstep should be 0.99 and 10 respectively. The convergence plot for these hyperparameters
can be seen in Figure 2. This result confirms that SA was able to use exploration that deviated
from the current best solution before discovering a new best.

Figure 2. BIC optimised through SA

1We converted the model in the paper to estimate MSL in order to accurately benchmark against.
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Table 3. Poisson model found through the simulated annealing algorithm; BIC is 613.97
Effect Transformation Coefficient Std.Error z-values Pr |z| > Z
LNLYR sqrt 10.82676 0.00000 5.00 0.0000***
LNKMYR log -18.63380 0.00000 -5.00 0.0000***
LNADT sqrt 5.02481 0.00000 5.00 0.0000***
Nlanes2 no 3.19753 0.00000 5.00 0.0000***
L50 no 0.31270 0.00000 5.00 0.0000***
SWPS cubed -0.08866 0.00000 -5.00 0.0000***
L50 (Std.Dev.)
Uniform

0.03772 0.00000 5.00 0.0000***

SWPS (Std.Dev.)
Lindley

0.04300 0.00000 5.00 0.0000***

Table 3 shows the final model. SA was able to significantly improve the fit of the model
from the BIC value of 747.24 to 613.97. The explanatory variable LNAADT2 was identified in
the analyst specification to be included in the final model. This variable is the most frequently
included in the literature, so it was reassuring that SA confirmed this (Mannering et al., 2020).
However, almost all other effects are unique. SA was able to apply a wide range of transforma-
tions on the data and fit a mixture of random parameter distributions; for example, the SWPS

3

variable was associated with the Lindley distribution, but the L50 4 random parameter distribu-
tion was uniformly associated. Although the Lindley distribution has unique properties, Behara
et al. (2021) may have been biased to use this distribution in the reported specification to val-
idate the claim. SA therefore was able to consider a multiple of unique, and time-consuming
hypothesis tests to create a specification that is non-biased to existing knowledge from an ana-
lyst.

3. Conclusion
In this experiment, we have found that the simulated annealing algorithm is capable of iden-
tifying efficient solutions in advanced statistical models related to crash data. Decisions are
optimized in the iteration-based framework, which reduces the biases an analyst may introduce
in model development. The algorithm is data-dependent, and hence other efficient solutions
could be found if other datasets were used. In general, we found that wrapping a metaheuristic
around a statistical model saves significant time and effort, even outperforming the results of
Behara et al. (2021).

2Logarithmic of annual average daily transit.
3Shoulder width.
4Level terrain, longer than 50% of the corresponding road length.
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