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Abstract 

Road safety education is one of the cornerstones for reducing fatal and serious injuries.  This 

research will discuss the spatial targeting method dealing with the drivers involved in road 

crashes. Earlier studies have used urban road vehicle kilometres travelled, road length or traffic 

volume data to understand the number of fatal and serious injury crashes. Few studies have 

also used socio-demographic data, for example, age, gender, and the level of education in the 

target population. However, no Australian studies have focused on geospatial analysis of 

drivers involved in road crashes. This research has accordingly attempted to address this gap. 

A traditional global ordinary least square (OLS) model was developed and compared with a 

Geographically Weighted Regression (GWR) model to see if a local model could be more 

beneficial. A geographically weighted regression analysis provided useful insights into the 

localisation of the effects. The spatial distribution of the strengths of explanatory variables 

helped in identifying the postcodes for improving road safety campaigns. The main objective 

of this paper is to demonstrate a practical procedure for spatial targeting of road safety policies 

to reduce traffic crashes by understanding the spatial variations. The research has shown that 

young (25 to 34 age), old drivers (65 to 74 age) and un/low educated drivers remained at high 

risk, but the risk rates are much higher in some postcodes when compared to other areas. 

Similarly, though factors influencing the risk rates for both males and females are the same, 

their effect varied across the metropolitan area postcodes. This research demonstrated that there 

is a need to focus on specific demographic factors in specific metropolitan areas regarding the 

formulation of traffic safety policies and managing drivers’ behaviours.  

 

1. Introduction 

Road safety has been an area of focus over the past two decades throughout Australia. In 

Australia, a reduction in fatalities from road traffic crashes is a public policy objective (Gargett, 

Connelly & Nghiem 2011). Around 1,200 lives are lost each year on Australia’s roads and 

about 40,000 people are seriously injured. Over the next 10 years, Australia is working towards 

significantly reducing the burden on the economy and society from road crashes in terms of 

deaths and life-changing injuries. The previous strategy set targets to reduce the numbers of 

both deaths and serious injuries by at least 30 per cent. Although there has been a downward 

trend, the fatality target has not been met and the number of people hospitalised after road 

crashes has increased (Infrastructure and transport ministers, 2022). 

South Australia’s Road Safety Strategy also sets out the ambitious 10-year targets of achieving 

a reduction of at least 50% in lives lost and 30% in serious injuries on South Australian roads 
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by 2031 (Government of South Australia, 2022). In this strategy, one of the nine focus areas is 

supporting and enforcing safer road user behaviour. 

Many studies around the world (Chipman et al.,1993, McCartt et al.,2009) have demonstrated 

the difference in crash rates among different aged groups of drivers.  Earlier studies have shown 

that the fatal and serious injury crash rate is high for old drivers (Rakotonirainy et al. 2012)  

and young drivers (Bates et al. 2014, Braitman et al. 2008, Chen et al. 2010) while it is 

comparatively low for middle-aged persons. Other factors such as the driver's gender, driver 

income, speed limit weather, and time of day have also been shown to affect the crash rate for 

drivers of different age groups (Renski et al.1999),. One of the main objectives of this research 

is to focus on understanding and improving road user behaviour. This research is an attempt to 

predict drivers’ attitudes (& how they vary spatially) from the census and other easily 

obtainable data sources.  

Preventing crashes by educating motorists should be one of the key focuses of urban road safety 

efforts of transport agencies. Though the new approaches sought to reduce crash losses by 

focusing not only on driver behaviour and crash prevention but also on reducing injury risk 

during crashes, it is important to refine the targeting of appropriate groups to bring driver 

behaviour changes. Because most motor vehicle crashes involve driver error, improving driver 

behaviour must be the overriding priority. 

 

Earlier studies (Henderson, 1991) have identified the important relationship between 

performance (which relates to skills) and behaviour (what the road user does on the road). In 

Australia and elsewhere, education and publicity have been most successful in modifying 

behaviour. However, they need to be coupled with strictly enforceable laws, directly linked to 

safety. The focus of earlier studies (Akinyemi,2019; Bíl et al., 2019; Choudhary et al.,2015)   

relating to spatial analysis of crashes was mainly to study the impact of various road types, 

employment and population densities on road crashes. However, this research has focused on 

finding an appropriate method to refine the targeting methods. The ‘Spatial targeting’ approach 

has accordingly been developed in this research.  ‘Spatial targeting’ is the deliberate focus of 

particular actions on a particular spatial area. Spatial targeting is an instrument to help policies 

achieve their objectives more efficiently. Good spatial targeting is only possible when ‘good’ 

and reliable data, which is easily collectable, is available. This paper examines the gender-

based spatial relationship between the socioeconomic status (SES) of the people in the Adelaide 

metropolitan postcodes and the number of drivers involved in the total fatal and serious injury 

crashes from those postcodes.  The hypothesis is that different SES, age, and gender will 

influence the driving behaviour of the drivers from those postcodes.  

 

While earlier researchers have focused on understanding factors associated with fatal and 

serious injury crashes,  few studies have explored geospatial analysis of drivers involved in 

those crashes. This study is an attempt to fill this gap. 

2. Study location and data   

The study area (Figure 1), Adelaide, is located at 34.55° southern latitude and 138.35° eastern 

longitude. Adelaide metropolitan area postcodes were chosen as the spatial unit due to the 

availability of crash data. While the exact location (latitude and longitude)  of crashes are 

recorded, the residential address of drivers, involved in the crash, is recorded at the postcode 

level. The study area covers 1585 km2 and includes 125 postcodes. Crash data used in this 

consists of recorded crashes between 2003 and 2012, provided by the South Australian 

Department for Infrastructure and Transport. Socio-Economic data and census data were 

sourced from the Australian Bureau of Statistics (ABS).  
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The South Australia Police (SAPOL) collects the crash data using vehicle crash reports, which 

are entered into SAPOL’s Vehicle Collision System (VCS). The reports are then electronically 

forwarded to the Road Crash Information Unit of the Department for Infrastructure and 

Transport (DIT) for further processing and geocoding.  

 

The Australian Bureau of Statistics (ABS) collects census data once in five years and this study 

used the 16th Census of Population and Housing data that was collected in 2011.  

 

The number of recorded fatal and serious injury crashes within the metropolitan Adelaide 

postcodes (from 2003 to 2012), broken down based on the gender of the driver, is shown in 

Table 1.  It is worth noting that, though this study restricted its analysis to drivers residing 

within the metropolitan area, the crash locations could be anywhere i.e., both within the metro 

and outside metro areas.  

 
Figure 1: Study Area  

 
Table 1: Number of crashes recorded within Adelaide Metropolitan postcodes (2003 to 2012) 

Males Females 

Fatal Crashes Serious 

Injuries 

Total fatal 

&serious 

injuries 

Fatal Crashes Serious 

Injuries 

Total fatal 

&serious 

injuries 

507 5029 5536 144 2466 2610 

 

 

Study Area 

Western Australia

Queensland

South Australia

Northern Territory

New South Wales

Victoria

Tasmania

Australian Capital Territory

0 10 205 Kilometers

Metro_Postalcodes

µ

South Autralia

Australian States
Postcodes of Adelaide metro area

Adelaide

µ

µ



ATRF 2022 Proceedings 

4 

3. Methods and preliminary analysis  

After geocoding all the fatal and serious injury crashes, the first step was to analyse the gender-

specific errors. The errors made by male and female drivers are summarised for both fatal and 

serious injury crashes. The next stage was to aggregate the gender-wise crash data at the 

postcode level and relate it with the easily available census data.  The crash database had driver 

postcode details for each driver involved in the crash, all the male and female drivers involved 

in serious and injury crashes are aggregated for all the postcodes in metropolitan Adelaide.  

Figure 2 shows the errors made by male drivers involved in serious injury crashes. Among the 

errors made by male drivers, (i) ‘inattention’(20%), Drivers Under the Influence (D.U.I) (8%) 

and ‘fail to stand’(6%)  stand out. Earlier studies (Alonso et al., 2015) showed that many drivers 

habitually drive after consuming alcohol and there is a need to eradicate this type of traffic 

infraction. 

 
Figure 2: Errors made by male drivers involved in serious injury crashes   

 
 

In the case of female drivers (Figure 3), the three main errors that dominate are (i)inattention 

(15%), (ii) ‘fail to stand’ (10%) and (iii) ‘fail to give way (6%). So when compared to males, 

it is not surprising to note that the influence of alcohol or drugs is a less prevalent issue for 

female drivers. It is even more striking in the case of fatal crashes in males, where drivers under 

the influence take the top spot (17%). Earlier studies (Zhao et al., 2014, Alonso et al. 2015)  

have also demonstrated that the average speed, inattention and lane position standard deviation 

were significantly higher under the influence of alcohol. 
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Figure 3: Errors made by female drivers involved in serious injury crashes   
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Before OLS regression analysis, all the logical and easily available explanatory variables are 

shortlisted and an exploratory regression analysis was carried out to select the best performing 

variables. The shortlisted variables are listed below. 

4.1.1 Education level 
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4.1.3 Age 

Age is often used as a predictor of fatal and serious injury crashes in motor vehicle crashes. 

More often younger age adults and older age adults are involved in such crashes. However, the 

significance of the exact younger and older age groups involved in such crashes is not very 

clear. So this study has attempted to address this issue for both male and female age groups. 

4.1.4 Martial status 

The marital status was divided into three groups (married, never married, and separated & 

divorced) while the gender was divided into female and male. 

 

The shortlisted variables for explanatory regression include for both male and female driver 

crash models include  (i) uneducated  (ii) low educated (year 8 and below) (iii) un/low educated 

(iv) average income  (v) all adults over age 15 (vi) adult belonging to various age groups and 

(vii)  their marriage status. Table 2 shows the details of all the variables for male driver crashes 

tested in the exploratory regression tool. We have used the same variables for female driver 

crashes. 

 
Table 2: Details of  the explanatory variables considered for the Male driver crash model 

 Variable  Abbreviation Min Max Mean  SD 

Male crash 

model-  

dependent 

variable 

Total number of 

fatal and Serious 

Injury crashes 

MaleFat_SI 0 228 44.29 37.56 

 

 

 

 

 

 

 

 

 

Male crash 

model -

explanatory 

variable(s) 

Education-Year 8 

&below males 

Year8_below_M 0 1141 203.8 177.94 

Not attended any 

school  males 

NoSchool_M 0 275 28.16 38.06 

Uneducated/low 

educated (year 8 or 

below)  males 

Y8_NoSholM 0 1416 231.96 210.81 

Male population 

over 15 

Mal_Over15 3 14806 3671.63 2720.14 

Male Average 

Weekly Income 

Mal_Av_inc $433 $1057 $747.71 $181.32 

Divorced males Male_Divor 3 1424 283.92 223.51 

Separated males Male_Separ 3 559 99.03 84.26 

Males aged 16 to 24 Male_16_24 14 2418 583.07 463.89 

Males aged 25 to 34 Male_25_34 12 2838 626.84 512.51 

Males aged 65 to 74 Male_65_74 3 1867 448.14 330.58 

Males aged 75 and 

over 

Male_75Plus 6 1389 492.45 326.31 

 

An exploratory regression analysis was done to identify independent variables for the two 

models, i.e. male driver crashes and female driver crashes. It tests all possible combinations of 

explanatory variables. Some variables such as separated males and females, and younger aged 

drivers (aged 16-24) showed significance initially; however, when multicollinearity was taken 

into account, those variables were discarded. The average income was not a significant variable 

in these models. After running the exploratory regression, the three best performing exploratory 

variables, selected for each gender model are (i) un/low educated, (ii) young drivers (aged 25 

to 34), and (iii) old drivers (aged  65 to 74).  
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4.2 Ordinary Least Squares (OLS)  Regression 

The OLS regression represents a global regression technique used to model the linear 

relationship between a dependent variable and one or more explanatory variable(s). The OLS 

regression model assumes the relationship between the dependent and explanatory variable(s) 

to be consistent across space and hence it represents a nonspatial regression model. Since 

spatial data usually possess regional variations and spatial autocorrelation, it is difficult to 

model spatial data and meet the assumptions of an OLS model. (Gao and Li, 2011). The 

dependent variable in this example is the number of male drivers involved in the fatal and 

serious injury crashes from each postcode (MaleFat_SI). The independent variables that we 

shall use are the number of un/low educated males in each postcode (Y8_NoSholM), the 

number of young drivers (25 to 34 years male drivers) in each postcode (Male_24_34), and the 

number of old drivers (65 to 74  years male drivers) in each postcode (Males_65_74). 

4.2.1 OLS Results 

The Adjusted R2 value for the OLS model is 0.92, indicating that 92% of the male driver 

crashes can be explained by the explanatory variables included in the model (Table 3). The 

OLS diagnostic results showed (Table 4) that poor education level is one of the most dominant 

variables which was positively associated with fatal and injury crashes of both male and female 

drivers. BP statistic is significant, i.e. a p-value (probability) smaller than 0.05, which indicates 

the statistically significant heteroscedasticity and/or nonstationarity. Regression models with 

statistically significant nonstationarity are often good candidates for Geographically Weighted 

Regression (GWR) analysis, i.e. the model results will improve by performing GWR models.  

As the Jarque-Bera Statistic test is statistically significant (p < 0.01), the model residuals are 

not normally distributed. OLS does not require variables to be normally distributed. If we had 

trouble finding a properly-specified model, we could have tried transforming strongly skewed 

variables to improve the results. However, as we could derive a properly specified model, we 

did not test transformed variables.  

In the case of the female driver crash OLS model, the R2 was 0.86; which shows a strong 

relationship. The OLS diagnostics results also showed the same pattern as the male driver 

model but their strength was different. In the case of both the models, the Variable Inflation 

Factor (VIF) was below 7.5; meaning that there was no multicollinearity among the 

explanatory variables, i.e. they are truly independent of each other. Jarque Bera's statistic 

results for female models showed that the residuals are normally distributed and thus passed 

all the tests and proved that it is a robust model.  

Table 3: Summary of OLS model results 

Gender 
Number of 

Observations 

Adjusted 

R2 

Akaike's 

Information 

Criterion 

(AICc) 

Koenker (BP) 

statistics  
Jarque-Bera Statistic  

Males 125 0.92 952.956703 37.737075 

 

Prob(chi-squared) 

0.000000* 

6.887700 

 

Prob(chi-squared) 0.031941* 

Females 125 0.86 814.557225 15.934501 

Prob(chi-squared) 

0.001170* 

4.000366 

Prob(chi-squared) 

0.135310 
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Table 4: OLS model diagnostics 

Gender Variable Details Coefficient  t-statistic 
Robust 

Probability 
VIF  

Males Intercept -------- -3.687455  -2.266967  0.025664*  ------- 

Y8_NOSHOLM Un/lowly 

educated 

males 

0.072010  9.281057  0.000000*  2.939420 

MALE_25_34 Males 

belonging to 

25 to 34 age 

group 

0.021785 5.322914  0.002582*  4.83347 

MALE_65_74 Males 

belonging to 

65 to 74 age 

group  

0.039304 7.869144 0.000000* 2.995169 

Females Intercept -------- -0.082505  -0.087429 0.917028 -------- 

Y8_NOSHOLF Un/lowly 

educated 

Females 

0.009317  2.705213 0.022512* 2.772346 

FEM_25_34 Females 

belonging to 

25 to 34 age 

group 

0.012305  5.056738 0.000002* 5.061766 

FEM_65_74 Females 

belonging to 

65 to 74 age 

group  

0.021762 7.549118 0.000000* 3.409024 

Note:* An asterisk next to a number indicates a statistically significant p-value (p < 0.01). 

4.2.2 Spatial autocorrelation analysis of residuals (Global Moran's I) 

Spatial autocorrelation is the phenomenon where the value of a spatial variable of nearby 

locations may be similar (Li et al., 2016). Spatial autocorrelation occurs when events such as 

vehicle crashes occurring at different but nearby locations are correlated (Rhee et al. 2016). 

One of the inputs for spatial autocorrelation is the distance band, which can be obtained by 

using incremental autocorrelation. This tool was first run to allow multiple morans I test runs 

for 15  bandwidths. The first peak of the z value is recommended as the optimal distance to 

pick. The analysis showed (Figure 4) that the z value peaked at  9929 meters and hence was 

used as input bandwidth for the spatial autocorrelation analysis.  
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Figure 4: Incremental autocorrelation results 

 
 

The OLS method is not the best way to analyse the spatially autocorrelated data as the 

correlation violates the basic assumption of ordinary least squares (OLS) regression. OLS 

assumes the regression coefficients of the explanatory variables are the same in all locations of 

the analysed area. Also, the OLS results showed the need for running Moran’s I tool to check 

for spatial autocorrelation. This analysis measures spatial autocorrelation based on feature 

locations and attributes values using the Global Moran's I statistic. If the values in the dataset 

tend to cluster spatially Moran's Index will be positive. When high values repel other high 

values and tend to be near low values, the Index will be negative. If positive cross-product 

values balance negative cross-product values, the Index will be near zero. The results of the 

analysis are interpreted within the context of its null hypothesis. The null hypothesis for this 

analysis is that the attribute being analysed is randomly distributed among the features in the 

study area. This z-score and p-values will indicate whether the null hypotheses can be rejected. 

When the p-value returned by this tool is statistically significant and the z score is positive or 

negative, the null hypothesis is rejected. 

 

As the p-value returned by this tool is statistically significant and the z score is positive, the 

null hypothesis is rejected. Given that Z value of 4.843  (Figure 5), there is less than a 1% 

likelihood that the clustered pattern shown in the Figure above could be the result of random 

choice. So the residuals are clustered. The results indicate the necessity of considering spatial 

correlation when developing regression-based crash models. This analysis has also shown that 

global regression models fail to predict the dependent variable effectively. There will be 

significant spatial variations in the strength of the model. Hence it is important to run the 

Geographically Weighted Regression (GWR) analysis to improve the model. 
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Figure 5:  Spatial Autocorrelation results 

 

Male driver Crashes 

 

Female driver Crashes 

4.3 GWR analysis  

As spatial autocorrelation has shown the need for running the Geographically Weighted 

Regression (GWR) model to improve the model performance,  GWR analysis was carried out 

with the same selected variables used in the OLS model. Geographically weighted regression 

(GWR) is a spatial analysis technique that takes non-stationary variables into consideration and 

models the local relationships between these predictors and an outcome of interest (Charlton 

and Fotheringham 2022, Pirdavani et al. 2014). GWR is an outgrowth of ordinary least squares 

regression (OLS) and improves the model by allowing the relationships between the 

explanatory variable(s)and dependent variables to vary by locality. GWR constructs a separate 

OLS equation for every postcode; which incorporates the dependent and explanatory variables 

of locations falling within the bandwidth of each target location. The variables used in this 

model are the same as that which was specified in the OLS model. The output feature class will 

contain the coefficient estimates and their associated standard errors as well as a range of 

observation-specific diagnostics. AICc bandwidth parameter was chosen as this is an automatic 

method for finding the bandwidth which gives the best predictions. The AICc method finds the 

bandwidth which minimises the AICc value – the AICc is the corrected Akaike Information 

Criterion. Table 5 shows the results of the GWR analysis. GWR models improved the R2 value 

for the male driver crash model from 0.92 to 0.94 and the female driver crash model from 0.86 

to 0.87. As there is no significant spatial variation in the case of female driver residuals  (as 

can be seen from the Jarque-Bera Statistic), the GWR model strength only improved 

marginally.  

 
Table 5: GWR analysis results  

Gender 
Number of 

Observations 
Adjusted R2 

Akaike's Information 

Criterion (AICc) 

Male drivers model 125 0.94 924.342963 

Female drivers model   125 0.87 813.011498 

 

Results (Figure 6)  show that over and underpredictions are randomly distributed indicating 

that it is a well-specified regression model. The GWR model residuals were further examined 

to see if they provide clues about what those missing variables might be. So the Spatial 

Autocorrelation (Moran's I) tool on the regression residuals was run to ensure that they are 

spatially random. The results clearly showed that the residuals are randomly distributed and 



ATRF 2022 Proceedings 

11 

there is no evidence to show that statistically significant clustering of high and/or low residuals 

(model under- and over predictions), which indicates that the GWR model is not misspecified. 
 

Figure 6: GWR results – Standard Residuals  

  

5. Gender-based spatial variations of explanatory variables  

This analysis will also help us to understand the spatial variations of each independent variable 

with regard to its strengths. By plotting the coefficient variations, we will be able to identify 

suburbs and postcodes that we need to target education, publicity and training programs in 

Road Safety. Figures 7 and 8 show the strengths of coefficients of explanatory variables for 

male and female drivers respectively. These figures show that there are significant spatial 

variations and they are summarised in Table 6. 

 
Figure 7: GWR results- Strengths of coefficients of  explanatory variables- Male drivers 
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Figure 8 GWR results- Strengths of coefficients of  explanatory variables- Female drivers 

   
     Coefficient Un/low educated        Coefficient 25 to 35 age       Coefficient 65 to 74 age         

 
 Table 6 Gender-based spatial targeting- low-educated, young and older age groups 

Gender Un/low educated  25 to 34 age 65 to 74 age 

Males Northwestern 

postcodes 

South and far Northeastern 

postcodes 

Southern postcodes 

Females North and North-

western postcodes 

Mostly southern postcodes Spread all over 

 

6. Limitations 

Due to data availability issues, this study is based on older crash data (2003 to 2012 crash 

records). Also, the limitation of the crash data is that only one error is associated with a crash 

comprising multiple units and some of the important factors such as fatigue are not recorded.  

As the main focus of this study was on the drivers involved in road crashes the impact of other 

factors, such as traffic exposure, infrastructure, and the built environment was not considered.  

7. Conclusions 

The present study has shown that apart from the age of the drivers, their level of education 

plays an important role in reducing crash rates. In addition to identifying key demographic 

factors influencing driver crashes, this study has also identified the geographic locations where 

these factors have strongly influenced the models. This will help authorities focus on education 

and training programs, targeting those areas as earlier studies (Mayhew and Simpson 2002, 

McCartt et al. 2008)  have shown that education and training programs, focusing on young 

drivers proved to be effective in reducing collisions.  Among the various age groups, this study 

has shown that younger adults who are 25 to 34 years of age and older adults who are in the 65 

to 74 years age groups are more likely to be involved in serious injury and fatal crashes. It is 

interesting to note that, unlike earlier studies where drivers aged 16-25 of either sex were a 

significant variable, in this study drivers aged 25-34 showed higher significance among the 

young drivers. So young drivers aged 25-34, old drivers aged 65-74 and those with low 

education levels (year 8  and below) or who have never been to school are the possible 

important target groups in the promotion of behavioural change.  However, as the impact of 

these variables varies spatially, it is important to identify target postcodes as shown in this 

research for any road safety campaigns. The important contribution of this study is that it has 

shown how these variations differ spatially for each gender and quantified these variations.  
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