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1. Introduction 
The world is currently seeing a shift away from fossil-fuel-based transportation to transport 
options powered by alternative means. Electric vehicles (EVs) are playing a major role in the 
decarbonisation of transport systems, especially in countries where electricity can be generated 
sustainably. While charging systems for EVs are getting more efficient and faster, an alternative 
approach to conventional plug-in charging for EVs is by wirelessly charging using inductive 
power transfer (Covic and Boys 2013). Here, charging pads can be embedded in the road 
surface and charge vehicles that are stationary above the pads, or even moving vehicles – there 
may be no need plug in or even to stop the vehicle. This wireless technology improves 
convenience for EV users. If EVs can charge on the road, they may be able to have smaller 
battery capacity, hence lower weight leading to higher vehicle efficiency. While it may not be 
feasible in the near future to universally embed charging pads under the road surface, an initial 
approach to the rollout of wireless charging infrastructure could be to install charging pads 
targeted at groups of high-mileage transport users. One such example group is taxis as they 
drive long distances every day and are often early adopters of efficient vehicle technologies 
such as EVs. EV taxi drivers would benefit from the convenience of being able to charge on-
the-go as long as charging infrastructure is placed strategically. We aim to develop an 
understanding of what kind of infrastructure would be required to support the operations of a 
taxi service that either operates exclusively with EVs or at least has a large portion of EVs 
available.  
 
In some locations electric taxi (e-taxi) services are already operational and optimal placement 
of charging systems has been studied for these locations based on observed taxi movements 
and charging demand (Tu, et al. 2016). If only a conventional (non-electric) taxi service exists 
in a location, a data-driven approach can be taken (Yang, Dong and Lin 2016; Hu, et al. 2018) 
to analyze whether electrifying a taxi fleet is feasible based on the ability to cover past 
(conventional) taxi trajectories. Asamer, et al. (2016) develop an optimization model for e-
taxi charger locations assuming that good locations for charging are where many 
(conventional) taxi trips start or end, without consideration of when e-taxis would actually 
need to charge or how many chargers are needed. The approaches outlined above are unable 
to take into account timing and convenience of charging, or how e-taxis may adjust their 
trajectories in response to provision of charging infrastructure in certain locations, which we 
want to consider in an optimization-simulation approach. We are interested in understanding 
how to best support the transition of a taxi service from conventional vehicles to EVs. This 
means we cannot draw on data on charging demand from an existing e-taxi service. Instead, 
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we are developing a simulation tool that allows us to simulate the operations of a taxi service 
based on location and time of passenger requests that are then serviced by taxis moving 
through the system. The simulation models the behavior of e-taxis, including their charging 
needs and ability to service requests based on battery state-of-charge (SOC). We can thereby 
develop an understanding of spatio-temporal demand for charging, which in turn will enable 
us to develop an optimization-simulation approach in the future to identify where chargers are 
needed, what types are needed, and that allows for calibration of charging infrastructure such 
as charging power levels. Similar optimization-simulation tools are also being used to 
optimize operations in other fields such as ambulance services (Ridler, Mason and Raith 
2022).  
 
While there appear to be no commercial taxi simulators, we note that other simulation tools 
for transport-on-demand services, taxis and e-taxis have been developed. Bischoff and 
Maciejewski (2014) develop a model of e-taxi operations in MATSim assuming mixed or 
electric-only fleets, that slow / fast chargers are available at all taxi ranks, and assuming 
different dispatch scenarios. Similarly, Jäger, Wittmann and Lienkamp (2017) develop a taxi 
simulation in Java (using a framework called JADE) that is calibrated for regular combustion 
vehicles and then applied to e-taxis, enabling a comparison of the two simulated systems. 
Simulation software does not appear to be publicly available in either case. Adenaw and 
Lienkamp (2021) present an updated version of the latter implemented in MATSim. Our 
presented approach stands out in the choice of language (Julia), and ability to draw on open-
source data (OpenStreetMap). It enables us to capture and track features of an e-taxi services 
as required, will permit easy integration with optimization tools and will eventually be made 
available open-source. 

2. Methodology e-taxi simulation 
Our E-Taxi SIMulation (ETSIM) is a discrete event simulation, as described in the following. 
It is assumed that there is a number of taxis available somewhere in the system. A prospective 
passenger either hails a taxi from a taxi rank, or places a call with a call centre that then 
dispatches a taxi to the requested pick-up location. The dispatched taxi travels to pick up the 
passenger and drives them to their destination. Once a taxi arrives at the destination, the 
passenger disembarks, and the taxi is idle. An idle taxi can either pick up another passenger, if 
there is a passenger request that needs to be serviced, or it can return to a waiting location, such 
as a taxi rank of its choice. In case of an e-taxi, before accepting a passenger, an additional 
consideration is whether the taxi is able to transport a passenger to their destination, that is 
whether there is sufficient battery SOC for the trip and return to a charging station. Otherwise 
an e-taxi may need to reject a potential passenger, which is especially undesirable in case of 
lucrative (long) trips. An idle taxi’s choice of waiting location may be affected by the popularity 
of the location, i.e. how many passengers start their journey at or close to a waiting location, 
the need to re-charge their battery and convenience of doing so. ETSIM enables us to track 
metrics such as SOC throughout an e-taxi’s working day, rejected passenger trips due to 
insufficient SOC or because a taxi is charging, utilization of chargers, additional driving 
required to reach chargers, etc. This will ultimately enable us to develop an integrated 
optimization-simulation approach to optimize location and type of charging infrastructure.  
 
We chose to implement ETSIM in Julia as it is a modern programming language that is 
known for its ease of use and speed. It also has powerful packages available that support 
simulation (SimJulia) and optimization (JuMP). 
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Figure 1: ETSIM flow chart; Logic in highlighted steps (grey boxes) varies by taxi type and charger type. 

 
 
The flow chart in Figure 1 outlines the process of ETSIM for general taxi operations. Firstly, 
the dispatcher logic on the left of Figure 1 outlines how a taxi trip request from a trip origin 𝑜𝑜 
to trip destination 𝑑𝑑  is processed at simulation time 𝑡𝑡 . A suitable taxi is identified and 
dispatched to pick up the passenger at their origin 𝑜𝑜. If this is not possible within some time 
frame (e.g. all taxis are busy or have insufficient SOC), the trip is rejected. The dispatcher then 
waits for the next trip request. The taxi logic is shown on the right of Figure 1. Taxis wait at a 
waiting location 𝑤𝑤, such as a taxi rank until they are dispatched to pick up a passenger at 
location 𝑜𝑜 (this location could be the taxi rank where the dispatched taxi is already waiting, in 
which case it arrives at 𝑜𝑜  to pick up the passenger immediately). The taxi then drives to 
destination 𝑑𝑑. Upon arrival the taxi determines their next waiting location 𝑤𝑤 and starts driving 
towards it. A taxi driving without a passenger can be interrupted and dispatched to pick up 
another nearby passenger. If this does not occur they eventually reach their waiting location 𝑤𝑤. 
Some of the decision making logic in the simulation differs between e-taxis and regular taxis, 
and for wireless and plug-in charging, as outlined below. This affects the highlighted elements 
in the flow chart (Figure 1). SOC plays a major role when making decisions for e-taxis. We 
define three parameters, SOC𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, the SOC level threshold below which e-taxi drivers will 
seek to charge immediately, SOC𝑚𝑚𝑎𝑎𝑚𝑚, which is the SOC level to which drivers will charge at a 
plug-in charger and SOC𝑚𝑚𝑚𝑚𝑚𝑚, which is the minimum charge level at which a wirelessly charging 
taxi will accept a passenger trip.  
 
Taxi – Identify and drive to next waiting location: Regular taxis and e-taxis with sufficient 
charge will seek out a taxi rank to wait at based on a utility function that takes into account 
distance to rank, popularity of rank, and the number of taxis already waiting there. If SOC <
SOC𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 e-taxis need to charge urgently, and will drive to the closest taxi rank that has a 
charger available. Once a taxi in need of an urgent charge arrives at a rank it will charge 
immediately at an available charger. If there is a plug-in charger, the taxi charges until SOC𝑚𝑚𝑎𝑎𝑚𝑚 
is reached and then joins the queue at the rank from where it can be dispatched. If there is a 
wireless charger available the taxi joins the queue while charging (as long as a charger is 
available at their current position in the queue). If there is only a wireless charger, the e-taxi 
will join the queue while charging, or wait for an available charger. A wirelessly charging e-
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taxi can be dispatched once a charge level of SOC𝑚𝑚𝑚𝑚𝑚𝑚 is achieved. If not dispatched, it will 
continue charging until the battery is full, even when the battery reaches an SOC beyond 
SOC𝑚𝑚𝑎𝑎𝑚𝑚. A queueing e-taxi with full battery can block access to a wireless charger. 
 
Dispatcher - Identify taxi to dispatch: Taxis dispatched from a rank are always the first in the 
queue (unless it is a wirelessly charging e-taxi and has not yet reached SOC𝑚𝑚𝑚𝑚𝑚𝑚). The taxi to be 
dispatched will be chosen from a rank if the passenger’s origin location 𝑜𝑜 is at a rank. Otherwise 
the taxi closest to 𝑜𝑜 will be dispatched, which is either a nearby driving taxi without passenger, 
or a taxi at a nearby rank. If an e-taxi is to be dispatched, this can only happen if it has sufficient 
SOC for the whole trip and subsequent return to a charging location. E-taxis that need to charge 
(SOC < SOC𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) cannot be interrupted while driving to a charging location. 
 
ETSIM tracks SOC for each individual e-taxi in the simulation. It is currently assumed that e-
taxi energy consumption is proportional to distance driven, and that there is no energy 
consumption when not driving. More sophisticated energy consumption models could be 
implemented and may be more appropriate in locations with extreme temperatures, significant 
hills, or inner-city start-and-stop traffic. Charging can be modelled by a non-linear charging 
time function.  
 
The following input data is required by ETSIM:  

• Road network: can be sourced from OpenStreetMap https://www.openstreetmap.org   
• Passenger trip data: This is ideally historical data for a regular or e-taxi service, which 

provides trip origin and destination (mapped to the road network) as well as time of trip 
request. It is assumed taxis travel along the shortest path from origin to destination. 

• Taxi ranks: location, capacity, number and type of chargers. 
• Number of taxis operating: Can be derived from a taxi shift plan. 

 
ETSIM Output: The simulation tracks various metrics of interest such as the number of 
passenger requests that could not be serviced as no taxi was available, the waiting and charging 
time of taxis, the number of passenger requests a taxi had to turn down due to insufficient SOC, 
etc. We can track any metric we require since ETSIM is a purpose-built simulation. 
 
ETSIM Implementation details: ETSIM is implemented in the Julia programming language, 
which is known for its relative ease of use, speed and versatility. The simulation itself uses the 
SimJulia package. We are currently developing a browser-based visualization that will help 
visually analyze simulation results and make it easier to verify correctness of simulation logic 
and to communicate results to potential users and practitioners. 

3. Case study Karlsruhe 
We present a case study of the taxi operations in the city of Karlsruhe, Germany, see Figure 2. 
There is a single central taxi management unit in the city. In accordance with German 
legislation, taxis are required to drive back to a taxi rank after each passenger trip. Passengers 
can hail a taxi at one of the ranks, or they can arrange to be picked up by a taxi at a different 
location. There are 26 taxi ranks (shown as green houses in Figure 2), where the busiest one is 
located next to the train station almost at the bottom of Figure 2. Ranks have limited capacity 
for waiting taxis and the number of (simulated) chargers available (wireless and plug-in) varies 
by rank. There is a varying number of taxis operating depending on time of day. 
 
We have a dataset of taxi trip requests over a four week period in summer 2017. Taxis cover a 
total daily average of about 200 km with many short trips. We assume there are only e-taxis 
with an energy consumption of 25 kWh per 100 km and a battery with 35 kWh capacity.  

https://www.openstreetmap.org/
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Figure 2: Map of Karlsruhe showing some of the taxi rank locations. 

 
 
It is assumed that plug-in chargers have a maximum charging power of 50 kW. For wireless 
inductive charging, we assume a very conservative additional energy loss of 10% and charging 
power of 20 kW. In ETSIM chargers are located at eight of the 26 taxi ranks, ranks with chargers 
are circled in Figure 2 (nine of the ranks, including two with chargers, are located outside the 
map area). We set SOC𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 60%, SOC𝑚𝑚𝑎𝑎𝑚𝑚 = 80%, SOC𝑚𝑚𝑚𝑚𝑚𝑚 = 30%  relative to battery 
capacity.  
 
As a case study we run the simulation repeatedly over a time period of one week during which 
there are 11,775 taxi trips. The number of chargers and their type can be varied. In an initial 
experiment we place the same number of chargers at each rank that is equipped with chargers 
leading to the five configurations listed in Table 1. We can make a few observations for our 
preliminary experiments. Firstly, when charger numbers are low (two wireless or plug-in 
chargers), many trip requests cannot be serviced due to unavailability of a taxi with sufficient 
SOC (Row Missed trips in Table 1). Since plug-in chargers are modelled to have a higher 
charging power, fewer trips are missed with plug-in chargers compared to the same number of 
wireless chargers. It is interesting to note that even fewer trips are missed when plug-in and 
wireless charging is combined in Configuration V. However, with plug-in chargers taxis cannot 
join the queue and may end up with longer wait times after charging. Wireless charging can 
occur conveniently while waiting. In Configuration II, for instance, there are almost 9,000 
instances where taxis request a charger (while waiting in queue), while in Configuration IV 
there are only 2,606 requests when an e-taxis request to charge urgently. In Configuration V 
there are even fewer urgent charge requests for plug-in chargers (1,880) as more wireless 
charging occurs while taxis wait in the queue. These initial results show that it may be a to 
combine convenient wireless charging that can occur while queueing with faster plug-in 
charging for e-taxis with low SOC. 
 
Table 1: Number of chargers at each taxi rank and some simulated metrics 

Configuration I II III IV V 
Wireless 2 4 - - 2 
Plug-in - - 2 4 2 
Missed trips 2,276 1,316 115 103 77 
#charge requests / 
%waits 9,015 / 30.7% 9,840 / 5.5% 2,601 / 11.5% 2,606 / 0.5% W: 5,934 / 30.5% 

P: 1,880 / 7.4% 

Avg wait time (min) 7.44 5.11 6.93 3.32 W: 6.09 
P: 5.34 

Total energy (kWh) 17,883.0 19,761.2 24,460.6 24,334.3 W: 6,775.5 
P: 17,884.2 

 



ATRF 2022 Proceedings 

6 

Various metrics can be tracked throughout the simulation. For example, Figure 3 shows 
utilization of each of the chargers at the various ranks equipped with charging under 
Configurations II and V. It can be seen that wireless chargers generally have high utilization 
under Configuration II, although this can drop off quickly for the other chargers at a rank. In 
Configuration V, wireless charger utilization is much lower for some ranks, and utilization of 
plug-in chargers drops off quickly as well, likely due to faster charging and the fact that e-taxis 
only charge urgently but not casually while waiting in queue for their next trip. We can also see 
here that some ranks have particularly high utilization of both types of chargers, which indicates 
that rearranging chargers between ranks could improve performance of the system further. We 
observe that a wireless charger is only rarely being blocked by a waiting taxi that is not charging 
as its battery is already full. This happens no more 1.3% of the time, in the worst case. 
 
Figure 3: Charger utilization for Configurations II (wireless only) and V (mixed). 

      
 
We can also analyze taxi operations. Table 2 shows some metrics collected for the first five 
taxis in Configuration V (mixed charging). The second column of Table 2 shows wait time in 
the taxi queue (min). A significant amount of time is spent waiting for the next trip, while taxis 
generally do not wait long for a plug-in charger (last column). On average, e-taxis spend 34.22% 
of their queueing time waiting for a charger, which is not surprising as they always seek to 
charge wirelessly while in the queue. The table also shows that taxis make 18.11 plug-in charge 
requests on average (third column). In comparison, more wireless charge requests are made as 
taxis seek to charge wirelessly whenever waiting in the queue. Taxis often have to wait for 
wireless chargers when they are blocked by other taxis. 
 
Table 2: Number of chargers at each taxi rank and some simulated metrics in Configuration V 

Taxi Queue wait 
time (min) #charge requests  #times taxi had to 

wait for charger  
Total wait time to 
charge 

1 308.32 W: 65 / P: 22 W: 20 / P: 2 W: 128.33 / P: 7.88 

2 207.77 W: 45 / P: 18 W: 14 / P: 0 W: 68.56 / P: 0.00 

3 285.24 W: 68 / P: 21 W: 20 / P: 2 W: 82.96 / P: 4.52 

4 320.79 W: 67 / P: 27 W: 23 / P: 1 W: 199.34 / P: 7.26 

5 344.15 W: 68 / P: 25 W: 20 / P: 4 W: 140.53 / P: 39.95 

Avg 319.71 W: 59.34 / P: 18.80 W: 18.11 / P: 1.40 W: 110.31 / P: 7.48 

4. Future work 
Our ultimate goal is to be able to use ETSIM to understand how to best design and support an 
e-taxi service in a location where taxis are currently exclusively or predominantly conventional 
vehicles (or hybrids). ETSIM can help us understand where there is a need for charging, 
whether an e-taxi service can operate reliably despite limited battery capacity, and how charging 
is best integrated into an e-taxi, etc. Particular aspects of interest are whether there is an 
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advantage in integrating queueing and charging, and to develop a better understanding of what 
specifications wireless chargers would need to meet to be able to support e-taxi operations while 
giving drivers confidence in using an EV rather than a conventional vehicle. We chose to 
develop ETSIM in Julia as it allows the seamless integration of optimization and simulation, 
which will enable us to optimize system parameters to find best value for money investment 
options for charging infrastructure, and thereby identify how to best support the transitioning 
of an existing taxi service to higher or exclusive use of EVs. In the shorter term, there are several 
details in ETSIM that could be improved (dispatcher and taxi decision making logic, taxi 
charging and queueing, real-time travel times, energy consumption model, etc), including the 
choice of some of the core parameters in the simulation such as charging power, energy loss 
and the SOC levels that are core to the simulation logic.  
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