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Abstract 

Near future safety risk evaluation is a critical step towards adaptive traffic safe operation at a 

smart intersection. This paper proposes a data-driven model that can quickly evaluate simulated 

safety risks for use in adaptive operational interventions. A traffic micro-simulation model was 

utilised to generate conflicts-based data for developing the machine learning model. Conflict 

indicators including time to collision, TTC, and post encroachment time, PET, were used to 

identify safety risk.  Supervise learning models such as linear regression and machine learning 

models including random forest and extreme Gradient Boosting (XGBoost) were employed to 

evaluate risk indices for adaptive operations. In total, 9 models were trained, and XGBoost 

were found to outperform the other algorithms with 0.87 of the overall accuracy. The findings 

of this study contribute to the development of edge computing traffic operation system 

accounting safety. 

1. Introduction 

Road safety is one of the critical global public health challenges influencing urban health. 

Traffic crashes caused 1.35 million deaths and over 50 million injuries in 2016 (World Health 

Organization, 2019a), which also caused a significant economic burden, costing 3% of GPD 

on average for most countries (World Health Organization, 2019b). Although there are lots of 

efforts made tacking the road safety issue, the sustainable development goal (SDG) indicator 

for road traffic mortality revealed that the progress has stalled or trends in wrong directions. 

Understanding potential crash risk in the transport system fully is a first step to enhance traffic 

safety.  

Urban roadway intersections are given significant attention when developing safe transport 

system, due to complex traffic conflicting movements inside the intersection area. In order to 

manage the intersecting traffic flow, various traffic signs and signal control systems were 

developed. Safety management and traffic operations are the two distinct but interrelated 

aspects in traffic management systems. Operational aspects aimed for efficient traffic through 

minimising delays, travel time and queue length etc. Meanwhile, safety management aspect 

involved identifying safety prone zone or develop counter solutions to mitigate injuries and 

fatalities. Nevertheless, traffic crashes could breakdown traffic flow causing serious delays. 

Cooperating both safety and operations management becomes the key to success. 

Following the advancements in connected vehicles technologies (CVs), research that focused 

on real-time safety risk using high-resolution data have received significant attention (Ghoul 

and Sayed, 2021; Hu et al., 2020). However, obtaining insight of real-time risk may still be 

insufficient for the management systems to optimise and diverge traffic flow in advance. In 

order to allow sufficient time for the transport management network to redirect traffic flow 

away from the safety prone intersection, forecasting near future safety risk and optimising 

adaptive signal phasing for safety across network is needed. 

Consequently, this paper aims to develop a near future safety risk evaluation model at an 

actuated intersection and explore the effect of signal control phasing to the near future safety 
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risk. The objective is to develop a data-driven model that can quickly evaluate safety risks for 

use in real-time operational interventions, such as signal phase reconfigurations and timing 

adjustments, variable speed limits, etc. A traffic micro-simulation model was utilised to 

generate conflicts database for training the models. Conflict indicators including time to 

collision and post encroachment time were used to measure safety risk, then machine learning 

models were developed to evaluate risk indices for real-time operations. The developed model 

aims to address the research questions about how signal control phasing influence near future 

conflicts frequency and how can such information be evaluated and utilised in a timely manner. 

This research is among first attempts towards adaptive traffic operation at a smart intersection 

accounting near future safety.   

2. Literature review 

Modelling safety risk at signalised intersection falls into two categories, which are conflict-

based and collision-based. Collision-based model utilises the historical crash report while 

conflict-based model measure risk using Surrogate Safety Measures (SSMs) approach. 

Common SSMs indicators includes: Post-Encroachment Time, PET (Cooper, 1984), Time to 

Collision, TTC (Hayward, 1972) and Modified Time to Collision, MTTC (Ozbay, 2008) etc. 

Apart from using field measured collision and conflict data, approaches utilizing 

microsimulation software is an alternative to assess safety performance. Following sections 

will review the state-of-the-art research from the above three aspects. 

2.1 Collision-based safety evaluation model 

Considerable research has been conducted in modelling real-time collision risk (Khattak et al., 

2021; Kidando et al., 2021; Wang et al., 2020; Yuan et al., 2020; Yuan and Abdel-Aty, 2018).  

These studies demonstrate the use of crash data to evaluate safety risk and predict crash 

occurrence from traffic state variables. Nonetheless, only a few studies have explored the 

temporal effect on the traffic state data. Yuan and Abdel-Aty (2018) investigated the effect of 

utilising traffic data up to 20 minutes prior the targeted crash or non-crash event through 5 

model, including a full model and 4 time slice model for each 5 minutes slice. Meanwhile, 

Yuan et al. (2020) further investigate the temporal effects of traffic state data on real-time risk 

at signal cycle level. The result demonstrates the potential using current traffic state data to 

predict safety risk after longer period. Despite the efforts made in utilizing crash data in 

assessing safety performance, there are concerns, including long data collection time (Hu et al., 

2022; Yang et al., 2021b), inconsistency or under reports (Wood et al., 2016) and lack of insight 

into fail mechanisms behind an accident (Tarko and Lizarazo, 2021).  

2.2 Conflict-based safety evaluation model 

Contrarily, assessing traffic conflicts overcome concerns of using crash data. Traffic conflicts 

happens more often than collision, which provides a more comprehensive insight to the 

dangerous movement that leads to collision. Essa and Sayed (2019) developed a fully Bayesian 

models to evaluate real time rear-end conflict frequency per traffic cycle of a signalized 

intersections. Despite conflict frequency, Guo et al. (2020) proposed a Bayesian Tobit models 

to evaluate real-time rear-end conflict rate SPFs, which remove the vagueness of using conflict 

frequency as a measurement of risk level due to inconsistent cycle length. Yang et al. (2021a) 

proposed a functional data analysis approach to investigate the signal cycle safety risk at the 

movement level, meanwhile Hu et al. (2022) examined the internal relationship between traffic 

states variables and traffic conflicts through a lane-based real-time safety evaluation model. 

These studies demonstrated the application of traffic conflicts in real-time vehicle-based safety 

risk evaluation. 
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2.3 Simulation-based safety evaluation model 

Apart from utilising historical or field measured data, traffic simulation is an alternative safety 

performance modelling approach found in previous studies (Katrakazas and Quddus, 2018; 

Ozbay, 2008; Rong Fan et al., 2013; Salim et al., 2007; Shahdah et al., 2015; Sobhani et al., 

2013). It provides an easy and effective way to gather data compared to the other two data 

sources (Mahmud et al., 2019). Furthermore, it offers the ability to proactively evaluate safety 

performance of a conceptual design, such as modifying geometry or signal control system, 

before the actual implementation. However, there are concerns about whether simulated 

conflicts can reasonably estimate traffic conflicts in real world. Huang et al. (2013) and Rong 

Fan et al. (2013) proposed a two-stage calibration approach and evaluate the method through 

comparing the simulated conflicts to the field measured conflicts extracted from video analysis. 

The result shows that calibration could improve goodness-of-fit between simulated and field 

measured conflicts to certain extend. Later, Guo et al. (2021) proposed an extreme value theory 

based approach to calibrate microsimulation model for safety evaluation. The study 

demonstrates to match field measured conflicts with extreme value distributed simulated 

conflicts, revealing potential application of simulation-based safety evaluation model. 

In summary, crash data recorded the direct cause of injuries and fatalities while conflicts data 

corresponds to the potential crash or near-miss events. Besides, frequently happened traffic 

conflicts is believed to provide a better clue to the unsafe situation. Efforts had been found in 

building connection between conflicts and crashed events to support conflicts as a surrogate of 

crash data. For the data source, historical, field-measured and microsimulation are the common 

approach observed in literatures. Previous literatures attempt to assess real-time safety risk at 

an intersection with crashed and conflicts data. The proposed model aims to contribute to 

forecast near future risk to allow sufficient time for the traffic management system to react in 

traffic operations to redirect flow away from safety prone intersections 

3. Methodology 

With the objective to explore the effect of signal control operations and traffic volumes and 

speeds, microsimulation approach is believed to be the best fit as it can evaluate safety 

performance without the physical implementation. Apart from the time intensive simulation, 

Figure 1 path (A), this paper aims to develop a data-driven model, Figure 1 path (B), that can 

quickly evaluate safety risks for use in real-time operational interventions. Following sections 

will discuss the methodology in term of data sources, safety risk criteria, and objective model 

design and evaluation. 

Figure 1 Methodology schematic diagram 
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3.1 Conflict data preparation  

Considering the aim to investigate the effects of signal control phasing to near future conflict 

frequency. Microsimulation approach is utilised to generate conflicts data. Microscopic 

simulation model Vissim, published by the PTV Group, is a mature software often being 

utilised by previous researches (Guo et al., 2021; Huang et al., 2013; Katrakazas and Quddus, 

2018; Rong Fan et al., 2013; Shahdah et al., 2015; Sobhani et al., 2013). With the attention 

given in SSMs approaches, multiple researches were also found to utilise microsimulation 

technologies with Surrogate Safety Assessment Model (SSAM) (Guo et al., 2021, 2019; Huang 

et al., 2013; Katrakazas and Quddus, 2018; Rong Fan et al., 2013; Shahdah et al., 2015). The 

SSAM is a SSMs assessment applicant published by the Federal Highway Administration 

(FHWA) of the United State. As shown in Figure 1 path (A), 1 hour simulation is run for each 

traffic conditions input set, and the conflict data is collected from evaluation of SSAM. After 

that, the conflict frequency data is pre-processed for the prediction modelling. 

3.2 Conflict indicator 

The SSAM utilise TTC and PET to determine conflicts occurrence. TTC described the instant 

of time required for two vehicles to collide if there is no changes of speeds and paths (Hayward, 

1972), while PET represent the time difference between the moment of the first vehicle passes 

out of the potential collision area and the moment of arrival at the potential collision point by 

the following vehicle (Cooper, 1984). Despite TTC have been frequently used to evaluated 

rear-end conflicts in previous studies, there are limitations for using TTC as the single indicator 

to evaluate safety (Mahmud et al., 2019; Vogel, 2003). Calculation of TTC assumed vehicles 

are in constant speed which ignored potential conflicts due to different in acceleration or 

deceleration. Meanwhile, PET is only useful for transversal trajectories cases. As a result, 

considering both TTC and PET complement each other. Regarding to the selection of indicator 

threshold, different threshold values have been used in previous studies. Mahmud et al. (2019) 

and Johnsson et al. (2021) suggested that threshold of TTC is usually ranged from 1.5s to 4s 

while PET is ranged from 1s to 5s. Threfore, considering nature of both indicators, the 

threshold value of 1.5s and 4s is selectd for TTC and PET respectively. 

3.3 Objective model algorithm and evaluation 

3.3.1 Machine learning method  

Considering the objective model is a regression type problem. The linear regression method is 

first utilised to estimate relationship between traffic stats, signal control operations and resulted 

conflict frequency. Apart from traditional statistical method, different machine learning 

algorithms were found to be utilised in previous traffic safety studies (Hu et al., 2022; Huang 

et al., 2016; Kidando et al., 2021; Mafi et al., 2018; Zhang et al., 2020). In this study, random 

forest (RF) and extreme Gradient Boosting (XGBoost) were chosen as the candidate 

algorithms. Both RF and XGBoost are ensemble machine-learning algorithm, which combines 

multiple week decision trees to improve accuracy (Kidando et al., 2021; Mafi et al., 2018).  

RF used the bagging techniques to improve prediction power and model efficiency (Mafi et al., 

2018). According to the author, prediction outcome of a RF regressor is calculated by averaging 

result from the decision trees, which helps controlling the issue of overfitting. On the other 

hand, XGBoost is a widely recognised scalable tree boosting system giving state-of-the-art 

results across different research area, for example, hazard risk prediction or store sales 

prediction (Chen and Guestrin, 2016). It is noted that all of the mentioned methods is 

implemented using the scikit-learn package in python (Pedregosa et al., 2011).  
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3.3.2 Hyperparameter tunning and model selection 

The k-fold cross-validation procedures (k=10) is utilised to estimate the model performance 

when predicting unseen sample. It is believed to be less bias compared to the single train-test 

split technique. Each of the folds is given an opportunity to be used as a held back test sample 

while the rest are used as training sample. The performance of the fitted models is evaluated 

through root mean square error (RMSE) and coefficient of determination (𝑅2). Besides, each 

machine learning algorithm includes various choice of hyperparameters which could affect 

algorithm behaviour. In order to discover a suitable set of hyperparameters in feasible amount 

of time, the grid search techniques are used, combined with k-fold cross-validation, to evaluate 

each distinct set of model hyperparameters. Below table summaries the tunned 

hyperparameters and corresponding value range observed to be suitable for the datasets. 

Table 1 Description of tunned hyperparameters 

RF  XGB  

Description 

Observed 

suitable 

values 

Description 

Observed 

suitable 

values 

Number of estimators 500, 1000 Number of estimators 300, 500 

Subsample ratio of 

features to train each 

base estimator 

0.7, 1 Learning rate 0.1, 0.3, 0.5 

Number of features to 

consider when looking 

for the best split 

sqrt, log2 Maximum depth of a tree 4, 6, 8, 10 

Maximum depth of the 

tree 
8, None 

Subsample ratio of the training 

instances 
0.5, 0.7 

Minimum number of 

samples required to split 

an internal node 

0.5, 1 
Subsample ratio of columns 

when constructing each tree 
0.5, 0.7, 1 

Minimum number of 

samples required to be 

at a leaf node 

0.3, 0.5, 1 

Subsample ratio of columns for 

each level 

 

0.5, 0.7, 1 

Criterion 
squared loss, 

poisson, 

Minimum sum of instance 

weight needed in a child 
3, 5, 7 

  Objective 

poisson, 

tweedie, 

squared loss 

 

4. Data and result 

To produce the required “labelled” data for supervised learning, conflicts data is first simulated 

by microsimulation software, VISSIM (PTV Vissim, 2021), then processed against volume 

and operational features for machine learning models. Following sections will present the 

simulated conflict data and resulted prediction model. 
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4.1 Simulated conflict data 

Figure 2 Simulation model numbering notation 

 

The simulation model was developed based on real world intersection located in Carlton, 

Melbourne, Australia with actuator signal timing. From Figure 2, Approach 1 and 3 (North-

south movement) is defined as the major approach while approach 2 and 4 (East-west 

movement) is defined as the minor approach. Considering the threshold value of 1.5s and 4s is 

selected for TTC and PET respectively, 60 simulations run for each scenario is chosen to limit 

the error of the simulated conflicts into 5% level (Shahdah et al., 2015). Thus, 60 × 1hour 

simulation is run for each traffic conditions input set, then the conflicts frequency data is 

collected from averaging the result of simulation runs. Table 2 present the descriptive statistics 

of the dependent variable. In short, there are 3 dependent variables to represent 3 types of 

averaged conflicts frequency. For instance, “rear_end” denotes number of rear end conflicts 

within the 60 minutes period. Remaining dependent variables are similarly defined, with 

“crossing” and “lane_change” correspond to conflicts due to crossing and lane change 

movement respectively. It is observed that rear end conflict is the major type founded within 

the intersection area. On the other hand, Table 3 explained the description of explanatory 

variables (E. V.) including traffic states and signal operation parameters. For this study, traffic 

states parameters are approach-based, for example “traffic_vol_1” denotes traffic volume of 

approach 1. Meanwhile, signal operation parameters are direction-based, “Max_Green_NS” 

denotes maximum green time of north-south (approach 1 and 3) direction movement etc. In 

summary, over 1600 scenarios were simulated and used for machine learning model training. 

Table 2 Descriptive statistics of dependent variables 

Name Min Max Mean Std 

rear_end 0 392.15 59.8399 57.1078 

crossing 0 2.1667 0.3702 0.4065 

lane_change 0 18.9167 3.5106 3.2607 

 

 

 

 

1 

2 

3 

4 
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Table 3 Definitions of explanatory variables 

E. V. Description Unit Range 

traffic_vol 
Number of vehicles, at each approach, for the 

next 60 minutes: traffic_vol_(1, 2, 3, 4) 
veh/hour [0,700] 

percent_RT 
Percentage of right turn vehicles at each 

approach: percent_RT_(1, 2, 3, 4) 
% [0,40] 

percent_LT 
Percentage of left turn vehicles at each 

approach: percent_LT_(1, 2, 3, 4) 
% [0,40] 

Speed_lim 

Speed limit for each direction:  

Speed_lim_(1, 2) for NS and EW direction 

respectively 

km/h 
40, 50, 60, 70, 

80 

Max_Gap 
Through and left turn movement maximum gap 

time: Max_Gap_(NS, EW) 
s 2, 2.5, 3, 3.5, 4 

Min_Green 
Through and left turn movement minimum 

green time: Min_Green_(NS, EW) 
s [6,14] 

Max_Green 
Through and left turn movement maximum 

green time: Max_Green_(NS, EW) 
s [30,50] 

Max_Gap_RT 
Right turn movement maximum gap time: 

Max_Gap_(NS, EW)_RT 
s 2, 2.5, 3, 3.5, 4 

Min_Green_RT 
Right turn movement minimum green time: 

Min_Green_(NS, EW)_RT 
s [3,9] 

Max_Green_RT 
Right turn movement maximum green time: 

Max_Green_(NS, EW)_RT 
s [11,19] 

Amber Amber duration: Amber_(NS, EW) s 3, 3.5, 4 

Red Minimum Red duration: Red_(NS, EW) s 2.5, 3, 3.5 

4.2 Result of machine learning model 

Machine learning algorithms including linear regression (LR), random forest (RF) and extreme 

gradient boosting (XGB) were employed to estimate conflict frequency. In total, 9 models were 

selected for all dependent variables. Table 4 summaries individual model RMSE and 𝑅2 

scoures aginst the test datasets, which are not involved in hypermater tunning process. 

Table 4 Results of prediction models 

Conflict Type 
Testing set accuracy, 𝑹𝟐 (RMSE) 

Linear Regression Random Forest XGBoost 

Rear end 0.6961 (31.4355) 0.7787 (28.3150) 0.8917 (17.9747) 

Crossing 0.6470 (0.2353) 0.8202 (0.1727) 0.8711 (0.1435) 

Lane change 0.7068 (1.6276) 0.8116 (1.3962) 0.8763 (1.1162) 

From the resulted model, it is observed that the accuracy ranking, from high to low, appears to 

be XGBoost, random forest and linear regression across all conflicts type. XGBoost models is 

obviously outperform the other two algorithms in term of lower RMSE and higher 𝑅2 scoures 

criteria aginst unseen input. More specifically, rear end model results indicated XGBoost 𝑅2 

scored 14% and 25% higher than random forest and linear regression respectively. Meanwhile, 

crossing model results revealed XGBoost  𝑅2 scored 6% and 30% higher than random forest 

and linear regression respectively. For the lane change model, XGBoost outperform random 

forest and linear regression with 8% and 21% 𝑅2 boost. Although linear regression model has 

a relative low accuracy, it still achieved a high overall accuracy (0.64 - 0.70). It may because 
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conflicts frequency was a relatively simple measurement of safety risk, which only account for 

probability.  

4.3 Model interpretation and feature importance 

Interpreting the output of the prediction model is a critical step to understand model 

performance. It provides insight into how the model may improve, and how each feature 

contributes to the prediction process (Kavzoglu and Teke, 2022). Since from the previous 

sections, XGBoost was found to outperform the other two algorithms, following interpretation 

focused on the XGBoost model result. There are serval approaches to interpret tree-based 

model, such as reporting the decision path (Lundberg et al., 2019). However, these methods 

are unhelpful for complex models, including RF and XGBoost, which are ensemble trees 

algorithm. Thus,  Lundberg et al. (2019) proposed a SHAP (SHapley Additive exPlanations) 

based tree explainer compute optimal explanations for complex tree model. Meanwhile, the 

SHAP approach is implemented based on game theory to compute explanations of model 

predictions (Lundberg and Lee, 2017). In general, analysing SHAP values can determine how 

the feature contribute, positively or negatively, to the predictions. Furthermore, SHAP value 

can be computed on individual observation level. In other words, the SHAP based tree 

explainer enables both local and global interpretation. Following section discussed the 

interpretation of XGBoost model with the SHAP based tree explainer. 

4.3.1 Feature importance and interoperability of rear end conflict model 

Figure 3 Rear end conflict model global explanation summary 

 
Results in Figure 3 indicates that traffic volume variables are the most important features 

affecting the prediction for rear end conflict frequency in the following 1-hour period. A 

significant positive relationship (SHAP value increased with feature values) between traffic 

volume and rear end conflict frequency is observed. It may because rear end conflicts are 

mainly caused by traffic stop-and-go, which were not well captured by turning flow and signal 

timing parameters. Essa and Sayed, (2018) reported that shock wave parameters, caused by 

stop-and-go situation, have a significant effect on rear end conflicts frequency at signalized 

intersection. Despite importance of traffic volume variables dominates at global level, there are 

interesting interaction observed at local level. Figure 4, left, shows that longer gap time of the 

major approach tends to reduce frequency of rear end conflict. However, such effect weaker 

under low traffic volume situation (dispersed blue dot), which red and blue coloured dots 

corresponds to high and low traffic volume scenario respectively. It may because longer gap 

time allows more extension of green time for a dense vehicle pattern, thus frequency of stop-
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and-go cycle decreased and resulting in lower rear end frequency. Meanwhile, Figure 4, right, 

reveals that extending major approach maximum green time tends to reduce rear end conflict 

risk to certain extent. For the tested range, 45 seconds of maximum green time seems to be an 

appropriate choice for safter rear end risk in near feature. 

Figure 4 Local SHAP interaction of, major approach maximum gap time (left), major approach 

minimum green time (right) 

 
 

4.3.2 Feature importance and interoperability of crossing conflict model 

Figure 5 Crossing conflict model global explanation summary 

 

Results in Figure 5 shows that major approach traffic volume are the most important features 

for crossing conflict model. Nevertheless, significance of turning percentage increase 

compared to rear end model. It is expected as in a left-hand driving environment, right turning 

flow which cross over opposing flow is the main cause of crossing conflict. In term of local 

explanations, Figure 6 shows that left and right turn percentage is inversely and directly related 

to crossing conflicts frequency respectively. It may because increasing left turn percentage 

implies relatively less demand in through or right turn flow, thus the probability of crossing 

conflict decreased. Furthermore, it is noted that significance of turning percentage is 

emphasized by major traffic flow volume, indicated by Figure 6 coloured distribution. For the 

signal related parameters, Figure 7 shows that increasing maximum gap time for dedicated 

right turn duration reduced crossing conflicts risk. It may because longer gap time for right turn 

benefit in extending dedicate right turn flow, thus reducing cross flow risk. Furthermore, it is 
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spotted that certain value (6 second) of minimum green right turn duration in minor approach 

give safer conflict risk performance for the tested scenarios (Figure 8, left). Contrarily, 

increasing minimum green right turn duration in major approach achieved similar effect 

(Figure 8, right). 

Figure 6 Local SHAP interaction of T4 major approach turning percentage, left turn (left), right turn (right) 

  
  

Figure 7 Local SHAP interaction of major approach maximum right turns gap time 

 

Figure 8 Local SHAP interaction of minimum right turn green time, minor approach (left), major 

approach (right) 
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4.3.3 Feature importance and interoperability of lane change conflict model 

Figure 9 Lane change model global explanation summary 

 

Lastly, Figure 9 shows that traffic volume variables are the most important features affecting 

the prediction for lane change conflict frequency. According to the definition in SSAM, lane 

change conflicts is defined when the conflicts angle is between 85° and 30°. Thus, lane change 

conflicts are treated as the intermediate between crossing and rear end conflicts, which 

corresponds to situation when conflicts angle over 85° and below 30° respectively. For the 

local explanations, both left turn and right turn percentage variables for all approaches was 

found to be negatively related to lane change conflicts frequency across all time intervals. 

Figures 10 were an example from approach 3.  

Figure 10 Local SHAP interaction of major approach turning percentage, left turn (left), right turn (right) 
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5. Conclusion and recommendation 

This paper proposed a data-driven model that can quickly evaluate safety risks for use in real-

time operational interventions. Microsimulation approaches were utilized to generate conflict-

based data. Conflict indicators including time to collision, TTC, and post encroachment time, 

PET, were used to identify safety risk. Three type of conflicts frequency, including rear end, 

crossing and lane change, within 1 hour period were defined as the dependent variables. 

Machine learning algorithms, including linear regression, random forest and extreme Gradient 

Boosting (XGBoost) were employed to develop the objective models. The resulted models 

show that XGBoost model outperform other two algorithms in term of coefficient of 

determination (𝑅2) with satisfactory score. The main conclusion drawn from interpretation of 

the XGBoost model are as follow: 

1. Traffic volume variables are the most important features that have a positive 

relationship for all conflict frequency types. 

2. Significance of turning percentage variable in crossing conflict model increased. Local 

explanations reveal that left and right turn percentage is inversely and directly related 

to crossing conflicts frequency respectively. 

3. Serval signal timing parameters including maximum gap time, maximum green time 

and minimum green time were found to have interesting local interaction with estimated 

conflicts frequency. 

The result clearly show that signal timing parameters has relativity weak impact when 

compared to traffic demand parameters. However, when considering certain level of traffic 

demand, especially in low demand cases, parameters including maximum gap time, maximum 

green time and minimum green time were observed to have local impact on model output. In 

other words, assuming a situation of off-peak hour, it may be possible to reduce conflict 

incidents through adaptive signal duration. Besides, the proposed model show that it is feasible 

to evaluate safety performance from unseen scenario in moment, compared to hourly 

microsimulation process, with satisfactory accuracy. As a result, it can contribute towards the 

safety aspect of an adaptive traffic operation system. 

Although the XGBoost models achieved satisfactory accuracy, there are limitations to this 

research. Firstly, conflicts frequency was used as a measurement of safety risk. Conflicts 

frequency describe probability of conflicts occurrence without accounting severity. Therefore, 

global significance of traffic volume variables is relatively high compared to other features. In 

other words, impact from other parameters on safety risk may not be fully discovered. A safety 

risk measurement that considers both probability and severity is needed for further research. 

Secondly, driving decision parameters of the simulation model were not calibrate with real-

world conflicts data. Thus, the evaluation model is only a proactive safety evaluation of a 

conceptual signal control system. Further calibration on driving behaviour parameters is 

needed before real world application. Lastly, the proposed model focused on single 

intersection, which vehicles were assumed from far upstream. In this situation, lane selection 

behaviour due to change in travel direction may not be captured. 
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