
Australasian Transport Research Forum 2022 Proceedings 

28-30 September, Adelaide, Australia 

Publication website: http://www.atrf.info 

1 

 

Deep-learning methods for long-term traffic flow 

forecasting 
 

Xiao Zheng1, Majid Sarvi2, Saeed Asadi Bagloee3 

1, 2, 3Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, 

Australia 

Email for correspondence: xzheng5@student.unimelb.edu.au 

 
Abstract 

Effective long-term forecasting of traffic flow has many applications for Intelligent 

Transportation Systems. With more historical measurements being available, data-driven 

methods are becoming promising for conducting this forecasting task. Existing research 

focuses on prediction for up to 1 day, yet there is an emerging demand for a longer forecasting 

horizon. This paper first reviews representative data-driven methods for traffic forecasting. 

Subsequently, the promising Sequence to Sequence (Seq2Seq) deep-learning methods are 

evaluated on the long-term forecasting up to 14 days ahead. Their performances on 1 day, 7 

days and 14 days ahead traffic flow forecasting are compared and discussed. Then, the impacts 

of the shrinking size of training data and holiday traffic are investigated. Based on a real-world 

and large dataset from Melbourne, Australia, test results indicate that a state-of-the-art 

Transformer-based method, Informer, generates superior results than Seq2Seq RNN, LSTM, 

and GRU, especially when the forecasting span is extended. Besides, although the accuracy of 

Informer slightly degrades with the decreasing size of training data, 2 months of training data 

seem enough for it to produce a decent performance. In addition, the investigation of holiday 

traffic reveals its evident impact on forecasting accuracy. 

1. Introduction 

Intelligent Transportation System (ITS) aims to increase the operational efficiency and capacity 

of the transportation system by creating an integrated system of people, roads and vehicles (An 

et al., 2011). An efficient ITS environment requires a continuous flow of information regarding 

how traffic conditions evolve with time (Lieu, 2000), and one of the most frequently studied 

conditions is traffic flow (Vlahogianni et al., 2004), which refers to the number of vehicles 

passing through a given point on a road segment in a certain time span. Traffic flow forecasting 

can be used for specific tasks ranging from road condition controlling (Jiang and Adeli, 2005) 

to travel planning (Lee et al., 2009), hence is strongly needed for individual road users, business 

sectors, and government agencies.  

A predominant change in ITS recently is extensive data can be collected from various sources 

(Zhang et al., 2011), which prompts the prevalence of data-driven methods for traffic 

forecasting. Unlike knowledge-driven methods employing analytical or simulation models 

(Cascetta, 2013), data-driven approaches develop models directly learning the traffic dynamics 

from traffic data, and are generally more accurate and robust (Van Lint and Van Hinsbergen, 

2012). From the perspective of the forecasting period, data-driven methods can be classified 

into short-term (from a few seconds to a few hours) (Vlahogianni et al., 2014) and long-term 

(longer than short-term and up to 24 hours) forecasting (Hou et al., 2015), and the former has 

attracted most effort till several years ago (Vlahogianni et al., 2014). More recently, research 
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applying deep-learning methods, an advanced category of data-driven methods, to traffic 

forecasting (such as DCRNN (Li et al., 2017), ASTGCN (Guo et al., 2019) and GMAN (Zheng 

et al., 2020)) is mainly evaluated over a 5-minutes to 24-hours prediction window. Compared 

to some knowledge-driven methods that can generate traffic prediction for years ahead, the 

studied forecasting horizon is limited for data-driven methods, creating a noticeable research 

gap. Effective traffic forecasting for a longer term is needed since it enables action optimization 

at more steps in the future. For authority, this means more reaction time to traffic conditions; 

for traveller, this allows them to plan further ahead. 

This paper investigates the performance of promising data-driven methods on a longer term 

(up to 14 days) traffic flow forecasting. The study is based on data collected from a single 

location, which applies to a common scenario in which only one detector is deployed, or the 

detectors are located too far to generate any spatial dependency. Representative works of data-

driven methods for traffic forecasting are reviewed first. Then, promising Sequence to 

Sequence (Seq2Seq) methods, including Recurrent Neural Network (RNN), Long Short Term 

Memory Network (LSTM), Gated Recurrent Unit Network (GRU) and a state-of-the-art 

method, Informer, are evaluated with real-world signalized arterial data to study their 

performance in different scenarios including the increased forecasting horizon and the reduced 

size of the training data. Lastly, the impact of holiday traffic on forecasting accuracy is 

investigated.  

2. Review of related work 

Data-driven approaches for traffic forecasting develop models directly learning the traffic 

dynamics from traffic data, and can be classified into statistical methods, machine learning 

methods, and deep learning methods (Tedjopurnomo et al., 2020).  

Statistical methods build a data-driven statistical model and are typically applied to short-term 

(commonly 1 step ahead) forecasting. The most representative work is the Auto-Regressive 

Integrated Moving Average (ARIMA) (Box et al., 1970) identifying recurring patterns from 

historical data. One modification of it, Seasonal ARIMA, has been applied to 1 step (15 

minutes) ahead traffic forecasting (Williams and Hoel, 2003). Another influential method is 

the Kalman Filter (KF), a recursive minimum variance data processing algorithm (Kalman, 

1960). Methods based on KF were proven to be an efficient method for short term traffic 

forecasting (Okutani and Stephanedes, 1984, Jin et al., 2013, Guo et al., 2014, Emami et al., 

2019, Emami et al., 2020). Although with good interpretability, statistical methods are typically 

designed for small datasets and require uninterrupted data. Another major drawback is they 

usually assume specific properties of the data (for example, stationarity), whereas traffic data 

is often too dynamic and complex to satisfy these assumptions.  

Machine learning methods learn from data by assembling mathematical models (Bagloee et al., 

2018), which predict traffic typically by solving the corresponding regression problem. For 

instance, Support Vector Regression transfers a non-linear regression problem to a linear one 

by using a non-linear mapping to map data into a high-dimensional feature space (Müller et 

al., 1997), and has been applied to 15-minute ahead traffic forecasting (Wang et al., 2015). 

Another example is K-nearest Neighbours method based on the assumption that observations 

which are close in feature-space are likely to be more similar (Devijver and Kittler, 1982), 

which has been used to predict up to 5 time steps into the future (Zhang et al., 2013, Yu et al., 

2016a). Although machine learning methods are proven to be able to model non-linearity and 

extract some complex correlations in the traffic data, these approaches either rely on strong 

stationary assumptions of the data or not being able to consider highly non-linear temporal 

dependency (Yu et al., 2016b). 
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Deep learning is a part of the machine learning method and a thriving field today with increased 

data size and computing power (Liu et al., 2020). Deep learning methods use multiple-layer 

architectures to extract inherent features in data and map the input traffic data directly to the 

required output. They are believed to have the potential to find out highly non-linear temporal 

dependency and have acknowledged capability of modelling complex traffic patterns 

(Tedjopurnomo et al., 2020). The mainstream types of deep-learning models applied to the 

traffic forecasting problem considering exclusively temporal dependency include RNN and its 

variants and the Transformer-based models (Tedjopurnomo et al., 2020).  

RNN has the ability to store information, thus allowing it to capture dependencies between 

different parts of the sequence (Schmidt, 2019). It is often visualized as a chain of nodes, for 

each node, the input from the corresponding time step and a summary of information from all 

previous time steps is fused and passed. However, when processing a sequence of significant 

length, RNN suffers from gradient vanishing (Hochreiter, 1998). LSTM was proposed as a 

variance of RNN to solve this issue. Its gated sophisticated structure enhances the model’s 

ability to learn and memorize long dependency features (Hochreiter and Schmidhuber, 1997). 

Moreover, a simplified version of LSTM is GRU, which contains fewer gates (Cho et al., 

2014). A Seq2Seq architecture is later introduced to allow RNN-based methods to predict an 

output sequence with arbitrary length (Sutskever et al., 2014). This architecture works by 

encoding the input information into a vector in the encoder and sending this vector into the 

decoder where the output is generated. Notably, a method based on Seq2Seq LSTM 

demonstrated promising results for as long as 1 day (288 steps ahead) traffic forecasting (Wang 

et al., 2020). 

The attention mechanism is introduced to Seq2Seq RNNs for dealing with longer sequences 

(Bahdanau et al., 2014). Intuitively, attention is a weighted combination of a sequence of data, 

where the weights are determined by the level of similarity among data points. The attention 

mechanism allows the model to search among every historical time step in the encoder, then 

decide their importance and select the relevant information for predicting in the decoding 

procedure. Completely avoiding recurrent structure, Transformer (Vaswani et al., 2017) is a 

recent model utilizing an attention mechanism for different time steps in a single sequence, 

namely, self-attention (Cheng et al., 2016), leading to improved performance on capturing 

long-term dependency. Vanilla Transformer contains an encoder and a decoder, each being a 

stack of several identical blocks. Each encoder block contains a multi-head self-attention 

module and a position-wise feed-forward network, and employs residual connection (He et al., 

2016) and layer normalization (Ba et al., 2016). Decoder blocks additionally insert cross-

attention modules between encoder and decoder. When applying Transformer to perform long-

term forecasting, one of the major issues is the 𝑇 -quadratic computation and memory 

consumption on 𝑇 length inputs/outputs for a single layer. Informer (Zhou et al., 2020) is a 

successful attempt to improve the efficiency of the Transformer, while maintaining accuracy. 

3. Methodology 

Since deep-learning methods have shown great potential in long-term traffic forecasting from 

the review of related work, four major Seq2Seq deep learning models, including RNN and its 

two most acknowledged variances, LSTM and GRU, as well as the Informer, the state-of-the-

art Transformer-based model for long sequence time-series forecasting, are selected for 

evaluation with a real-world urban arterial traffic dataset. This section elaborates on these 

methods, with the overall methodology illustrated in Figure 1. 
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Figure 1: Overall methodology 

 

 

3.1. RNN, LSTM and GRU 

When predicting traffic using RNN and its variances, we introduce a multilayer Seq2Seq 

framework illustrated in Figure 2. As shown in Figure 2, the Seq2Seq model is composed of 

two stacked RNN/LSTM/GRU networks named encoder and decoder, respectively. The input 

sequence is encoded into semantic vectors, which are then decoded in the decoder to generate 

the output sequence. In addition, each RNN/LSTM/GRU network stacks a series of layers, 

which can help capture higher-level representations of sequence data (LeCun et al., 2015). Note 

that a dropout (Srivastava et al., 2014) layer is added to the outputs of each layer except the 

last layer. As a powerful regularization technique, dropout is a process of randomly setting 

elements of the outputs to 0 with a designed probability 𝑝, and then scaling the resulting outputs 

by a factor of 
1

1−𝑝
. 

 

Figure 2: k-layer Seq2Seq framework for RNN/LSTM/GRU 

 

 

In the 𝑚 layer of the encoder, a sequence of 𝑇 length is input into the model, and each element 

of this sequence, 𝑥𝑡
𝑚, contains the information of a corresponding time-step. A single layer of 

RNN can be viewed as a list of nodes, and for each node, a hidden state, ℎ𝑡
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the following equation:  
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where 𝑊𝑖
𝑚, 𝑊ℎ

𝑚, 𝑏𝑖
𝑚 and 𝑏ℎ

𝑚 are trainable parameters, and ℎ(𝑡−1)
𝑚  is the hidden state from the 

last node, or the given initial value ℎ 
𝑚. The generated hidden states [ℎ1

𝑚, ℎ 
𝑚, ⋯ , ℎ 

𝑚 ] after 

dropout are used as the input of the subsequent layer, that is, 𝑥𝑡
𝑚+1 = ℎ𝑡

𝑚. Suppose there are 𝑘 

layers in total, the encoder will generate [ℎ 
1 , ℎ 

 , ⋯ , ℎ 
  ], which, together with 𝑥 , is then sent 

into the decoder. In the decoder, they are used to calculate hidden states for each layer (for 

instance, ℎ +1
𝑚 ) with Equation 1) and the hidden states passing between the layers in the same 

way. The calculated ℎ +1
  then goes through a linear transformation to obtain the first 

forecasting value,  1 .  1  is then used as the input of the second node in the first layer. 

Following the same procedure, the forecasting of every time step after the input sequence is 

calculated recursively, this output sequence ends with   𝑝, when the task is predicting 𝑇𝑝 time 

steps. 

Compared to the multilayer Seq2Seq RNN framework, the main change in the corresponding 

LSTM network is the computation in the nodes. Each node of LSTM receives the 

corresponding input 𝑥𝑡 , a hidden state ℎ(𝑡−1)  and a hidden memory cell state, 𝑡−1 , and 

maintains three gates including a forget gate 𝑓𝑡 , a input gate 𝑖𝑡 , and a output gate 𝑜𝑡 . The 

memory cell and gates can help LSTM learn long-term dependencies by effectively storing and 

passing useful historical information. The calculation is performed using the following 

equations (for notation simplicity, subscript 𝑚 is omitted hereinafter): 

𝑓𝑡 = 𝑆(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 +𝑊ℎ𝑓ℎ(𝑡−1) + 𝑏ℎ𝑓) 2) 

𝑖𝑡 = 𝑆(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 +𝑊ℎ𝑖ℎ(𝑡−1) + 𝑏ℎ𝑖) 3) 

𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 +𝑊ℎ𝑔ℎ(𝑡−1) + 𝑏ℎ𝑔) 4) 

 𝑡 = 𝑓𝑡⨀ 𝑡−1 + 𝑖𝑡⨀𝑔𝑡 5) 

𝑜𝑡 = 𝑆(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 +𝑊ℎ𝑜ℎ(𝑡−1) + 𝑏ℎ𝑜) 6) 

ℎ𝑡 = 𝑜𝑡⨀tanh( 𝑡) 7) 

where 𝑆 is the sigmoid function, ⨀ is the Hadamard product, 𝑊𝑖𝑓, 𝑊ℎ𝑓, 𝑊𝑖𝑖, 𝑊ℎ𝑖, 𝑊𝑖𝑔, 𝑊ℎ𝑔, 

𝑊𝑖𝑜, 𝑊ℎ𝑜 and 𝑏𝑖𝑓, 𝑏ℎ𝑓, 𝑏𝑖𝑖, 𝑏ℎ𝑖, 𝑏𝑖𝑔, 𝑏ℎ𝑔, 𝑏𝑖𝑜, 𝑏ℎ𝑜 are trainable parameters. After dropout, ℎ𝑡 

is passed to the corresponding subsequent layer as input. 

Containing two gates only, GRU is a lighter version of LSTM. The studied multilayer Seq2Seq 

GRU shares the same architecture with the abovementioned multilayer Seq2Seq RNN, while 

the only difference is the calculation taking place in each node, which is now: 

𝑟𝑡 = 𝑆(𝑊𝑖𝑟𝑥𝑡 + 𝑏𝑖𝑟 +𝑊ℎ𝑟ℎ(𝑡−1) + 𝑏ℎ𝑟) 8) 

𝑧𝑡 = 𝑆(𝑊𝑖𝑧𝑥𝑡 + 𝑏𝑖𝑧 +𝑊ℎ𝑧ℎ(𝑡−1) + 𝑏ℎ𝑧) 9) 

𝑛𝑡 = tanh(𝑊𝑖𝑛𝑥𝑡 + 𝑏𝑖𝑛 + 𝑟𝑡⨀(𝑊ℎ𝑔ℎ(𝑡−1) + 𝑏ℎ𝑛)) 10) 

ℎ𝑡 = (1 − 𝑧𝑡)⨀𝑛𝑡 + 𝑧𝑡⨀ℎ(𝑡−1) 11) 

where 𝑆 is the sigmoid function, ⨀ is the Hadamard product, 𝑊𝑖𝑟, 𝑊ℎ𝑟, 𝑊𝑖𝑧, 𝑊ℎ𝑧, 𝑊𝑖𝑛, 𝑊ℎ𝑔 , 

and 𝑏𝑖𝑟, 𝑏ℎ𝑟, 𝑏𝑖𝑧, 𝑏ℎ𝑧, 𝑏𝑖𝑛, 𝑏ℎ𝑛, are trainable parameters. 

3.2. Informer 

Informer (Zhou et al., 2020) is developed to alleviate the computation cost of the vanilla 

Transformer. The ProbSparse Self-attention mechanism proposed in Informer selects and 



ATRF 2022 Proceedings 

6 

keeps only dominant dot-product pairs in attention calculation by an approximation of the 

Kullback-Leibler divergence. It also uses a generative style decoder, which generates the 

production in one forward operation, to replace the step-by-step decoding procedure in the 

vanilla Transformer. This allows fast predicting procedure and avoids error cumulation during 

decoding.  

As demonstrated in Figure 3, in the encoder of Informer, the data sequence with embedded 

time stamp and position stamp, 𝑋𝑓𝑒𝑒𝑑_𝑒𝑛, is put into the Multi-head ProbSparse self-attention 

layer, where for each head, the queries 𝑄 , keys 𝐾  and values 𝑉  are firstly calculated by 

different linear projections of the input. Then, we calculate 𝑈 =  × celi(ln(𝐿 )) and 𝑢 =
 × celi(ln(𝐿𝑄)), where   is a hyperparameter, and 𝐿   and 𝐿𝑄 is the length of the sequence of 

keys and queries, respectively. Next, we randomly select 𝑈 dot-product pairs from 𝐾 as 𝐾̅, and 

time 𝐾̅  by 𝑄  to get the sample score 𝑆 . The following steps involve computing 𝑀  as the 

difference between maximum 𝑆  and mean 𝑆  and selecting the top-𝑢  𝑀  and getting their 

corresponding indices to locate 𝑄̅. The final output is computed by partially updating the 

average value of 𝑉 with  softmax(𝑄̅𝐾  /√𝑑) ∙ 𝑉 (𝑑 is the input dimension). The output goes 

through a ‘dropout, add and layer norm’ process. This is to say, we perform dropout to the 

output, add it to the input of the layer, and then perform a layer normalization to the sum. The 

result then goes through a fully connected layer and the same ‘dropout, add and layer norm’ 

process. Moreover, Informer puts the output through a self-attention distilling process, which 

involves a down convolutional transformation, then a batch normalization (Ioffe and Szegedy, 

2015), an activation with Elu (Clevert et al., 2015), and a Max-Pooling (Giusti et al., 2013). 

The result will then be used as the input of the next encoder layer, and the total memory usage 

for multiple layers is restrained. To enhance the robustness, Informer also allows building 

halving replicas of the main stack, letting it go through a similar operation, and concatenating 

the outputs together. 

 

Figure 3: Overall structure of the Informer (Zhou et al., 2020) 

 
 

A concatenation of an earlier time slice before the predicting sequence named ‘decoder start 

token’, 𝑋𝑡𝑜 𝑒𝑛, and the place holder for the predicting sequence, 𝑋 , which is summed with a 

similarly embedded time stamp and position stamp, is then sent into the decoder. This input 

can go through another Multi-head ProbSparse self-attention layer. Here, an additional ‘mask 

mechanism’ is applied to prevent a current position from attending to subsequent positions by 

only allowing a certain query to visit the keys and values before or at the position of this query. 
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The output will then go through a ‘dropout, add and layer norm’ process as before, and then be 

put into a following cross-attention layer, where it is transformed into queries, and the output 

from the encoder is transformed to keys and values. Perform ‘dropout, add and layer norm’ and 

send the outcome through a fully connected layer, then perform ‘dropout, add and layer norm’ 

again. This outcome becomes the input of the next layer of the decoder. At the end of all 

decoder layers, the results will go through a layer normalization and be projected through a 

linear model to get the forecasting results. 

4. Performance evaluation 

In this section, Informer and the proposed multilayer Seq2Seq RNN, LSTM and GRU are 

evaluated with real-world signalized arterial data to investigate their performance in predicting 

the long-term traffic flow. 

4.1. Datasets 

Three flow datasets from AIMES (http://aimes.com.au/) are used for evaluation. Each dataset 

is collected from an arterial segment in the Melbourne urban area, whose location is shown in 

Figure 4. Data from each segment is treated separately to produce individual models, neglecting 

any potential spatial correlation. Each dataset contains a whole year traffic flow of 2019, with 

3 days of data missing. Considering the small proportion of missing data (0.82%), the 

imputation is conducted simply by replacing them with the data from the same period last week. 

The data granularity is 15 minutes. Some statistical properties of the datasets after imputation 

are summarized in Table 1. 

 

Figure 4: Location of the dataset road segments (marked and numbered in blue) 

 
 

Table 1: Statistical properties of flow data 

Dataset No. 

Statistical properties (no of vehicle/15 mins) 

Mean Std 
Percentile 

25th  50th  75th  99th  
1 60 46 16 54 95 168 

2 169 98 70 180 250 361 

3 112 75 40 113 168 295 

 

Average traffic flow per each day of the week is calculated from the first 8 months of data, as 

shown in Figure 5. It can be observed that on top of different daily patterns (for example, 

Dataset 3 has strong morning peaks and subtle afternoon peaks for weekdays, and the weekend 

traffic peaks before noon), all three datasets have an obvious weekly pattern being an overall 

decrease of flow and change of daily pattern during weekends, compared to the weekday traffic. 
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Figure 5: Average traffic volume per each day of the week over the first eight months 

 

 

The size of the training/validation/testing dataset is 8 months/1 month/3 months, respectively. 

The flow data has been scaled by standardization with the statistics from the training set before 

being loaded into the models with a rolling stride of 1. Prior to metrics calculation, the predicted 

values from the models are inversely transformed. 

4.2. Evaluation metrics 

In this research, the widely used and reported metrics in academia, including Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE), are utilized for performance evaluation. 

Especially, inspired by (Lippi et al., 2013), we measure Mean Absolute Percentage Error 

(MAPE) only over the results with corresponding ground truth >100 vehicles/15 minutes, 

namely, MAPE100. This is to eliminate the disproportionate impact generated from the very 

low values. An additional metric used in this investigation is GEH statistics, which is an 

empirical calculation widely used in the industry to represent the goodness-of-fit of a model, 

and the formula is: 

𝐺𝐸𝐻 = √
2(𝑀 − 𝐶) 

𝑀 + 𝐶
12) 

where M is the hourly traffic flow from model forecasting and C is the corresponding ground 

truth. As the outputs from models are 15-minute level forecasting, 4 consecutive results are 

summed up and considered hourly traffic. An estimate generating a GEH index of 5.0 or less 

is deemed acceptable, while any GEH calculation greater than 10 is deemed to be unacceptable, 

and results in between would require attention and scrutiny (VicRoads, 2019). The use of GEH 

statistic will help understand if the performance is satisfying in the real-world application for 

the traffic forecasting problem.  

4.3. Implementation details 

Experiments are performed with the following implementation details (key parameters are 

tuned on the held-out validation set): 

• For Seq2Seq RNN, GRU and LSTM, both the encoder and decoder contain 3 layers 

(chosen from {1, 3, 6} layers), and the size of the hidden state and cell state is set as 

512. Models are trained with batch size 32 and a loss function MSE. For the dropout 

layer, 𝑝 = 0.1. The initial learning rate is 0.0001 (selected from {0.01,0.001,0.0001}), 

which is then reduced by multiplying 0.5𝑛𝑜.𝑜𝑓 𝑙𝑎𝑠𝑡 𝑒𝑝𝑜𝑐ℎ−1. Adam optimizer (Kingma 

and Ba, 2014) is used. Early stopping is performed in the way that if the validation loss 

increases in 3 consecutive epochs, the training is terminated.  
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• For Informer, the parameters in the originally proposed model (Zhou et al., 2020) are 

adopted, except that we adopted probsparse attention and its corresponding settings for 

both encoders and decoders. The initial value of the learning rate is tuned to be 0.0001 

(selected from {0.01,0.001,0.0001, 0.00001}). The batch size is set as 2. The same loss 

function, learning rate decay strategy, optimizer and early stopping strategy used for 

Seq2Seq RNN/GRU/LSTM, is also adopted for Informer. The length of ‘decoder start 

token’ is set as 288 when the input length is 7 days and 14 days, and is set as 48 when 

the input length is 1 day.  

• To identify the optimum length of input data for different prediction horizons, a group 

of experiments are conducted on Dataset 3, and the results are summarized in Figure 6. 

We, therefore, select the input length with the lowest GEH summed among all methods: 

for 1 day/7 days/14 days forecasting, the length of input data sequence is determined as 

7 days/7 days/14 days, respectively. Meanwhile, preliminary observation shows that 

the general effect of input length on prediction accuracy is not obvious unless for a 

longer prediction horizon like 14 days. Further discussions of this will be conducted in 

future works. 

 
Figure 6: Comparison of the impact of different input lengths on the results of different prediction 

horizons 

 

 

4.4. Results and discussion 

In this section, we compare the performance of the select methods and discuss the performance 

with the shrinking training data and the effect of holiday traffic. 

4.4.1. Comparison of performance among the methods 

Table 2 summarizes the evaluation results of traffic flow forecasting over the next 1 day (96 

steps), 7 days (672 steps), and 14 days (1344 steps), with the best results marked in bold. 

According to Table 2, the results of RNN become unacceptable (GEH>10) when the prediction 

period is increased to 14 days. One primary reason is that RNN suffers from gradient vanishing 

and, therefore, only has a limited ability to learn information from a long time ago. 

Comparatively, LSTM and GRU can sometimes generate decent accuracy for 14-day 

forecasting, suggesting their superiority in dealing with longer sequences due to their gated/cell 

state mechanism. Informer achieves the best accuracy in all prediction tasks, and its superiority 

generally becomes more evident as the forecasting period prolongs, since the performance of 

other methods typically decays with the increase of the forecasting span. Remarkably, this 

accuracy decay is not evident for Informer. A key factor contributing to the improved 
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forecasting capacity of Informer might be its adopted Transformer framework (particularly the 

self-attention mechanism), which allows the model to review the entire input sequence and 

utilise the most relevant information, regardless of the length of the data sequence. Another 

main reason can be, for Informer, the whole prediction sequence is generated at once with its 

proposed generative decoding process, avoiding potential error accumulation from the 

recursive decoding process used by RNN/LSTM/GRU. 

 

Table 2: Performance comparison of different methods with increasing forecasting span 

Dataset 

No. 

Forecasting 

Horizon 
Metric RNN LSTM GRU Informer 

1 

1 day 

MAE 16.79 15.33 14.99 13.80 

RMSE 23.93 22.56 21.85 21.03 

MAPE100 21.54% 20.85% 20.13% 18.13% 

GEH 3.92 3.64 3.57 3.00 

7 days 

MAE 23.00 40.42 21.24 14.45 

RMSE 31.03 48.85 29.07 22.35 

MAPE100 28.29% 49.92% 25.59% 17.98% 

GEH 5.62 10.42 5.16 3.36 

14 days 

MAE 43.85 41.94 20.91 14.78 

RMSE 51.91 50.27 28.78 22.36 

MAPE100 53.46% 51.38% 25.55% 19.62% 

GEH 11.24 10.77 4.88 3.41 

2 

1 day 

MAE 34.11 25.52 28.25 23.6 

RMSE 46.54 36.67 38.36 36.1 

MAPE100 19.19% 14.45% 15.87% 13.67% 

GEH 5.12 3.68 4.28 3.42 

7 days 

MAE 83.29 37.19 33.63 23.64 

RMSE 96.17 49.95 44.85 37.11 

MAPE100 28.10% 20.92% 19.08% 13.78% 

GEH 13.37 5.65 5.05 3.34 

14 days 

MAE 83.19 78.9 78.83 22.78 

RMSE 96.14 92.84 92.84 34.53 

MAPE100 28.00% 26.95% 27.06% 12.95% 

GEH 13.3 12.6 12.57 3.26 

3 

1 day 

MAE 26.4 21.93 22.37 15.62 

RMSE 39.44 32.65 33.26 25.19 

MAPE100 18.53% 15.56% 15.48% 11.72% 

GEH 4.73 4.00 4.08 2.67 

7 days 

MAE 63.4 29.1 53.04 17.14 

RMSE 75.16 42.24 63.71 28.43 

MAPE100 30.59% 18.30% 28.64% 12.58% 

GEH 12.45 5.32 10.42 2.9 

14 days 

MAE 63.2 28.43 29.3 16.57 

RMSE 75.22 41.45 42.51 26.22 

MAPE100 30.32% 18.02% 18.88% 12.29% 

GEH 12.35 5.15 5.31 2.93 

 

We present an example visualized result for 14-day forecasting in Figure 7. The result 

illustrated in Figure 7 is a slice of the prediction for Dataset 3 from 0:00 1st to 23:45 5th October 

2019, which is the first 5 days of a single 14-day forecasting, with Informer and LSTM. As 

shown in Figure 7, Informer can capture different daily patterns on weekdays (from the 

beginning to time step 384) and weekends (from time step 385 to the end) with satisfying 

accuracy. Comparatively, the second-best method for this forecasting task, LSTM, only 
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captures a roughly daily pattern (higher flow in the morning) and cannot reproduce the weekly 

pattern (the difference between weekdays and weekends). Besides, after approximately the first 

96 steps of forecasting, the rest of the prediction of LSTM seems only to repeat a similar 

pattern, which suggests that it cannot effectively preserve and pass useful information when 

the sequence becomes excessively long.  

 

Figure 7: Visualized prediction for the first 5 days (480 steps) of a 14-day (1344 steps) forecasting with 

Informer and LSTM on Dataset 3 

 

 

4.4.2. Influence of the size of training data 

A common challenge in practice is that the amount of available data is often limited. And an 

ideal method should be able to produce stable accuracy when the size of data is reduced. Since 

Informer has demonstrated the best accuracy among the evaluated deep learning methods in 

this study, we further assess its performance on 14-day forecasting by gradually reducing the 

amount of training data while fixing the validation and test set. Figure 8 shows the change in 

GEH when the size of the training set is altered from 8 months to 1 month. Although a general 

increase in GEH can be observed as the size of training data reduces, no evident worsening of 

performance is noticed if 2 months of data can be used for training, which gives a preliminary 

indication of the required amount of training data to assure a satisfactory performance for 14-

day forecasting. On the other hand, this may also imply that the studied Informer model did 

not effectively exploit more information from up to 8 months of the training set, for instance, 

other potential higher level seasonal patterns (such as monthly patterns). 

 

Figure 8: The performance of Informer when the size of training data is reduced 
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4.4.3. Influence of the holiday traffic 

Abnormal traffic patterns can be observed in the ground truth during the holiday period. As 

one example shown in Figure 9, for Dataset 3, traffic flow on 25th December (marked between 

red lines), which is a weekday and also the Christmas Day, does not exhibit a strong morning 

peak or a subtle afternoon peak like other non-holiday weekdays.  

We further investigate the impact of holiday traffic on flow forecasting. An example prediction 

of Dataset 3 with Informer, covering the ‘Christmas season’, is displayed in Figure 9, from 

which it is evident that Informer still generates typical weekday and weekend predictions for 

the period with abnormal holiday traffic patterns, which can significantly jeopardize the 

forecasting accuracy. In Figure 10, we compare the results of 14-day Informer forecasting 

between the results covering all types of traffic conditions and the results calculated when 

holiday traffic forecasting is not considered. In the test set, holiday traffic is observed on 5th 

November (the ‘Melbourne Cup’) and from 23rd December to the end of the year (recognized 

as the ‘Christmas season’ . Results indicate that when removing the impacts of holiday traffic 

forecasting, the GEH can be lowered by an average of 0.37.  

 
Figure 9: Visualized prediction for a 14-day forecasting with Informer on Dataset 3, covering a period of 

holiday traffic 

 
 

Figure 10: Performance comparison for 14-day forecasting with Informer when the accuracy calculation 

considers both non-holiday and holiday traffic, and considers exclusively non-holiday traffic 

   

 

5. Conclusions 
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problems. Most efforts have gone to forecasting up to 1 day. On the other hand, longer-term 

prediction is required for its own applications. In this paper, after reviewing the representative 

data-driven methods, the performance of promising Seq2Seq deep learning forecasting 

methods (RNN, LSTM, GRU and Informer) when predicting traffic flow for up to 14 days is 

evaluated with real-world data collected from signalized arterials. Results indicate that 

Informer has strong performance improvements over other deep-learning methods being tested 

when dealing with an excessively long forecasting span, and the improvements become more 

predominant as the forecasting horizon increases. This highlights the effectiveness of a list of 

innovations of Informer, including its adopted Transformer framework and the proposed 

generative inference, both of which are well-suited for long-term traffic forecasting. Besides, 

although there is a slight accuracy decay when reducing the size of training data, 2 months of 

training data seems enough for Informer to perform well for 14-day forecasting. Lastly, holiday 

traffic has been found to adversely affect forecasting accuracy, making it an important question 

for future research. Potential solutions can be increasing the size of training data to provide 

enough instances for the model to learn this particular variation or embedding representative 

features into the model. Future work will also further investigate the impact of input length on 

prediction accuracy and the approaches to modelling spatial correlations between different road 

segments.  
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