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Abstract 
This paper examines empirical data from public transport operations in Sydney, to assess if the 

mean end-to-end runtime, and its standard deviation, are useful measurements to monitor the 

reliability and efficiency of the public transport services delivered. This paper shows that the 

mean plus two standard deviations for end-to-end runtimes was an effective estimator of the 

97th percentile for the both the headway and timetable-based services studied. 

1. Introduction 

This paper (2022b) and Hounsell (2022a) form a pair, the case study duality criterion is that 

‘… while the case study context is always unique, the empirical examination must always be 

balanced with a more general theoretical examination.’ (Gammelgaard 2017, p. 910) — see 

also (Jacoby 1976, 1978). Hounsell (2022a) describes a theory of why transport operators must 

deliver an efficient and reliable public transport service to maintain their legitimacy. Hounsell 

(2022a) then explains how statistical process control (SPC) could theoretically be used to assist 

in achieving reliable and efficient operations. This builds on previous research where UTS 

demonstrated that efficiency can be improved through the application of the Measure, Stabilise, 

Reduce (MSR) framework outlined by Dr M.E. Zeibots (Hounsell 2018a). SPC can be 

considered an application of the MSR framework focused on measuring and reducing variation. 

Figure 1: Runtime variability impacts what services are targeted and what services can be delivered 

 

This paper is an empirical examination of three transport services in Sydney to assess whether 

observed running times on the transport services can be treated as either normally distributed 

or their mean and standard deviation provide valid estimators for use in SPC. This paper uses 

a multi-method × multi-trait approach as in (Chamberlin 1890) and (Campbell & Fiske 1959). 

This paper provides numerical summaries, box plots, distribution plots, normal probability 

plots, and distribution and cumulative probability plots examining both slightly skewed and 

strongly skewed running time datasets to examine the hypothesis. 

1.2 Research Context 

In a natural system, the measurements of key parameters will often form a normal distribution. 

As such measuring the system and controlling variance is a key technique for reducing waste 

and achieving efficiency. The wider business community has expanded upon the principles of 

SPC since the early twentieth century, such as the work of W.E. Deming (Deming 1982, 2018). 
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The six-sigma approach to achieving SPC monitors the mean (�̅�) and the standard deviation 

(𝝈𝒆) of the product or service because in a normal distribution 99.8% of the values will be less 

than three standard deviations from the mean. Therefore, if the operator controls the variance 

of the delivery to (�̅� − 3𝜎𝑒 ≥ 𝑒𝑚𝑖𝑛 and �̅� + 3𝜎𝑒 ≤ 𝑒𝑚𝑎𝑥) then the output will be between less 

than the upper quality tolerances of the process 99.9% of the time (Brussee 2006). 

This paper examines Sydney’s Inner West Light Rail (IWLR) and the City to South-East Light 

Rail (CSELR). The IWLR is about 12km long, and both branches of the CSELR are about 9km 

long. These two light rails provide major high frequency services in Sydney and are operated 

to a Headway Adherence based KPI. These services do not operate to conventional timetables, 

and do not have substantial built-in ‘fat’ where vehicles wait at intermediate stops for several 

minutes to maintain timetable adherence. As such, these services operate as natural processes. 

This paper also examines the autonomous Sydney Metro during testing. Although the data 

shows the metro operated to a timetable, the timetable ‘fat’ built into the testing was minimal. 

Thus, it was examined to see if a well-controlled timetabled service could support SPC. 

Remember that on a frequent route timetable ‘fat’ is just wasting your passengers time to meet 

a product centric timetable adherence KPI (Hounsell 2021, pp. 50-2, § 6.1.1.5 Timely Transit). 

This paper shows that the method could be applied to any frequent service in a dedicated right 

of way, as well as to any frequent tram or bus service in any city. However, further research is 

required into the limits of this approach for on-street routes longer than twelve kilometres  

Most of the literature reviewed examined schedule adherence, i.e. failure rates — minimizing 

failure rates is a key objective of SPC (Abkowitz & Engelstein 1984; Currie, Douglas & Kearns 

2012; El‐Geneidy, Horning & Krizek 2011; Mazloumi, Currie & Rose 2008). A case study 

examining the below estimation hypothesis is needed before further examining the application 

of SPC, as SPC measures the behaviour of a system during successful delivery of a service, 

with the aim of ensuring the mean output and its variation remains within the acceptable 

tolerances. SPC is not monitoring failure rates (like lateness) as transport operators often do.  

2. Method 

The objective of the research programme is to empirically determine if the MSR framework 

and SPC could be applicable to real world public transport operations, such as those in Sydney. 

A realistic hypothesis for real world public transport operations is: 

the mean end-to-end runtime ( �̅�) plus two standard deviations (𝟐𝝈𝒆 ) provides a 

reasonable estimate for the 97th percentile of the observed end-to-end runtimes (e).  

In response to Hounsell (2018a) and Hounsell (2018b), noted transport economist Neil 

Douglas, suggested that transit running times would be positively skewed with a long tail.[E1]  

Figure 2: Skewness of a statistical distribution - (Jain 2018) 
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However, as the results below demonstrate, public transport runtimes are not naturally 

skewed, they are artificially skewed by timetables. This observation is clearly demonstrated in 

the results below for the IWLR and CSELR versus the Sydney Metro. During timetable 

creation, waiting time at stops/stations are added for buses/trams/trains to timetabled services 

to compensate for the natural variability of public transport operations. See also (NIST 2018). 

The light rail runtime data was provided by Transdev Sydney. The IWLR measurements are 

for the up-running time between Dulwich Hill and Central from September to December 2017. 

The CSELR dataset was derived from their measurements using their Automated Vehicle 

Location System for inbound services running between Central and Circular Quay. That section 

was chosen to maximise the number of data points. The data used was from May 2020 after 

the pandemic restrictions had loosened, and  TfNSW had improved the traffic light sequencing, 

as examined in McRoberts-Smith (2020). Sydney Metro runtimes were from system testing of 

the automated control systems right before opening and was provided in response to an FOI. 

For the CSELR study, only the L2 branch was operational. Central Station was a timing point. 

There were additional services between Central Station and Circular Quay. During the study 

that section had the most patronage. Since the purpose of this case study is to see if the delivered 

times can be estimated, this paper examines running time on just that primary section. 

Figure 3: Sydney Network Maps – Light Rail, as well as Metro (within the Sydney Rail) – (TfNSW 2016) 

Due to its size, the rail map was appended as the last page of this paper — Source R1 & R2 

 

3. Results 

The box plots for the light rail runtimes show a number of outliers and a slight positive skew 

for both datasets. It is important to note they do not have the same scale — the IWLR usually 

ranged between (31..41) minutes and the CSELR ranged between (15..29) minutes. 
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Figure 4: Distribution of all end-to-end upline runtimes for the IWLR Q4 2017 and CSELR May 2020 

  
Table 1: Key metrics for end-to-end runtimes for the IWLR Q4 2017 and CSELR May 2020 

From All Data Points IWLR CSELR Units 

Sample Count 8762  2766 samples 

Min 29.3 12.8 minutes 

Lower Quartile  34.7 19.1 minutes 

Mean (95% CI) – e ̅ 35.9 (±0.038) 21.3 (±0.127) minutes (minutes) 

Median 35.7 21.0 minutes 

Upper Quartile 36.9 23.0 minutes 

Max 65.8 61.8 minutes 

Range 36.5 49.0 minutes 

Standard Deviation – σe 1.78 (107 sec) 3.35 (201 sec) minutes 

Standard Error – σ ̂e 0.019 0.064 minutes 

Skew 1.539 2.507  

Galton/Bowley skew [E1] 0.078 0.013  

Four Sigma – e ̅+2σe 39.49 27.96 minutes 

97.72 Percentile 39.99 (+0.5)   27.98 (+0.02) minutes 

Outliers < 31.5 and > 40.1 < 13.2 and > 28.8 minutes 

Outlier Count 203 (2.3%) 55 (2.0%) samples 

The metro performance tests in Figure 5 below, appear to have more spread until you see they 

normally range from (36.8 to 37.8) minutes. That was achieved through the use of a dedicated 

carriageway, lightweight construction, excellent acceleration/braking, and being computer 

controlled. Those operating benefits will in future be weighed against the construction costs.  

In contrast to the light rails, the skew of these metro distributions is strongly positively. 

However, these plots and tables are not enough to prove/disprove the above hypothesis.  
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Figure 5: Distribution of all end-to-end runtimes for Sydney Metro final performance testing Sep 2019 

 

Table 2: Key metrics for end-to-end runtimes for the Sydney Metro final performance testing Sep 2019 

From All Data Points Up First Down First Up Second Down Second Units 

Sample Count 1601  1601  1601  1601  samples 

Min 36.8 36.8 35.9 36.0 minutes 

Lower Quartile 37.0 37.1 36.9 37.0 minutes 

Mean (95% CI) – e ̅ 37.1 ±0.021 37.3 ±0.036 37.0 ±0.030 37.2 ±0.037 minutes 

Median 37.1 37.2 36.9 37.1 minutes 

Upper Quartile 37.2 37.3 37.0 37.2 minutes 

Max 45.0 54.0 49.6 53.7 minutes 

Range 8.3 17.2 13.7 17.8 minutes 

Std Deviation – σe 0.43 0.71 0.60 0.75 minutes 

Std Error - σ ̂e 0.011 0.012 0.015 0.018 minutes 

Skew 10.06 12.58 11.40 11.07  

Galton/Bowley skew [E1] 0.111 0.077 -0.200 0.077  

Four Sigma – e ̅+2σe 37.98 38.73 38.22 38.69 minutes 

97.72 Percentile 38.00 (+.02) 38.58 (-.15) 38.23 (+.01) 38.67 (-.02) minutes 

Note: The four tranches listed above are different sets of test runs in both directions. 

3.1. Distribution of all measured running times 

The IWLR is authorised to provide a public transport service with a vehicle-headway that 

TfNSW describes as a ‘turn-up-and-go’. Figure 6 below shows the distribution for the IWLR 

end-to-end runtimes, the median is below the mean and the skew is positive. The measured 97th 

percentile of 39.9 minutes is 0.5 minutes greater than predicted by the normal distribution (�̅� +
2𝜎𝑒) as shown in Table 1 above. Given the large sample size (>8,000), low skew, and low 

standard error, it is reasonable to conclude that the normal model does provide a reasonable 

estimate for the 97th percentile of end-to-end runtimes.  
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Figure 6: Count of all end-to-end upline runtimes for the IWLR Q4 2017 

 

The CSELR is also authorised with Key Performance Indicators (KPI) focused on headway-

adherence. In contrast to the IWLR, the CSELR from Central to Circular Quay is primarily on-

street running, through many traffic lights and long stretches of pedestrian malls. As such the 

distribution of CSELR runtimes has a much larger range, and due to variability in signalling it 

displays multiple peaks. However, the difference between the normal model and measure 97th 

percentile is only 0.02 minutes which shows the CSELR does not invalidate the hypothesis.  

Figure 7: Count of all end-to-end inbound runtimes – CS to CQ – for the CSELR May 2020 

 

The Sydney Metro demonstrated a strongly positive skew suggesting timetable adherence. 

However, the absolute difference between the normal model estimates for the 97th percentile 

and the observed measurements was less 9 seconds, which does not invalidate the hypothesis. 
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Figure 8: Count of all end-to-end runtimes for Sydney Metro final performance testing Sep 2019 

 

As such, these initial results suggest that the hypothesis is valid for frequent service which are 

operated to either a timetable or a specific vehicle-headway. As such, it looks like the mean 

end-to-end runtime (�̅�) plus two standard deviations (2σe) provides a reasonable estimate for 

the 97 percentile of the observed end-to-end runtimes (e), as demonstrated in Table 2 above. 

Additional analysis is presented below to expand upon these results. 

3.2. Normal probability plots 

A normal probability plot uses cumulative probability, z-scores, and a linear regression to 

assess whether a dataset has a nearly normal distribution. Figure 9 and Figure 10 show the 

IWLR and CSELR runtimes are nearly normally distributed with a larger tail (R2>98%). Figure 

11 indicates that as expected the Sydney Metro runtimes is not normally distributed.  

Figure 9: Normal probability plot of end-to-end upline runtimes for the IWLR Q4 2017 
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Figure 10: Normal probability plot of end-to-end inbound runtimes – CS to CQ – for the CSELR 

 

Figure 11: Normal probability plots of end-to-end runtimes for Metro final performance testing Sep 2019 

 

3.3. Distribution and cumulative probability 

Two other ways to examine the similarity between the normal distribution and a dataset are the 

cumulative distribution and percent point function plot. Figure 12 and Figure 13 below show 

the observed distribution for the IWLR in red and the normal distribution model generated 

from that dataset in black. Both charts mark the mean and the 97th percentiles. Both charts, but 

especially Figure 12, show that the observed data is nearly normal. Both charts show that the 

mean end-to-end runtime (�̅�) provides a reasonable estimate for the middle observed end-to-

end runtimes (e), and also that the mean plus two standard deviations (�̅� + 𝟐𝛔𝒆 ) does provide 

a reasonable estimate for the 97th percentile, which does not invalidate the hypothesis.   
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Figure 12: Cumulative probability of end-to-end upline runtimes for the IWLR Q4 2017 

 

Figure 13: Distribution of end-to-end upline runtimes for the IWLR Q4 2017 

 

Similarly, Figure 14 and Figure 15 below show that the CSELR runtimes could also be 

estimated using a normal distribution model as the middle and the 97th percentile can be 

accurately estimated using a normal model. That is despite the observed data having two peaks 

due to the design and signalling on the George St section of the CSELR. 
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Figure 14: Cumulative probability trimmed end-to-end runtimes – CS to CQ – for the CSELR May 2020 

 

Figure 15: Distribution of end-to-end inbound runtimes – CS to CQ – for the CSELR May 2020 

 

3.4. Distribution and cumulative probability for a right skewed distribution 

Figure 16 below is the plot of the cumulative probability of measurements for the Sydney 

Metro. In contrast to the nearly normal natural runtimes of the IWLR and CSELR, the highly 

skewed artificial runtimes of the Sydney Metro are clear when plotted against the cumulative 

probability of their normal distribution model.  

The left half of Figure 17 shows the full set of observations plotted against their normal 

distribution model. These plots also show these end-to-end runtimes are artificial and tightly 

controlled, but with a substantial and impactful tail that affects the normal model and making 

it too shallow to model the full runtimes. However, the right half of these figures plot the 

trimmed set of observations where outliers have been removed. Further research should 

examine if a normal or another model could better represent the skewed dataset. 

However, the Sydney Metro plots below indicate that �̅� + 2σ𝑒  for the normal models may 

provide an accurate estimate of the 97th percentile for artificial and tightly controlled end-to-

end runtimes at the human-scale resolution of minutes.  
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Figure 16: Cumulative probability of end-to-end runtimes for Metro final performance testing Sep 2019 

All points by end-to-end runtime (min) All points by end-to-end runtime (min) 

  
 
Figure 17: Distribution of end-to-end runtimes for Metro final performance testing Sep 2019 

All points by end-to-end runtime (min) Trimmed 3% by end-to-end runtime (min) 
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4. Conclusion and Discussion 

This paper examined the hypothesis that for real world natural public transport operations, the 

normal-distribution model, the mean end-to-end runtime (�̅�), and the mean plus two standard 

deviations (�̅� + 𝟐𝝈𝒆) provide reasonable estimators for the distribution, middle, and 97th 

percentile of the observed end-to-end runtimes respectively. As shown in the charts and tables 

above, when the system is operating with natural runtimes (especially when focused on 

delivering a given vehicle-headway) then the normal model, mean, and standard deviation are 

useful estimators for observed runtimes, thus the hypothesis has not been invalidated. 

With tightly controlled and artificial runtimes on an automated grade-separated railway, such 

as the Sydney Metro, then the normal model is not applicable for these highly skewed runtimes. 

However, even in such an artificial situation the mean and the standard deviation still provide 

reasonable estimators for the middle and the 97th percentile of service delivery. 

Therefore, then Statistical Process Control may be applicable to deliver an efficient system, 

especially if a system is operating with natural runtimes. This paper has shown that the mean, 

standard deviation, and other statistical measures used above could provide inputs to 

continuous optimisation frameworks, such as Measure, Stabilise, and Reduce, see Figure 1. 

In conclusion, considering all the results above, the mean end-to-end runtime (�̅�), and the 

standard deviation (σe) are clearly useful measurements and provide reasonable estimators to 

measure the reliability and efficiency of the public transport services delivered. Further 

research into the accuracy and applicability of those estimates is recommended. 

‘The essence of case research… is found in the duality of being situationally grounded, but at 

the same time, seeking a sense of generality. Meeting both requirements satisfies what we label 

the duality criterion.’ (Ketokivi & Choi 2014, p. 234) Thus, these papers serve the case study 

duality criterion by being case research as situational theory testing for the generalised theory 

in Hounsell (2022a). That theory was developed from the specific situations and general theory 

in the previous case research of Hounsell (2018a) and Hounsell (2018b).  

From the generalised theory, the efficiency of the service will be determined by the reliability 

of the running times, since the number of vehicles is affected by running time variability 

Hounsell (2022a). In Equation 1, the number of vehicles and crew required to deliver a service 

(V) for a targeted vehicle-headway (h) and minimum turn-around times (f, l), is proportional to 

the key variable of delivered end-to-end runtime (e) for inbound services (ei) and for outbound 

services (eo). Vehicles will wait at the first and last terminus to maintain a headway, so the 

actual terminal time (tt) at each terminus will be longer than minimums turnaround times given 

(f, l). If an operator minimises variability on a route, they can minimise wasted waiting time. 

Equation 1: End-to-end runtime including variation for a given number of vehicles at a given headway 

97.72% 
Confidence 𝑒𝑛𝑜𝑟𝑚𝑎𝑙 = �̅� + 2𝜎𝑒 

∴ 𝑉 = ⌈
𝑒�̅� + 2𝜎𝑒𝑖

+ 𝑒�̅� + 2𝜎𝑒𝑜
+ 𝑓 + 2𝜎𝑓 + 𝑙 + 2𝜎𝑙

ℎ
⌉ 

For a PSO to maintain legitimacy and public support they must transparently demonstrate they 

are reliably achieving efficient operations and minimising resource appropriations. As such, 

for every public transport run, the end-to-end runtimes and any waiting times (for timetable 

adherence) should be reported to the service authorisers to allow independent analysis of the 

PSO’s efforts at reducing variability while providing their public transport services. 
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6. Endnotes 

E1 – This paper provides the Quantile/Galton/Bowley skewness for the measurements because 

it is simple to compute and provides a comparable value due to its bounded range of [-1, 1]. 

‘The quantile definition of skewness uses Q1 (the lower quartile value), Q2 (the median value), 

and Q3 (the upper quartile value). You can measure skewness as the difference between the 

lengths of the upper quartile (Q3-Q2) and the lower quartile (Q2-Q1), normalized by the length 

of the interquartile range (Q3-Q1). For a symmetric 

distribution, the quantile skewness is 0 because the 

length Q3-Q2 [equals] Q2-Q1. If the right length (Q3-

Q2) is larger than the left length (Q2-Q1), then the 

quantile skewness is positive. If the left length is 

larger, then the quantile skewness is negative. … 

whereas the Pearson skewness can be any real value, 

the quantile skewness is bounded in the interval [-1, 1].’ (Wicklin 2017) 
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