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Abstract 

Fare card data provides an unprecedented opportunity to monitor day-to-day variability of 

travel demand and its responses to service disruptions and special events. However, when 

passengers take public transport without interacting with the fare system, demand is usually 

underestimated, which may cause problems for performance measurement and revenue 

collection. This research aims to investigate the fare noninteractions phenomena of the tram 

network in Melbourne, Australia. According to a prior evaluation, only 37% of boarding 

passengers validate tickets. This study utilizes large-scale automatically collated data to 

measure fare noninteractions, including data collected by Automatic Passenger Counting 

(APC) and Automated Fare Collection (AFC) systems. Compared to previous studies with 

small samples of on-board surveys, it contributes to the state of the art as these high coverage 

data enable the study of the impact of different types of explanatory variables, including time 

periods, routes, stop location, travel demand variability, presence of an inspector on-board, etc. 

Moreover, a free service zone is located in Melbourne central business district where 

passengers are not required to validate tickets. We specifically investigate passengers’ behavior 

at the boundary of a free service zone. Results show that fare noninteractions are lower for 

stops close to train stations, education facilities, stops that have been frequently inspected, and 

during the peak hours, but are higher for stops with large boarding flows, crowded services, 

evening periods and weekends. Importantly, conditioning on other variables, fare 

noninteractions at the boundary of the free service zone are higher in the morning peak but 

lower in the afternoon peak. The passenger flow diagram demonstrates the reason behind this 

may lie in the differences between purposes of trips. This investigation provides a starting point 

for proposing solutions to deal with the missing AFC data due to fare noninteractions. 

 

1. Introduction 

Increasing use of Automated Fare Collection (AFC) media in public transit systems around the 

world is a source of a massive amount of transit users’ travel data. These data typically record 

passengers’ origins, and in some cases destinations, as well as their time of travel. Moreover, 

these datasets can provide fare card identifiers for trips taken within the same day, and across 

days, weeks, months, or even years of observations. Recently, such rich datasets with high 

spatial and temporal resolution, collected over an extended period, have given researchers the 

opportunity to pursue many possible data-driven methodologies to better understand 
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passengers’ travel behaviors and activity patterns (Munizaga & Palma 2012, Gordon et al. 

2013, Nassir et al. 2011, 2015, 2019). However, when passengers take public transport without 

interacting the fare system, demand is usually underestimated and will cause problems for 

performance measurement and revenue collection. The noninteractions can be due to multiple 

reasons, including fare evasion, trips made with other payment methods, transfer trips, trips in 

the free service zone etc. 

This paper presents the results of a quantitative investigation into fare noninteractions 

in the tram system of Melbourne. We use data collected by AFC and Automated Passenger 

Counts (APC) systems as a cost-effective method to estimate fare noninteractions and apply an 

econometric approach to explain the noninteractions taking into account fare evasion and other 

possible reasons. This study contributes to the state of the art as the observations from APC 

and AFC data include all travelers along multiple routes, so we have complete information on 

the actual passenger flows and the number of ticket validations at different locations. It enables 

the study of the impact of spatial variables, such as land use and network topology. The sample 

also covers the entire operation of services, with 24 hours and 7 day, managing to identify the 

temporal variation of multiple explanatory variables. We also analyse the impact of inspection 

and travel demand on fare noninteractions. 

The reminder of this paper is organized as follows. Section 2 specifies the research 

background and highlights the limitations of the existing approach. Section 3 describes the 

model framework. Results are presented in Section 4. Conclusions, research limitations and 

future directions are discussed in Section 5.   

 

2. Research Background 

Among the reasons of fare noninteractions, fare evasion is the most critical issue due to its 

financial impact on the operation. A growing body of literature has examined the factors that 

explain fare evasion using on-board survey data (Guarda et al. 2016, Cantillo et al. 2022) or 

face-to-face interviews (Guarda et al. 2016, Delbosc & Currie 2016, 2019) collected on a 

sample of routes. The survey data used in these studies are usually well-designed and the 

consistency and randomness are guaranteed to be representative of the network usage. They 

concluded that fare evasion could be impacted by various factors, including time, location, 

socio-demographics, service operations, inspection levels etc. However, it is expensive to 

collect survey data and sample sizes are inevitably small. Particularly to the face-to-face 

interview, the data is also subject to bias as it relies on the capacity to build a relationship of 

trust between surveyors and interview passengers (Egu & Bonnel 2020). Fare inspection logs 

are another data sources to investigate fare evasion. This data is usually continuously gathered 

by inspectors during their daily shifts. However, the touch-on ratio might be overestimated due 

to the following reasons (Egu & Bonnel 2020). Firstly, the data recorded by inspectors are 

closely related to inspection strategies. Sampling bias might occur if inspectors do not 

systematically follow randomization in selecting areas and trips to inspect. Moreover, for 

crowded services or longer vehicles, such as tram, on-board passengers cannot be inspected 

completely, so the fare evasion rates are usually under-reported. When passengers perceive the 

presence of inspectors, they will also change their behavior. As a result, inspectors in uniform 

are likely to miss evaders that escape or validate cards when seeing inspectors (Delbosc & 

Currie 2019). In theory, all those elements should be taken into account to accurately measure 

fare noninteractions. Unfortunately, this cannot always be done in a satisfactory manner with 

the survey or inspection data. Hence, a more cost-effective alternative that will continuously 

collect data to support transit operators is required. 
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 Automated Passenger Counts (APC) systems provide the opportunity to automatically 

record ridership rates and are becoming more common among transit operators. In contrast to 

the survey, no human intervention is needed to collect the data, so it can be used to monitor the 

service utilization of the entire network continuously. Fused with records of ticket validation 

in AFC data, the number of fare noninteractions can be easily calculated. Although it is hard 

to distinguish between fare evaders and users with other payment methods, an investigation 

into those noninteractions will also provide valuable insights for transit operators. For example, 

considering the touch-on ratio varies significantly with space and time (Sánchez-Martínez 

2017), an understanding of what factors influence fare noninteractions will be an important 

component for decision makers to impute the missing AFC data. 

This research is conducted in collaboration with the Victoria Department of Transport, 

and the service operator, Yarra Trams. The data available for this research comes from 

Melbourne trams, the largest urban tram system in the world. Concentrated with the inner 

suburbs, trams are the second most used form of public transport in Melbourne after rail. The 

multi-modal integrated ticketing system, myki, currently operates across the tram network. 

Myki fare collection system on Melbourne trams requires passengers to touch on. However, 

according to a prior investigation, the touch-on rate for the month of June 2012 was only 37%. 

The low touch-on ratio prohibits the use of myki data for service planning and performance 

measurement.  

The reasons for fare noninteractions for Melbourne tram are varied. Firstly, the fare 

evasion rates of Melbourne tram are relatively high (Delbosc & Currie 2016). Fare validation 

requires passengers to touch-on when they board, but they can board the tram from any door 

without any contact with the driver. Although ticket inspectors are employed to check valid 

tickets, they only board at a few selected stops and the inspection rates are relatively low (1-

2%). Secondly, while passengers are supposed to touch on when boarding, they are compliant 

if they hold a fare pass or just transferred from other services (train, tram, or bus). AFC systems 

will not record these types of passengers. Another issue that is specific to Melbourne occurs in 

the free tram zone located in the Central Business District (CBD) where passengers are actively 

discouraged to tap on or off tram services. This will make the border of the free tram zone a 

frontier, as people may risk travelling a few stops without touching on when they board at stops 

close to the free tram zone. This paper evaluates the factors that impact fare noninteractions at 

a stop level, using an econometric approach with automatically collected data. The following 

sections elaborate the data, explanatory variables, and econometric model used in this study. 

 

3. Methodology 

3.1. Data description 

In this study, APC and AFC data collected from three tram routes (route 11, route 86, and route 

96) are used, which cover the period from 01/02/2020 to 16/03/2020. Figure 1 shows the 

geographic distribution of these three tram lines. These three tram routes cross multiple suburbs 

in Melbourne from north to south, with a total of 99 kilometers in both directions. All three 

tram routes pass through the free tram zone (FTZ) located in Melbourne CBD. 

DILAX counters were purchased for E-Class trams in Melbourne as APC systems since 

2015. Each door is equipped with several active infrared sensors and each sensor works with 

two beams (to distinguish between boarding and alighting).  A Passenger Counting Unit will 

check the status of all the beams and calculate the number of boarding and alighting passengers 

per door and stores the data. Victoria Department of Transport (DoT) has validated DILAX 

counters in 2019 and concluded it is accurate enough for most applications but tend to slightly 

undercount by one or two regardless of the crowding conditions. Since this measurement error 
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is not correlated with any of the explanatory variables used in this study, we conclude the 

undercount will not influence the conclusion.  

Myki is the AFC system used for the electronic payment of fares in Melbourne. It 

records the individual fare validation trajectories. It is one-tap-only, so passengers usually tap 

when they board, but they may also tap later during their ride or when alighting. Passengers 

are actively discouraged to touch-on/off so as to be eligible for the free trip in the free tram 

zone. 

 
Figure 1: Geographic distribution of route 11, 86, and 96 in Melbourne, Australia (extracted from GTFS 

shape file) 

 
 Although APC and AFC data is a rich source of information, the quality and accuracy 

of the data is of relatively high importance because they contain unique information that cannot 

be substituted by other data sources. Hence, a series of data cleaning and matching steps are 

employed. 

 For APC data, while it provides information regarding the passenger flows, the routes 

on which they operate, stop times and service information, further processing is still required 

to complete entries in the dataset. Specifically, the General Transit Feed Specification (GTFS) 

scheduling data provides the ideal source for matching the provided APC data to the relevant 

schedule, thus providing additional but necessary information about the stops and specific 

trips/services that pertain to the APC data entries. The matched GTFS-APC data is used to 

extract the locations and times for all passenger count information. 

 For AFC data, to ensure that stop locations identified in myki transactions are correct, 

the Automated Vehicle Location (AVL) dataset is used to infer transaction locations. The AVL 

dataset is firstly matched with the GTFS dataset utilizing the AVL timepoints (fixed location 

passing points) and GTFS stop times to determine the best fitting GTFS trip ID. This join has 

a cardinality of many-to-one, with each trips in AVL data containing several candidate trips in 

GTFS data. As a result, we use a fuzzy match strategy to find the most appropriate GTFS trip 

ID for each AVL trip ID. Each candidate is assigned an error using the following formula: 

 

𝑬𝟏 =√(𝝏𝒕)
𝒔𝒕𝒂𝒓𝒕
𝟐  +  (𝝏𝒕)

𝒆𝒏𝒅
𝟐          (1) 

where (𝜕𝑡)𝑠𝑡𝑎𝑟𝑡 and (𝜕𝑡)𝑒𝑛𝑑 denote the error of matching at the start and end time of the trip 

respectively. 

The AVL-GTFS matched dataset is then matched myki data to infer the transaction 

locations. The condition used for joining is based on the vehicle number present in both datasets 

and a reasonable window around transaction times. As this join has a cardinality of one-to-

FTZ 
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many (each Myki transaction matches with multiple AVL timepoints), the dataset size at this 

point is increased substantially, depending on the size of the window. For each unique 

transaction ID, the following error calculation is used: 

 
𝑬𝟐 = 𝒕𝒕𝒊𝒎𝒆𝒑𝒐𝒊𝒏𝒕 − 𝒕𝒕𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏   (2) 

where  𝑡𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡  and 𝑡𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛  denote the AVL timepoint and the transaction time 

respectively 

Using the calculated error, the timepoints that were reached on the subject’s vehicle 

before the transaction was made would produce a negative value and the timepoints reached 

after the transaction was made would produce a positive value. The dataset is then filtered, with 

each transaction being assigned their closest previous timepoint, closest next time timepoint, 

associated trip IDs, sequence of timepoints within the trip, actual start and end times of the trip 

and the actual arrival time at the timepoint. To determine the specific stop at which a transaction 

took place, the progress between all transaction’s previous and next timepoints is calculated 

linearly. Once the progress between timepoints has been calculated, the transaction’s trip stop 

sequence value can then be determined by multiplying the progress percentage by the 

difference in trip sequence of the pair of timepoints. 

Finally, the trip ID and stop sequence values are used to join with the GTFS dataset and 

determine the stop ID, stop coordinates and stop name of each transaction. The matched GTFS-

myki data is then joined with the matched GTFS-APC data. Therefore, each record in the joined 

dataset will contain the total number of boarding passengers from APC data and the total 

number of transactions from AVL data at a given stop of a particular service trip. 

After data processing, we obtain 1113 trips with 44 stops for route 11,1233 trips with 

67 stops for route 86, and 1,795 trips with 33 stops for route 96. Since passengers are not 

required to touch on in the free tram zone, only stops outside the free tram zone were used for 

this study. We removed records with 0 boarding passengers and finally yielded a total of 

number of 61,504 observations. This is a far larger amount of data than any other studies with 

similar objectives. 

 

3.2. Data modelling 

3.2.1. Dependent and explanatory variables 

The dependent variable to be modelled is the absolute difference between boarding flows 

recorded by AFC and APC data recorded at a given stop of a particular service trip.  

The explanatory variables are distinguished into the following four groups: (1) time 

periods variables, (2) stop location variables, (3) travel demand variables, and (4) level of 

inspection variables. Those variables are extracted from multiple exogenous data sources. 

 

Time periods variables APC and AFC systems continually collect data at different time 

periods. For time of day, we group the time periods into pre-peak (before 6 am), morning peak 

(6am to 9am), interpeak (9am to 3pm), afternoon peak (3pm to 6pm) and evening (after 6pm) 

and other time periods. A dummy for the first four periods (pre-peak, morning, interpeak, and 

afternoon) is defined while evening is set to be the reference. For day of week, we define a 

dummy for trips on weekends (weekends), taking the weekday as a reference. We also assume 

the tap on ratio will be influenced by weather, so a dummy variable raining that indicates 

whether it is raining during the trip period is also created. The weather information is obtained 

from microclimate sensor readings in Melbourne and is matched to trips recorded by automatic 

sensors based on time periods. 
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Stop location variables Specific to Melbourne, a Free Tram Zone (FTZ) is located in the 

Central Business District (CBD), where passengers are actively discouraged to touch-on so as 

to be eligible for the free trip. Although fare noninteractions inside the FTZ will not cause the 

revenue loss, this may also lead to problems at stops outside the FTZ. For example, due to a 

flat fare structure, some passengers may not be willing to pay for a trip with only a few stops 

and they may risk travelling without paying at the boundary of the FTZ. It is unclear how the 

fare noninteractions vary due to the free service zone. Hence, two explanatory variables are 

designed. Stops are firstly categorized based on the topology of the network. Stops before the 

free tram zone are defined as inbound stops, while stops after the free tram zone are defined as 

outbound stops. A dummy variable inbound stop is created, taking the value of one if the 

boarding stop is an inbound stop, and outbound stops are set to be the reference. To capture the 

effect of the boundary of the FTZ, we use the dummy variable close to the boundary of FTZ, 

taking the value of one if the stop is within two stops past the boundary. 

 Numerous studies have shown that land use may exert varying effects on passengers’ 

behavior (Boarnet & Crane 2001). Two land use types are used to study the effects on fare 

noninteractions, including train stations and education facilities. While passengers are 

supposed to touch on when boarding, they are compliant if they are transferred from other 

services. However, they are not charged if they touch-on. It is unclear whether passengers are 

willing to touch-on their cards for transfer trips from train stations without further analysis. 

Hence, a dummy variable close to train station is created, taking the value of one for stops 

near a train station to take into account transfer trips from the train. Most of the trips made at 

education facilities are from students, previous studies revealed students display diverse 

behaviours with respect to fare evasion (Barabino & Salis 2020). To study this, a dummy 

variable close to education facility is created, taking the value of one for stops close to an 

education facility, including primary schools, secondary schools, and universities. In 

Melbourne, it was found that the median length of a walking trip to a train station is 721 meters, 

while the median walk to a tram stop is 360 m (Eady & Burtt 2019). Hence, the stop is defined 

as close to train station if it is within 721 meters of a train station and close to education 

facility if it is with 360 memters of a education facility.  

 

Travel demand variables The number of fare noninteractions will naturally grow with the 

passenger boarding flows. The chance of fare noninteractions are likely to increase with more 

passengers boarding at the given stop. To validate this hypothesis, the number of boarding 

passengers recorded by APC systems at the given stop (boarding flows) is included as an 

explanatory variable. 

Many studies observed higher evasion rates on more crowded vehicles (Mukherjee et 

al. 2013, Cantillo et al. 2022). The passenger loads can be directly calculated from the boarding 

and alighting flows recorded by APC systems. Hence, we also included the occupancy of 

service, based on passenger loads and the seating capacity of the vehicle. We defined the 

dummy variable low occupancy, taking the value of one if the passenger load at the boarding 

stop is less than 25th percentile of passenger loads. On the other hand, a dummy variable high 

occupancy is also defined, taking the value of one if the passenger load at the boarding stop is 

more than 75th percentile of passenger loads. 

 

Level of inspection variables Previous studies showed that the fare evasion rate is expected 

to vary significantly according to the level of ticket inspection (Bucciol et al. 2013, Cantillo et 

al. 2022, Dauby & Kovacs 2007, Mukherjee et al. 2013). For Melbourne tram, inspectors are 

assigned to conduct fare inspections at stops. They randomly choose their boarding stops and 

move on randomized paths to ask passengers to show the valid tickets. The inspection logs 

record the boarding stop, vehicle number, and the duration for all onboard inspections. They 
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provide the ideal source for matching the APC data to the relevant duration of a trip that has 

inspectors on-board. We design two explanatory variables to model the level of inspection. 

Firstly, a dummy variable if inspected is created, which takes the value one if the data 

is collected when at least one inspector is on-board, and zero otherwise. We also believe the 

frequency of inspection will change passengers’ perceived likelihood of being caught and 

discourage them from possible fare evasion. Hence, for every stop, we also calculate the total 

number of times it has been inspected during the study period and use it as an explanatory 

variable frequency of being inspected. 

 

3.2.2. Negative binomial regression 

Since the dependent variable can only be taken as counting numbers, negative binomial 

regression is used to explain fare noninteractions. Negative binomial regression is a generalized 

linear model form of regression analysis to model count data (Hilbe 2011). It assumes the 

dependent variable follows a negative binomial regression and the logarithm of its expected 

value can be modelled as a linear combination of explanatory variables. Compared to Poisson 

distribution (Hilbe 2011), negative binomial distribution allows the mean and variance to be 

different and provides a more accurate model for passenger count data (Guarda et al. 2016). 

The model is given by the following equations: 

 

𝑷(𝒀𝒊 = 𝒚𝒊|𝝁𝒊, 𝜶) = (
𝒚𝒊 +

𝟏

𝜶
− 𝟏

𝟏

𝜶

) (
𝟏

𝟏 + 𝜶𝝁𝒊

)
𝟏

𝜶(
𝜶𝝁𝒊

𝟏 + 𝜶𝝁𝒊

)𝒚𝒊      (3) 

 

𝐥𝐧(𝝁𝒊) = ∑ 𝜷𝒌𝒙𝒊𝒌

𝑲

𝒌

     (4) 

Equation 3 is the probability density function (PDF) of negative binomial distribution, where 

𝜇𝑖  is the mean of the outcome of counts 𝑦𝑖  for observation 𝑖 , and 𝛼  is the heterogeneity 

parameter that allows the mean and variance to be different. Equation 4 is the log-link function 

of the negative binomial regression model, in which 𝑥𝑖𝑘 represents 𝑘𝑡ℎ explanatory variable of 

observation 𝑖 and 𝛽𝑘 is its corresponding parameters.  

 

4. Results 

4.1. Myki touch-on rates 

Before econometric analysis, we firstly calculated the Myki touch-on rates, which is the total 

number of transactions from Myki data divided by the total number of boarding passengers 

from APC data. We removed records with 0 boarding passengers as it generates infinite values. 

Table 1 shows the average touch-on rates in different time periods of pre- and post-COVID-19 

pandemic.  

Results suggest touch-on rates are higher between 6am and 6pm comparing to other time 

periods. Econometric analysis is further required to study the marginal effect of explanatory 

variables. It is also noticeable that the touch-on ratio is much less during the COVID restriction, 

indicating many passengers changed travel behaviors and tend to not validate their tickets when 

board. It is a question of future research to investigate the low touch-on rate during COVID 

restriction. For this study, we only conduct econometrics analysis for data before March 15th 

2020 in the following sections. 
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Table 1: Average Myki touch-on rates, separated by time periods 

 Pre-COVID  

(before March 15th 2020) 

During COVID restriction 

(after March 15th 2020) 

Pre-morning peak (before 6am) 0.29 0.14 

Morning peak (6am – 9am) 0.49 0.18 

Inter peak (9am – 3pm) 0.44 0.15 

Afternoon peak (3pm – 6pm) 0.43 0.14 

Evening (after 6pm) 0.31 0.1 

 

4.2. Model analysis with the whole data 

According to the dependent and explanatory variables discussed in Section 2.3.1, the 

negative binomial regression models were applied to explain the number of noninteractions. 

The correlation between all explanatory variables was analyzed by the variance inflation factor 

(VIF) (O’brien 2007) and no problems of high correlation between the variables were observed. 

Table 2 presents the summary of the resulting model, including the estimated 

coefficients and the standard error of coefficients. The last column indicates the significance 

of the explanatory variable, where *, **, *** represents the variable is significant at 95%, 99%, 

and 99.95% confidence interval. 

The most significant variable is the actual number of boarding flows (boarding flows), 

with a positive effect on fare noninteractions. This is obvious as the noninteractions have more 

opportunity to occur when more passengers board. The number of fare noninteractions 

naturally grows with the number of passengers boarding. Another explanation is that the 

difficulty to reach ticket validators with a large boarding group. Variable (high occupancy) 

also has a significant positive impact on fare noninteraction, indicating fare evasion is more 

likely to occur on crowded vehicles. We also notice when the vehicle occupancy is low (low 

occupancy), fewer noninteractions are observed. 

In terms of time periods, the results suggested that fare noninteractions are lower in the 

morning peak, afternoon peak and interpeak, compared to other time periods. Moreover, more  

observed during the weekends. The majority of trips in these time periods are commuting trips, 

which are usually made by regular public transport users.  The myki “Pass” product is designed 

for regular users that allow them to pay up front for unlimited travel during a period with 

discounts. However, data shows that noninteractions are generally less common for time 

periods associated with frequent public transport users. It will be important that future research 

to investigate the proportion of fare noninteractions due to myki “Pass” using survey data. On 

the other hand, during the evening or weekends, trips are made with varying purposes, such as 

shopping or recreation. We notice fare noninteractions are higher among these trips.  

It is interesting to note that the variable if inspected only has small impact on the fare 

noninteractions. However, this is not necessarily true considering the ticket inspection rate. The 

inspection rate observed in the data is only 1%, so the sample size of inspected observations is 

inevitably small. A small sample size leads to high variability and biases the hypotheses test of 

the estimated coefficient. For variable if inspected, the standard error of the coefficient is 

relatively high, indicating high variability in the sample of observations with inspections. 

Hence, it is difficult to explain the results of variable if inspected. However, variable frequency 

of being inspected turns out to have a negative impact on fare noninteractions, being the second 

most significant variable of the model. This is due to the fact that the passenger perception of 

being inspected is influenced by inspection levels. As a result, at stops that have been frequently 

inspected, the subjective probability that passengers feel they will be checked is high, which 
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discourages them to evade fares. In line with previous studies (Clarke et al. 2010), our results 

demonstrate that ticket inspection can be used as a deterrence against fare evasions. 

 
Table 2: Model estimates of fare noninteractions with the whole dateset 

AIC: 327746    

variable coefficient std. error significance 

time periods    

pre-peak (before 6am) 0.003 0.023  

morning (6am-9am) -0.033 0.009 *** 

Interpeak (9am-3pm) -0.04 0.008 *** 

afternoon (3pm-6pm) -0.091 0.008 *** 

weekend 0.031 0.006 *** 

    

    

Weather    

raining 0.011 0.143  

    

travel demand    

boarding flows 0.164 0 *** 

low occupancy -0.047 0.006 *** 

high occupancy 0.051 0.006 *** 

    

stop location    

close to train station -0.049 0.006 *** 

close to education facility -0.064 0.016 * 

close to the boundary of FTZ 0 0.009  

inbound stop -0.132 0.005 *** 

    

inspection level    

if inspected -0.094 0.034 ** 

frequency of being inspected -0.009 0.001 *** 

    

intercept 0.272 0.009 *** 

 

 

With regard to locations, our results also indicate that fare noninteractions are lower at 

inbound stops, which are stops before the free tram zone in the direction of the service. We 

also notice fare noninteractions are lower at stops close to train stations and education facilities, 

but the boundary of the free tram zone does not play an important role. However, a previous 

study (Sánchez-Martínez 2017) shows that fare noninteraction significantly varies with space 

and time. It is difficult to explain such results with the model estimates of the whole data. 

Therefore, to understand the interactions between time periods and stop location variables, we 

used different models for each time periods at each direction. Results are discussed in the next 

section. 

 

4.3. Model analysis with segmented data 

To further understand the spatial and temporal variation of fare noninteractions, we segmented 

the data based on time and location and applied negative binomial regression to each  
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Table 3: Model estimates of fare noninteractions with data in the morning peak (Left: inbound direction; 

Right: outbound direction) 

 AIC: 189176 AIC: 56836 

variable coefficient std. 

error 

significance coefficient std. 

error 

significance 

time periods       

weekend 0.029 0.008 *** 0.02 0.014  

       

weather       

raining 0.304 0.019  0.017 0.037  

       

travel demand       

boarding flows 0.165 0 *** 0.166 0.001 *** 

low occupancy -0.039 0.008 *** -0.079 0.015 *** 

high occupancy 0.074 0.008 *** 0.049 0.014 *** 

       

stop location       

close to train station 0.019 0.018  -0.063 0.015 *** 

Close to education 

facility 

-0.037 0.023  -0.167 0.035 *** 

close to boundary of 

FTZ 

0.025 0.012 * -0.141 0.037 *** 

       

inspection level       

if inspected -0.048 0.045  -0.12 0.081  

frequency of being 

inspected 

-0.018 0.001 *** 0.005 0.002  

       

intercept 0.167 0.008 *** 0.128 0.014  

 

segmentation. We look specifically at the model estimates in the peak hours for both inbound 

and outbound stops. Data is divided into morning inbound, morning outbound, afternoon 

inbound, and afternoon outbound. Table 3 - 4 present the model estimates with data for each 

segment. 

Results reveal that there are more significant variables for morning inbound and 

afternoon outbound compared to the other two segments. This can be explained by the 

purposes of the trips. Most of the trips within these two segments have commuting purposes, 

so they are likely to be made by regular users. Hence, their behaviors, such as the responses to 

the service occupancy and land use, are more predictable. 

For education facilities, we notice fewer fare noninteractions are observed, especially 

at outbound stops in the afternoon peak, in which many students travel from schools or 

universities to their home locations. Most of the trips originating from education facilities are 

made by students or staff working in those facilities. Previous research (Barabino & Salis 2020) 

revealed that students with a high school diploma are less likely to be fare evaders, as they may 

have a higher sense of morality. Since most of the education faculties observed in this study 

are universities and high schools, our results are in line with previous studies. Moreover, 

students are eligible for concession fares, which also discourages them to evade fares. 
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Table 4: Model estimates of fare noninteractions with data in the afternoon peak (Left: inbound direction; 

Right: outbound direction) 

 AIC: 139691 AIC: 98486 

variable coefficient std. 

error 

significance coefficient std. 

error 

significance 

time periods       

weekend 0.054 0.009 * 0.012 0.011  

       

weather       

raining -0.016 0.021  0.026 0.027  

       

travel demand       

boarding flows 0.173 0.001 *** 0.159 0.001 *** 

low occupancy -0.021 0.009 * -0.086 0.012 *** 

high occupancy 0.122 0.009 *** 0.023 0.01 * 

       

stop location       

close to train station -0.013 0.106  -0.042 0.01 *** 

close to education 

facility 

-0.013 0.019  -0.286 0.042 *** 

close to boundary of 

FTZ 

-0.016 0.012 *** -0.015 0.019  

       

inspection level       

if inspected -0.08 0.048  -0.185 0.068 ** 

frequency of being 

inspected 

-0.048 0.002 *** 0.016 0.002 *** 

       

intercept 0.183 0.009 *** 0.166 0.01 *** 

 

 In terms of train stations, our results show that the number of noninteractions is lower 

at stops close to train stations. It indicates many passengers transferring from train to tram tend 

to touch-on their cards even though they are not required. We speculate that some passengers 

may not know they are compliant if they do not touch-on, so they will naturally follow the rules 

as long as they are not charged. However, this variable is not significant for the inbound stops 

in the afternoon peak. As shown in Figure 3, this is because fewer transfer trips are made within 

this segment. 

It is also notable that the sign of variable close to the boundary of FTZ varies with 

space and time. The sign is positive for inbound stops in the morning peak, but negative for 

inbound stops in the afternoon peak. The reason behind this phenomenon may lie in the 

differences between OD flows. We derived the OD flows from AFC data using the developed 

trip chaining models in the literature (Gordon et al. 2013). Figure 2 and 3 show the OD flow 

diagram of inbound stops in the morning and afternoon peak respectively. Stops are categorized 

into inside FTZ, close to the boundary of FTZ, close to the train station, close to education 

facility, and other based on their locations. The left-hand side represents the type of boarding 

stops, right-hand side represents the type of alighting stops, and the width is proportional to the 

OD flow rate. 

As shown in Figure 2, many trips starting at the boundary of the FTZ have destinations 

inside the FTZ. This number is even underestimated as the OD flow diagram is based on 

records in the myki data, so fare noninteractions travelling between the boundary and the FTZ 
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are not included. However, compared to the records in the APC data, there exists a large 

proportion of trips between those two regions. This implies that fare noninteraction is very 

significant for those trips. A possible explanation is that passengers may not be willing to pay 

for trips with only a few stops, so they may risk travelling from the boundary to the free tram 

zone. 

 
Figure 2: OD flow diagram of inbound stops in the morning peak 

 
 

Figure 3: OD flow diagram of inbound stops in the afternoon peak 

 
Unlike the morning peak, OD flow diagram in Figure 3 shows a large proportion of 

trips generated from the boundary of the FTZ in the afternoon peak have the destination at 

stops close to train stations. These could be transfer trips connecting passengers’ activity 

locations to train stations prior to the train trip stage. It is practically difficult to evade fares at 



ATRF 2022 Proceedings 

13 

train stations, as most of the stations are equipped with turnstiles. Since most of the passengers  

have to pay for the train trip stage at the train stations and there are no extra charges for transfer 

trips, there is no point to evade fares at the tram trip stage for transfer passengers. 

 

For outbound stops, we notice that fare noninteractions are less likely to occur at the 

boundary of the FTZ. Trips generated in this direction are to the outer suburbs instead of the 

FTZ, so the FTZ will not affect passengers’ willingness to touch-on their cards. 

  

 

5. Conclusion and future research 

According to the authors’ knowledge, this is the first study that evaluates how different factors 

affect the fare noninteractions using a large-scale automatically collected data. Compared to 

previous studies, it presents a cost-efficient methodology for processing multiple sources of 

data to measure fare noninteractions. We specifically investigate passengers’ behavior in 

validating tickets in the presence of a free service zone and the interactions between time and 

land use. 

The analysis leads to the following conclusions. Firstly, fare noninteractions are lower 

in the period with more regular public transport users. Although the weekly or monthly pass is 

designed for those regular commuters, it does not lead to more fare noninteractions during the 

commuting time. The regression analysis also suggests fare noninteractions made during the 

commuting time are more explainable, with a smaller interception and more significant 

variables, compared to other time periods. 

Although passengers are not required to touch-on when they are transferring from other 

services, fewer fare noninteractions are observed at tram stops close to train stations. Moreover, 

our data indicates that how free service zone affects the fare noninteractions is dependent on 

the purposes of trips. In the morning peak, fare noninteractions are higher at the boundary of 

the free service zone, because most of the trips generated there are commuting trips to the work 

location inside the free tram zone. Passengers may not be willing to pay for trips with only a 

few stops, so some may risk travelling without payment. In the afternoon, however, as many 

trips generated at the boundary are transfer trips to the train station, fewer fare noninteractions 

are observed. Results also show that trips made close to an education facility have fewer fare 

noninteractions in the afternoon peak, suggesting students with concession are more likely to 

comply with the rules. 

The fare noninteractions are also influenced by the travel demands and the inspection 

frequency. Fare noninteractions are always higher when they board in a large group or on a 

crowded vehicle. In terms of inspection level, the inspection frequency significantly affects the 

touch on rates. Results provide evidence that the subjective probability that a passenger feels 

he or she will be checked is an important factor that influences passengers’ decisions on fare 

evasions. 

There are some limitations to our approach. The methodologies used in this paper are 

mainly based on statistical analysis and non-intrusive data. Although it correctly identifies the 

major influential factors of fare noninteractions, it could not capture variables that cannot be 

observed from the passively collected data. For example, previous studies show that fare 

evasions can be impacted by gender or income (Guarda et al. 2016). People may also be 

sensitive to group behavior or social pressures (Gino et al. 2009). Therefore, future research 

could mix both qualitative and quantitative research methods, relying on both face-to-face 

interviews and automatically collected data. More variables at stop levels could be obtained 

from surveys or interviews, such as (1) major purposes of trips, (2) average income of boarding 
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passengers, (3) the likelihood of people travelling in groups, (4) the proportion of deliberate or 

unintentional evaders, among others. Moreover, existing data sources cannot measure how 

many people exit the FTZ without paying. If people coming in from the boundary of the FTZ 

are not validating, it logically makes sense that when they leave the city they will also exit a 

few stops outside the FTZ without validating.  This method cannot capture the fare evaders 

who board within the FTZ and exit a few stops outside the FTZ.   

Another limitation is that the matching of AFC data with scheduled trips is based on 

the minimum difference between the vehicle’s arrival time and the ticket transaction time. 

However, sometimes passengers may validate tickets at other stops instead of their boarding 

stops. For example, some passengers may not be able to find their tickets when they board and 

will validate tickets a few stops later. This could generate an inaccuracy in the fare 

noninteractions at some stops. Hence, future research is needed to improve the process of 

matching APC, AFC, AVL, and GTFS data.  
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