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Abstract 
The Australian Transport Assessment and Planning (ATAP) guidelines have been developed 

to assist planning, assessing, and developing transport systems and initiatives. It is widely 

recognised that travellers take into consideration travel time reliability in their travel decision 

making. Therefore, the benefits of improved travel time reliability ought to feature in appraisal 

of transport related initiatives. While modelling travel time variability has been widely studied 

by researchers, the methods lack a practitioner-friendly approach. The aim of this work was to 

propose calibrated, practitioner-ready models to determine travel time variability at a resolution 

of a link and a route. Specifically, the team used data (observed travel times and their standard 

deviations) from different jurisdictions across Australia to develop models that can be applied 

to a range of road stereotypes (capacity and congestion).  For the link travel time variability, 

an exponential functional form was developed, referred to as the ATAP model, and was found 

to outperform other shortlisted models. Separate ATAP model parameters were calibrated for 

arterial and freeway links. The calibrated models were also validated using travel time data 

from Australian states. For the route travel time variability, a Correlation Route Model (CRM) 

is recommended which comprises two components: ATAP model and the Correlation 

Coefficient Model (CCM). This paper utilises the Western Australia Wanneroo Road 

Duplication project as a case study to demonstrate the application of CRM on a defined route 

to estimate the change in travel time reliability and compare against the measured change from 

field data. The case study results substantiated the accuracy of CRM in predicting observed 

route travel time SD. This work provides simple equations which can be quickly applied by 

practitioners to determine expected travel time variability in a road network and utilise it in 

transport planning and economic appraisal applications. 

1. Introduction 

This paper presents the findings of the study TAP6234 (ATAP 2021), which was to develop 

an approach for measurement of road reliability for inclusion in the Australian Transport 

Assessment and Planning (ATAP) Guidelines. In the context of transport, travel time reliability 

is used to describe how certain the travel time is for a journey for a road user. Travel time 

reliability has been an active area of research in the past decade owing to its repercussions on 

traffic movement and congestion in a road network. The benefit of changes in travel time 

reliability expressed as a monetary amount can be applied in Cost–Benefit Analysis (CBA) of 
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transport projects and/or policy changes. This benefit is estimated by multiplying the road 

users’ Willingness-To-Pay (WTP) (measured in $/h) to reduce travel time variability by the 

predicted changes in travel time reliability improvements from a transport project, as shown in 

Equation 1 below. This study aims to develop a methodology and calibrated parameter values 

to estimate the latter quantity, that is, a way to predict changes in travel time reliability. The 

estimation of WTP for travel time reliability is beyond the scope of this work. The 

mathematical models developed to forecast travel time reliability for different elements in a 

road network need to be readily usable by practitioners. While parameter values estimated from 

available data (across several jurisdictions in Australia) are provided, practitioners should be 

able to recalibrate the models using their own data. 
Value of a travel time reliability improvement benefit ($) = Unit value of reliability ($/min) x Saving in 

travel time variability (mins) 

[EQ 1] 

This paper focusses on travel time variability modelling in link and route levels only. A 

companion paper that focuses on the detailed travel time variability for network modelling has 

also been prepared. 

2. Background 

2.1. Understanding Travel Time Variability and Reliability 

Travel time variability has been defined as the distribution/spread or dispersion of travel times 

over a journey and over time (Osterle et al., 2017). Although a simple concept, MRWA (2016) 

and PIARC (2019) found that there is no global standard or industry agreed definition of 

variability. On the other hand, travel time reliability, as noted by Moylan et al. (2018), has been 

introduced using several definitions in the literature. In the context of transport, travel time 

reliability is used to describe how certain the travel time is for a journey. Travel time variability 

is a good measure of travel time reliability and is typically used by transport agencies. Travel 

time reliability is then calculated as a statistical measure using travel time variability 

(Austroads, 2011). 

Several models have been developed in the past to measure travel time variability, namely the 

mean variance model, scheduling model, mean lateness model, options approach, vulnerability 

approach, and other general models1 (Austroads, 2011; Moylan et al., 2018; MRWA, 2016; 

PIARC, 2019). This paper adopts the mean–variance approach for practical applications in 

CBA and toll road patronage forecasting. The justification behind this recommendation was 

that the mean–variance approach results in a single unit value of reliability that represents the 

marginal value of one Standard Deviation (SD) of travel time.  

  

  

 
1 For a full description see Section 4, Austroads (2011) 
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2.2 Link Travel Time Variability 

A link is a continuous section of the entire road segment that facilitates movement of vehicles 

and depicts homogeneous physical and traffic characteristics (e.g., discontinuities such as 

going from three lanes to two, presence of a signalised intersection on a straight road, and 

connections between on/off ramps to motorway are all represented as separate links). A 

literature review shows that several models have been developed to forecast the SD of travel 

time on links and routes. Table 1 lists the dependent and independent variables of the 11 models 

and their dependent variable limits. 

Table 1: Variables and limits of the eleven existing models to estimate travel time variability 

 Model Depen

dent 

varia

ble 

Independent variable(s) 

included 

Limits of 

dependent 

variable 

1 UK Model (UKM) 

𝐶𝑜𝑉 = 𝑎 (
𝑇

𝑇𝑓
)

𝑏

𝐷2 

CoV • Congestion index specified as 
the ratio of mean and free flow 
travel time 

• Length of travel 

• Minimum = a 

• Maximum =  

2 Log-linear Model (LLM) 

𝑙𝑛(𝐶𝑜𝑣) = 𝑙𝑛(𝑎) + 𝑏 ∙ 𝑙𝑛 (
𝑇

𝑇𝑓
) +

𝑐 ∙ 𝑙𝑛(𝐷) 

CoV • Congestion index specified as 
the ratio of mean and free flow 
travel time 

• Length of travel 

• Road type assigns different 
parameters 

• Minimum = a 

• Maximum =  

3 New Zealand Model (NZM) 

𝜎 = 𝜎0 +
𝜎1−𝜎0

1+𝑒𝑥𝑝[𝑏(
𝑉

𝐶
−𝑎)]

 

SD • Congestion index specified as 
the ratio of volume (in terms of 
demand) and capacity 

• Road type assigns different 
parameters 

• Minimum = 0 

• Maximum = 1 

4 Unified Reliability Model (URM) 

𝜎 = 𝐾𝑇𝛼𝐷𝛽  

SD • Travel time 

• Length of travel 

• Minimum = a 
function of 
capacity, time-of-
day and type of 
route 

• Maximum =  

5 Linear Model (LM) 

𝜎 + 𝑎 + 𝑏𝑇 

SD • Travel time • Minimum = a 

• Maximum =  

6 Length Standardised Linear Model 
(LSLM) 

𝜎

𝐿
= 𝑎 + 𝑏 (

𝑇

𝐿
) 

SD per 
unit 
length 

• Unit travel time (that is inverse 
of speed) 

• Minimum = a 

• Maximum =  

7 Length Standardised Cubic Model 
(LSCM) 

𝜎

𝐿
= 𝑎 + 𝑏 (

𝑇

𝐿
) + 𝑐 (

𝑇

𝐿
)

2
+ 𝑑 (

𝑇

𝐿
)

3
 

SD per 
unit 
length 

• Unit travel time (that is inverse 
of speed) 

• Minimum = a 

• Maximum = peaks 
at a defined unit 
travel time then 
declines to 
negative values 
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 Model Depen

dent 

varia

ble 

Independent variable(s) 

included 

Limits of 

dependent 

variable 

8 Exponential Coefficient of 
Variation Model (ECVM) 

𝐶𝑜𝑉 = 𝑒𝑥𝑝 [

𝑎 + 𝑏 (
𝑇

𝑇𝑓
− 1) +

𝑐 (
𝑇

𝑇𝑓
− 1)

3 ] 

CoV • Congestion index specified as 
the ratio of mean and free flow 
travel time 

• Minimum = exp(a) 

• Maximum = peaks 
at a defined 
congestion index 
then declines to 
zero 

9 Power Mean Delay Model 
(PMDM-1) 

𝜎 = 𝑎𝐷𝑏  

SD • Congestion index specified as 
mean delay (that is difference 
between travel time and free-
flow travel time 

• Minimum = a 

• Maximum =  

10 Polynomial Mean Delay Model 
(PMDM-2) 

𝜎 = 𝑎 + 𝑏𝐷 + 𝑐𝐷2 + 𝑑𝐷3 + 𝑒𝐿 +
𝑓𝑐𝐿2 

SD • Congestion index specified as 
mean delay 

• Length of travel 

• Minimum = a 

• Maximum =  

11 Dutch model (DM) 

𝜎 = 𝑎 + 𝑏𝐷 + 𝑐 ∙ 𝑙𝑜𝑔10(𝐷 + 1) +
𝑑𝐿 

SD • Congestion index specified as 
mean delay 

• Length of travel 

• Minimum = a and 
increases linearly 
with length 

• Maximum =  

Note: a, 0 and 1 are the calibration parameters which define the boundaries of the dependent variable  

The literature review indicated that using CoV as the dependent variable provides better model 

fits when compared to SD forecasting models. The estimated CoV is then converted back to 

SD to measure the monetary cost of travel time reliability to be used during the CBA. It was 

found that some link models could forecast ever increasing values of CoV as the V/C or the CI 

increases. This mathematical aspect, however, is not consistent with observed real-world traffic 

phenomenon where travel time variability tends to change at a much lower rate beyond a certain 

threshold. It is worth noting at this point that this rate of change in the SD of travel time can be 

positive (that is increasing) or zero (that is constant). Thus, both potential options need to be 

explored using two types of trendlines: 1) where the rate of increase in SD of travel time is 

gradual (that is no cubic or exponential forms), and 2) where the SD of travel time stabilises 

and takes the shape of a plateau beyond the threshold value.  

2.3. Route Travel Time Variability 

The review identified two approaches to modelling route travel times, one of which is the SD 

of travel time based route model such as Correlation Route Model (CRM) which is discussed 

next. 

2.3.1. SD of Travel Time Based Route Model 

The SD of travel time based route model involves forecasting the link travel time SD (using 

the models discussed in Section 2.2) followed by combining the link travel time SDs to form 

the travel time SD for a route. There are two approaches for SD of travel time-based route 

models, either assuming that there is (i) a correlation between links or that (ii) the travel time 

variability of each link is uncorrelated. 
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The first approach, shown in Equation 2, referred to as the CRM, was recommended by 

Nicholson (2015) to include consideration of travel time correlation between all links within a 

route. Variance of route travel time is defined as the sum of the variances of link travel times 

and the sum of the covariances between any two links’ travel time. This is in fact the most 

accurate measure of variance between datasets by using the variance sum law from statistical 

theory. However, this model increases the level of complexity in the calculation of variance 

and it is heavily reliant on available data to determinate the correlation coefficient of travel 

time between any two links. Nicholson (2015) also developed a Correlation Coefficient Model 

(CCM) to estimate the correlation coefficient, 𝝆𝒊,𝒋, to simplify the calculation. 

𝝈𝒓
𝟐 = ∑ 𝝈𝒊

𝟐

𝒏

𝒊=𝟏

+ 𝟐 ∑ ∑ 𝝆𝒊,𝒋𝝈𝒊𝝈𝒋

𝒏

𝒋=𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

, 𝑖 < 𝑗 [EQ 2] 

Where: 

𝜎𝑟
2 = variance of travel time of route with n number of links 

𝜎𝑟 = SD of travel time of route 

𝜎𝑖
2  = variance of travel time of link i 

𝜎𝑖  = SD of travel time of link i 

𝜎𝑗  = SD of travel time of link j 

ρi,j = correlation coefficient of travel time between links i and j 

The second approach, as shown in Equation 4, assumes that the estimate of trip reliability for 

a journey could be built up using individual variability on links and junctions (measured in 

terms of variance) and that there is no correlation effect in the variance between the links and 

junctions (Osterle et al., 2017).  

𝝈𝒓
𝟐 = ∑ 𝝈𝒊

𝟐

𝒏

𝒊=𝟏

 [EQ 3] 

The NZTA Economic Evaluation Manual also assumes that travel times are independent, 

thereby the correlation coefficient is assumed to be zero (NZTA, 2013). If the correlation 

coefficient is zero, then Equation 2 simplifies to Equation 3. 

Moylan et al. (2018) determined that expressing the SD of route travel time as Equation 3 

results in under-estimating SD of route travel time by 43.5% with their field data. Nicholson 

(2015) using field data estimated that the contribution of the variance term in (that is first term 

in Equation 2) is around 9% or the covariance term is roughly 10 times greater (that is the 

second term in Equation 2).  

3. Methodology – Model Development 

An extensive literature review was undertaken at the start of the study to determine the state-

of-the-art in modelling travel time reliability for links, routes, and at a network level. 

3.1. Link 

An Australian Transport Assessment and Planning (ATAP) model was developed. The ATAP 

model utilises a nonlinear equation expressing travel time Coefficient of Variation (CoV) as a 

function of the Congestion Index (CI; defined as the ratio of prevailing travel time and free-
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flow travel time) on a link. CoV was selected as the dependent variable, over SD, because CoV 

represents a standardised measure that facilitates comparison between links of varying lengths. 

Similarly, CI was chosen over volume-to-capacity ratio because capacity is not easily 

measurable. Unlike the other models, the ATAP model curve increases sharply at lower CIs, 

and follows a declining growth rate at higher CIs. This trend is consistent with real-world traffic 

dynamics where the improvements in travel time reliability are significant at lower congestion 

levels and miniscule at higher congestion levels. Thus, the ATAP model (shown below) was 

chosen as the recommended approach for forecasting link travel time variability.  

𝑪𝒐𝑽 = 𝒂 [
(𝑪𝑰 − 𝟏)

𝑪𝑰
]

𝒃

 ∀  𝑪𝑰 ≥ 𝟏 [EQ 4] 

Where: 

𝐶𝑜𝑉 = coefficient of variation, 
𝜎

𝑇
 

𝐶𝐼 = congestion index = 𝑚𝑎𝑥 (1,
𝑇

𝑇𝑓
), where 𝑇 = mean travel time (minutes) and 𝑇𝑓 = free-flow travel 

time (minutes) 

a = calibration parameter that sets the upper limit of CoV,  a | a > 0 

b = calibration parameter that determines the rate at which CoV approaches the maximum, b | b ∈
(0, 1) 

For calibration purpose, Equation 4 was converted into the linear-log form below by taking log 

from both sides of the equation: 

𝑳𝒏(𝑪𝒐𝑽) = 𝑳𝒏(𝒂) + 𝒃. 𝑳𝒏(
𝑪𝑰 − 𝟏

𝑪𝑰
)  ∀  𝑪𝑰 ≥ 𝟏 [EQ 5] 

3.2. Route  

For the route model, the CRM (Equation 2: 𝜎𝑟
2 = ∑ 𝜎𝑖

2𝑛
𝑖=1 + 2 ∑ ∑ 𝜌𝑖,𝑗𝜎𝑖𝜎𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 , 𝑖 < 𝑗 ), 

which follows the statistical theory (Mood, Graybill, & Boes 1974, cited in Nicholson 2015), 

was selected as the recommended approach to determine route travel time variability 

The CRM comprises of two sub-models: 1) the ATAP model (Equation 4) that determines 

travel time SD of individual links, which 𝜎 = 𝐶𝑜𝑉 × 𝑇, and 2) the CCM predicts the degree of 

correlation among links forming a given route. The CCM (shown below) is a linear-log model 

relating the degree of correlation to the log of distance between the mid-points of two links 

within a route.  

𝝆𝒊,𝒋 =  𝑴𝒂𝒙[𝟎, 𝒂. 𝐋𝐧(𝐋) + 𝐛] [EQ 6] 

Where: 

𝜌𝑖,𝑗 = correlation coefficient of travel time between links i and j where i < j 

𝐿 = distance between the midpoints of two links (kilometres) 

a, b = parameters 

4. Model Calibration 

4.1. Datasets 

The data for this exercise was obtained from different jurisdictions across Australia: Perth 

(provided by MRWA), Gold Coast and Brisbane (provided by TMR) and Sydney (available 
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from UNSW). The Perth network performance reporting system (NetPReS) dataset used is 

hybrid traffic data for 29 arterial and freeway routes in the Perth metropolitan area collected 

over 2018 to 2020. The data included traffic speed for each 15-minute period during the day 

for each link. The NetPReS dataset was used to calibrate the ATAP, and CCM. The Queensland 

data comprised daily NPI and Bluetooth data (by 15-minute periods) for arterials and freeways, 

and the Sydney data comprised travel time information for around 35 routes in Sydney 

collected using the Google API. Besides calibration and validation of the models, this study 

also tested two case studies using the Gold Coast and Perth data to assess the goodness of the 

CRM. This was considered desirable because the CRM includes the ATAP and CCM as sub-

models. A detailed description of the datasets used in this study can be found in the Appendix 

of the ATAP project report (ATAP, 2021). 

4.2. Link  

Individual ATAP models, 𝐶𝑜𝑉 = 𝑎 [
(𝐶𝐼−1)

𝐶𝐼
]

𝑏

∀ 𝐶𝐼 ≥ 1, were calibrated for forecasting travel 

time reliability for arterial and freeway links. Four months of traffic data (August to November 

2018) between 5am and 9pm, which equates to 64 15-minute time intervals, was used to 

calibrate the model. The data was aggregated by each month for a given time interval for a link. 

This allowed the determination of day-to-day changes in link travel time within a 15-minute 

time interval on a month-by-month basis, which brings a fair bit of variability in the results as 

some months correspond to a particular traffic activity. The free-flow speed was taken as the 

99th percentile of all speed values (in 15-minute periods) observed across all weekdays, 

excluding public holidays, in a month. All the speeds were then converted into travel times 

using link length information. The data were then filtered to remove any observations from 

which data were missing or where the CI was less than 1 because travel time should always be 

greater than or equal to free-flow travel time.  

Table 2 shows the calibration statistics for the two models, Equation 5, i.e.  

𝐿𝑛(𝐶𝑜𝑉) = 𝐿𝑛(𝑎)  + 𝑏. 𝐿𝑛(
𝐶𝐼−1

𝐶𝐼
)  ∀  𝐶𝐼 ≥ 1, which was then converted back into Equation 5, 

i.e. 𝐶𝑜𝑉 = 𝑎 [
(𝐶𝐼−1)

𝐶𝐼
]

𝑏

∀ 𝐶𝐼 ≥ 1, the ATAP Model.  

Table 2: ATAP model calibration results 

Parameter/Statistic Arterial Model Freeway Model 

No. of observations in filtered dataset 162,301 79,655 

Calibrated Parameters 

Ln(a) -0.521*** 

(0.003) [-176.388] 

-0.234*** 

(0.007) [-34.484] 

a (antilog of Ln(a)) 0.5939*** 0.7913*** 

b 0.968*** 

(0.002) [453.793] 

1.08*** 

(0.003) [400.759] 

Goodness-of-Fit Statistics 

RMSE (Ln(CoV)) 0.4727 0.652 

RMSE (CoV) 0.1067 0.1235 

R-squared (Ln(CoV)) 0.559 0.668 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 

Standard errors of parameters reported in (.). 

T-statistics of parameters reported in [.]. 
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As shown in Table 2, the p-values of the estimated parameters were less than 0.05, which 

implies that they are statistically significant at 95% confidence level across both models. The 

parameter Ln(a) is the intercept term in Equation 5, which was converted back into the 

parameter a in Equation 4 by taking the antilog. For example, if Ln(a) is equal to –0.521 for 

arterials, then a will be 𝑒−0.521 = 0.5939. The magnitudes of the calibration parameters (a and 

b) are lower for arterials when compared to freeways. Given a CI of 2, the estimated CoVs for 

arterials and freeways are 0.30 and 0.37, respectively. Thus, the freeway dataset showed a 

higher travel time variability than the arterial dataset for a given CI level. This observation can 

be justified as follows: as the operating speeds of freeways are significantly higher, phenomena 

such as traffic oscillations occur at relatively lower congestion levels (than arterials) which 

lead to a spike in travel time variability.  

The goodness-of-fit was measured using the Root Mean Squared Error (RMSE) value, which 

is defined as the square root of the mean squared error, that is, √∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1 𝑛⁄ . For the 

linear-log model, Equation 5, the RMSE was found to be 0.4727 and 0.652 for arterial and 

freeway models respectively. Upon inserting the estimated parameters (a and b) into Equation 

5, the RMSE value with respect to Equation 5 was also calculated and found to be 0.1067 and 

0.1235 for arterial and freeway models respectively. The R-squared values for Equation 5 were 

found to be 0.559 and 0.668 for arterial and freeway models respectively. The R-squared values 

for Equation 4 were not calculated as these statistics do not truly convey the goodness-of-fit 

for non-linear models (Statistics by Jim, 2021).  

An alternative functional form was tested alongside the ATAP model. The alternative 

functional form produced a marginally better fit than the ATAP model in terms of RMSE but 

was rejected because it was more difficult to calibrate, requiring non-linear regression, and the 

curve flattened out significantly at high congestion levels. Equation 7 shows the alternative 

model which represents a non-linear relationship between CoV and CI, with a and b as 

calibration parameters. By definition, the model defines CoV as zero for CI ≥ 1. The CoV 

increases sharply at lower CIs, but eventually stabilises to a constant value for higher CIs.  

Equation 7 was calibrated using the same dataset in the SPSS software package.  

𝑪𝒐𝑽 = 𝒂. (𝟏 − 𝒃(𝑪𝑰−𝟏)) ∀ 𝑪𝑰 ≥ 𝟏 [EQ 7] 

 

Table 3: Calibration results for the alternative model specification  

Parameter/Statistic Arterial Model Freeway Model 

No. of observations (CI ≥ 1; CoV > 0; 

Speed > 10km/h) 

162,301 79,655 

a 0.35*** 

(0.001) [350.0] 

0.336*** 

(0.002) [118.0] 

b 0.112*** 

(0.001) [112.0] 

0.036*** 

(0.001) [36.0] 

RMSE (CoV) 0.1038 0.1154 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 

Standard errors of parameters reported in (.). 

T-statistics of parameters reported in [.] 

Table 3 shows the calibration results for Equation 7. Like Table 1, the parameters a and b are 

statistically significant at 95% confidence levels. The R-squared values for Equation 7 were 
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not calculated as these statistics do not truly convey the goodness-of-fit for non-linear models. 

The RMSE has to be used to compare the goodness-of-fit for the models. The alternative 

functional form produced a marginally better fit than the ATAP model in terms of RMSE but 

was rejected because it was more difficult to calibrate, requiring non-linear regression, and 

because the curve flattens out significantly at high congestion levels.  

Figure 1 compares the ATAP model (Equation 4; in Red) and the alternative model (Equation 

7, in Yellow) on arterial and freeway datasets. Both models show a sharp rise in CoV for CI 

values up to 2. However, while Equation 7 stabilises and remains constant for higher CIs, the 

ATAP model (Equation 4) continues to grow at a decaying rate. This means that Equation 8 

will predict no improvement, i.e., a constant travel time variability for any infrastructural 

changes or policies in areas subjected to severe traffic congestion. This behaviour is considered 

counterintuitive as it is expected that minor improvements are possible in such scenarios. On 

the other hand, Equation 5, which depicts the law of diminishing returns, can account for 

gradual improvements in travel time variability at higher traffic congestion (CI values). Thus, 

Equation 5 was chosen as the preferred link model and referred to as the ATAP model.  

 

 
Figure 1: Link model comparison – NetPReS dataset 

The calibrated ATAP models, Equation 5, based on the full NetPReS data are shown below. 

𝑨𝒓𝒕𝒆𝒓𝒊𝒂𝒍: 𝑪𝒐𝑽 = 𝟎. 𝟓𝟗𝟑𝟗. (
𝑪𝑰 − 𝟏

𝑪𝑰
)

𝟎.𝟔𝟗𝟖

  

𝑭𝒓𝒆𝒆𝒘𝒂𝒚: 𝑪𝒐𝑽 = 𝟎. 𝟕𝟗𝟏𝟑. (
𝑪𝑰 − 𝟏

𝑪𝑰
)

𝟎.𝟏𝟎𝟖
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4.3. Route  

To develop the CRM, the CCM was calibrated first using the NetPReS data. A separate CCM 

was calibrated for the following categories: (1) freeway and arterial, (2) inbound and outbound, 

and (3) AM (7-9am), Inter-peak (9am-3pm), PM (3-6pm) and Off-peak (5-7am and 6-9pm). 

Thus, there were 16 sets of calibration parameters. The CCM was initially calibrated on the 

exponential form proposed by Nicholson (2015). The calibration results showed poor 

goodness-of-fit using NetPReS data. Therefore, a linear-log CCM, Equation 6, was developed 

and calibrated. Table 4 shows the calibration results of the linear-log CCM, Equation 6.  

Table 4: Calibrated parameters for the proposed CCM 

Road type Direction Time-period 𝒂 𝐛 R2 RMSE 

Arterial Inbound AM peak -0.0482*** 0.1658*** 0.2148 0.1012 

Inter peak -0.0236*** 0.0638*** 0.1248 0.0665 

PM peak -0.0308*** 0.0848*** 0.1415 0.0961 

Off peak -0.0445*** 0.1590*** 0.2239 0.1091 

Outbound AM peak -0.0302*** 0.1076*** 0.1176 0.0912 

Inter peak -0.0234*** 0.0631*** 0.1460 0.0623 

PM peak -0.0393*** 0.1121*** 0.2265 0.0838 

Off peak -0.0391*** 0.1362*** 0.2083 0.0871 

Freeway Inbound AM peak -0.1098*** 0.3477*** 0.3476 0.1483 

Inter peak -0.0870*** 0.2653*** 0.3129 0.1287 

PM peak -0.0991*** 0.3045*** 0.3084 0.1473 

Off peak -0.0992*** 0.3128*** 0.3285 0.1362 

Outbound AM peak -0.0620*** 0.2078*** 0.2286 0.1161 

Inter peak -0.0745*** 0.2293*** 0.2871 0.1184 

PM peak -0.1207*** 0.4181*** 0.3475 0.1710 

Off peak -0.0979*** 0.3539*** 0.3248 0.1464 

The ATAP model together with the CCM were utilised to determine the estimated route travel 

time SD. It was compared against the measured route travel time SD, which was determined 

as follows: 1) summing up the individual link travel times for a given 15-minute time period 

across all weekdays, excluding public holidays, in the month and then finding its SD. Figure 2 

shows the comparison of the measure route SD with the estimated route SD from CRM for the 

AM peak by road type. Detailed information on other time periods can be found in ATAP 

(2021). As Figure 2 showed, the CRM gives a reasonable model fit to the measured route travel 

time SDs, with most points clustered around the 1:1 (45-degree) trend line. The clustering 

around the dashed line is denser in the case of arterials when compared to freeways. Deviations 

from the 45-degree line can be explained by factors not taken into consideration by the CRM 

such as number of roundabouts and bottlenecks, geometric conditions, and negatively 

correlated links etc. which information was not available in the NetPReS dataset used for model 

development. Other factors such as incidents, weather, or events could also impact on the 

accuracy of the estimation. Given that the CRM comprises two sub models, it seems reasonable 

to suspect that most of the error in the CRM is due to inherent errors in these sub-models, and 

when models are applied together the error can compound. 
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Figure 2: Route travel time SD validation across different time periods for arterials and freeways 

5. Perth Case Study  

The Perth case study focused on an evaluation of the Wanneroo Road Duplication project’s 

impact on the travel time reliability during weekdays, excluding public holidays, by application 

of CRM. The Wanneroo Road Duplication project was a $31m project to widen Wanneroo 

Road, located at the northern side of Perth CBD running parallel to the Mitchell Freeway, from 

Joondalup Dr and Flynn Dr. This section was formerly a single carriageway carrying 26,000 

vehicle per day. The project converted the single carriageway into dual carriageway in both 

directions between the section north of Joondalup Dr and the section south of Flynn Dr. The 

project commenced in November 2017 and was completed and open to traffic in April 2019. 

Travel time reliability comparison was conducted based on the following criteria: 

• Before period: August to October 2017 (Telematics data) 

• Alternative before period: August to October 2018 (NetPReS hybrid data) 

• After period: August to October 2019 (NetPReS hybrid data) 

• Time period: AM peak, 7 am to 9 am 

• Temporal granularity: 15 min 

• Route: Wanneroo Road from Hester Ave to Ocean Reef Rd, a total length of 14,690 m 

• Number of links: 8 

• Direction: Inbound 

• Exclusions: weekends, public holidays, major incident dates, and extreme weather dates. 

Testing of the CRM on the case study involved measuring and estimating day-to-day changes 

in the route travel time on weekdays, excluding public holidays, for before-and-after periods, 

and comparison of predicted route travel times against the measured route travel time. It was 

anticipated that the CRM would predict the route travel time SD with reasonable confidence in 

accuracy. The initial attempt to assess the accuracy of CRM by comparing the predicted route 

SD with the measured route SD showed that while the CRM predicted the after-period route 

SD with reasonable accuracy, it underestimated the before-period route SD significantly 

(Figure 3 (1)) at higher levels of measured SD.  

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

P
re

d
ic

te
d

 r
o

u
te

 t
ra

ve
l t

im
e 

SD
, m

in

Measured route travel time SD, min

Arterial - AM peak

Aug Sep Oct Nov

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

P
re

d
ic

te
d

 r
o

u
te

 t
ra

ve
l t

im
e 

SD
, m

in

Measured route travel time SD, min

Freeway - AM peak

Aug Sep Oct Nov



ATRF 2021 Proceedings 

12 

  
 (1) Before period – Telematics data    (2) Alternative before period – MRWA hybrid data 

Figure 6: Measured versus predicted route SD – Perth arterial case study 

Investigation into the causes of underestimation in the before period found that it was due to 

the before period data (Aug-Oct 2017) being a different data source (Telematics) to the after-

period data (NetPReS hybrid data2). It was also noted that the CRM was calibrated using 

NetPReS hybrid data and that should a different data source be used, then a recalibration of the 

model is required. 

To address this inconsistency in the data sources for the before and after periods, the study 

examined an alternative before period (August to October 2018) when the NetPReS hybrid 

data was available and assessed the duplication project’s travel conditions at that time. 

Investigation of a series of high resolution historical aerial images of the construction sections 

of the study route from NearMap revealed that the travel condition was still single carriageway 

during the alternative before period. Therefore, it was possible for both the alternative before 

period and the after period to be assessed using the single NetPReS dataset. Five mean speed 

observations below 20km/h, which were considered as construction impact, were removed 

from raw datasets. Figure 3 shows the visual comparison of the measured and predicted route 

SDs for both before-and-after periods (using Telematics for before period and NetPReS for the 

after period) and alternative-before-and-after periods (using only the single NetPReS dataset). 

While the CRM underestimated the before period route SD due to the speed data came from 

the different source, it produced a superior amount of accuracy in the predicted route SD values 

for both the before period and after period when only the NetPReS data was used.  

In summary, using the Telematics before-period data, the CRM predicts that the Wanneroo 

Road Duplication project would increase the route travel time SD by 0.3 minutes on average 

for the AM peak inbound direction of the route. This compares to the measured average change 

of 0.0 minutes in route travel time SD from the field data. CRM overestimates the change in 

travel time reliability by 0.3 minutes per vehicle. For the alternative MRWA hybrid before-

period data, the average route SD value CRM predicted matches the average route SD value 

 
2 Hybrid data were sourced from multiple data providers such as TomTom, AddInsight, NPI, IRIS, and 

Telematics. 
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measured from field data. For the after period, the CRM on average overestimates the route SD 

by 0.2 minutes or 12.5%.  

6. Conclusions, Limitations and Future Works 

This paper presents the development and implementation of robust link and route-level models 

for ATAP to predict travel time reliability in a road network. This paper’s contribution is to 

allow the ATAP guidelines to present methodologies and parameters for evaluating travel time 

variability.  

While the models have been rigorously calibrated and validated to provide default values, it is 

recommended that practitioners calibrate the models using their own local data to account for 

traffic dynamics characteristic to a specific geography or jurisdiction. The Perth case study 

results also demonstrate the importance of consistency in data source that is used in calibration 

and application of CRM. When different data sources are used, it can lead to inferior results. 

Furthermore, the ATAP model calibration involved studying travel time variability on a month-

by-month basis, which is a more aggregated when compared to day-to-day analysis. Thus, the 

methodology can be expanded to study the latter, as previous studies have developed models 

forecasting travel time variability at a finer resolution of a day which although provides greater 

insights but requires a more intense model calibration procedure.  
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