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1. Introduction 

It is well known that the size and composition of the path choice sets play an essential role in 

the traffic assignment process. Prato (Bovy, 2009) provided an overview of choice set 

generation algorithms. However, the algorithms failed to capture more than 40% of the chosen 

route in most cases. Accordingly, no standard method exists in practice to identify all selected 

routes. Nevertheless, with advanced data collection techniques such as GPS and Bluetooth, 

vehicle trajectories  (Advani et al., 2021) can be extracted and exploited to identify the observed 

choice set.  

Researchers such as  Ton et al. (2018), Scott et al. (2021), to name a few, have used trajectories 

from GPS data observed over several days to model the path choice sets for the bicycle riders 

empirically. For example, Ton et al. (2018) combined all the unique observed routes for a given 

OD pair to identify the potential path choice sets. Descriptive statistics of the observed choices 

are not provided, but the authors have mentioned that potential choices were not observed using 

the collected data. Further, comparing the observed choices with the labelling (Ben-Akiva et 

al., 1984) and link elimination methods(Bellman et al., 1960), they observed that these 

algorithms perfectly capture less than 2% of the chosen route. Similarly,  (Scott et al., 2021) 

utilized a core link signature-based approach to identify the unique paths chosen amongst 5,561 

OD pairs, based on one year aggregated GPS data. The authors observed an average of 8 unique 

routes per OD pair and a range of 2 to 77 for most OD pairs.  

Although these studies are based on data-driven path choice set generation, the problem 

addressed in the present study is fundamentally different as: (a) These studies are conducted on 

the cyclist’s path, which possesses a much different choice structure than the car travel, and (b) 

In these studies, all the observed routes are considered a part of the choice set, and they do not 

emphasize on the path choice reduction process to identify a representative choice set (perhaps 

they did not observe such problem in the limited data). 

Consider an example in Figure 1(b), where 415 unique paths are observed from the Bluetooth 

MAC scanner (BMS) based trajectory data for a Brisbane city origin-destination (OD) pair, as 

shown in Figure 1 (a). It is observed that the empirically identified master choice sets (all 

observed paths) are large, with high mutual spatial overlaps, and only the most feasible paths 

should be considered in the choice set. Accordingly, this paper clusters spatially similar 

trajectories to identify a representative set of paths from the large trajectory dataset observed 

over several days. The contribution of this study is the empirical identification of the path choice 

sets while minimizing the errors induced due to path omission and aggregation in the clustering 

process. 

http://www.atrf.info/
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Figure 1 (a) Brisbane OD pair (origin: Mansfield, Destination: Woolloongabba) with shortest and motorway 

paths (b) Bluetooth data-based observed paths between the OD pairs presented in figure a. 

2. Proposed Framework 

We use the vehicular trajectories from the Bluetooth MAC Scanners (BMS)(Bhaskar and 

Chung, 2013) to test our proposed methodology. The objective here is to cluster the trajectories 

that satisfy the following criteria: a. The paths within the cluster should possess a high spatial 

similarity among themselves, and b. A clustering algorithm should be able to differentiate the 

paths which are dissimilar and rarely used.  

In this study, a density-based DBSCAN clustering algorithm is used to obtain a representative 

choice set. It possesses a lower computational complexity of the order O(nlogn) and possesses 

the advantage of identifying the outliers in the dataset. A generalized framework of obtaining 

the representative path choice set by clustering the large trajectory dataset is proposed in Figure 

2.  
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Figure 2 Generalized Framework to cluster the observed path choice set. 

The framework consists of a multi-stage clustering process where the first stage captures 

spatially similar paths (C1), and the second stage segregates the dis-similar paths into further 

two category namely high used paths (C2) and rarely used paths (C3) based on thresholds. 

Further, as the outputs of the clustering process are reliant on its hyper-parameters, the second 
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part of the framework explains the adjustment of hyper-parameters by minimizing the overall 

choice set as well as the errors induced due to path aggregation, E1 (from set C1) and filtered in 

the clustering process E3 (from set C3). A brief explanation of different aspects of the framework 

is provided in the following section. 

3. Representative path choice set identification  

3.1  Distance matrix generation 

Clustering algorithms require both hyperparameters and distance matrices as inputs. For 

trajectory clustering, distance is a measure of dissimilarity among the observed trajectories. In 

this study, the dis-commonality factor (DCF) is used to measure the dissimilarity among the 

observed trajectories. The DCF among paths is measured as: 

𝐷𝐶𝐹 = 1 − 
𝛿𝑙𝑖𝑗

√𝑙𝑖𝑙𝑗
 

(1) 

Here, 𝛿𝑙𝑖𝑗 is the sum of the length of the common links between path pi and pj, respectively and 

𝑙𝑖 , 𝑙𝑗 are the length of the corresponding paths. The value of DCF ranges on a scale of 0 for 

completely overlapping paths to 1 for entirely different paths. DCF is used as the distance 

measure among the observed paths for the DBSCAN clustering. 

3.2  First stage clustering 

DBSCAN requires two input parameters, i.e., cluster search radius (Eps) and minimum objects 

(minPts), to cluster spatially similar paths and segregate dis-similar paths. Here, Eps is an upper 

threshold specifying the level of dissimilarity expected among a group with at least minPts 

paths in it. With the availability of the observed path choices and the corresponding DCF 

matrix, the DBSCAN algorithm can be initiated with a random set of hyper-parameters. Here, 

the paths are aggregated based on their spatial attribute. This means each unique path is 

represented as a single point in the space and the paths satisfying the hyper-parameter criteria 

are included in the same cluster. As each cluster corresponds to a representative path, the 1st 

stage of clustering leads to a representative path set (C1).  

3.3  Second stage filtering 

The initial clustering process segregates the dis-similar paths that fail to satisfy the hyper-

parameter specifications for a given set of hyper-parameters. This is prominent if the paths are 

isolated in the space with no/few paths in proximity. Several paths are highly preferred in the 

path choice context (e.g., motorways) but have less similar paths in proximity. Such paths are 

filtered in the initial clustering and should be included in the representative choice set. This 

framework adopts a trip proportion threshold-based secondary filter to identify such paths. 

Accordingly, if the trips on the observed path are beyond a specified threshold φ, the path is 

added to the representative choice set. These newly identified paths (C2) are then added to the 

representative paths obtained from the first stage clustering (C1) to obtain the overall 

representative choice set (C), and the paths that fail to satisfy the threshold are identified as the 

noise and stored in a separate database (C3). 

3.4  Quantifying the errors 

Following the first stage of clustering, C1 representative paths (clusters) will be formed. For 

each cluster, the non-representative paths are reduced and the trip on these paths is now assigned 

to the representative path of its corresponding cluster. This is because the representative paths 

resemble the closest similarity to its non-representative paths in the cluster. The proportion of 

trips aggregated from the non-representative path is the error of the cluster (E1). We quantify 
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these errors as the proportion of link proportion incorrectly assigned on the representative paths 

as expressed in equations 2 and 3. 

Further, there are several paths (C3) filtered as noise in the second stage filtering. These trips 

are overlooked in the representative path set and should be quantified in the error calculation. 

The error corresponding to these paths is the sum of trips observed on these paths, as expressed 

in equation 4. It should be noted that the errors for the filtered paths; C2 is zero (i.e., E2=0) as 

each path is a representative path. 

Cluster error (𝑒𝑖) =  ∑ 𝐷𝐶𝐹𝑟𝑝𝑖
 . 𝑇𝑝𝑖

𝑝𝑖

 
(2) 

 

Total Clustering error (𝐸1)  =
1

𝑇𝑂𝐷
∑ 𝑒𝑖

𝐶1

𝑖=1

 

(3) 

 

Error due to Noise (𝐸3)  =
1

𝑇𝑂𝐷
∑ 𝑇𝑝𝑖

𝐶3

𝑖=1

 

(4) 

 

3.5  Objective function for hyper-parameters adjustment 

The size and quality of clusters are highly dependent on the hyperparameter inputs. We 

defined the objective functions that should be minimized to ensure the quality of results. The 

quality of clusters in this study is evaluated based on the total errors and the cluster size. The 

parameters Eps, minPts are then adjusted to satisfy the following objective function: a. A 

reasonable number of clusters are formed with an upper threshold of β ; b. Total errors E (E1 + 

E3) should be within the threshold μ. It can be observed that the hyperparameter adjustment 

depends on the acceptable error (μ) and path choice set size (β) threshold. However, an overall 

optimized solution can be identified by computing the outputs for various hyper-parameters. 

4. Proof of concept on real network 

To explain the proof of concept, this section shows the results from 8,269 trajectories for an 

OD pair obtained by aggregating one-year BMS data. The DCF matrix was computed for the 

trajectories and the hyper-parameters : minPts was varied from 2 to 5, and the Eps ranged from 

0.05 to 0.3 at an increment of 0.05. As shown in Figure 6, the cluster size (C1) tends to increase 

with Eps ranging 0.05 - 0.15 for minPts=3 to 5, and after that follow a decreasing trend. Thus, 

the noise (C3) and the representative paths filtered(C2) in the second stage of clustering tend to 

reduce proportionally as more clusters are formed in the first stage of spatial clustering. 

Correspondingly, the errors tend to increase as more points are accumulated in the clusters, 

suggesting cluster error (E1) is independent of minPts for a given Eps. 
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Figure 3 Effect of hyper-parameters on number (#) of clusters for (a) C1; (b) C2; (c) C3  and (d) C1 + C2 and 

corresponding errors for cluster (e) C1; (f) C3 and (g) C1 + C3 

Figure 3 provides an independent understanding of the hyper-parameters effect on various 

aspects of the clustering. The errors are plotted as a function of the number of clusters to identify 

the optimal point and the corresponding hyperparameters in Figure 4 (a). The point closest to 

the origin minimizes both the variables and should be considered optimal. The optimal results 

are obtained for Eps=0.2 minPts=3, resulting in 19 clusters (C1 = 18, C2=1) with a total error of 

8.9%. Further, the representative paths corresponding to the optimal hyper-parameters are 

expressed in Figure 4(b). 

   
Figure 4 (a) Optimal Hyper-parameter identification (b) Representative paths visualization (c) Representative 

path of the selected cluster 

To present the reliability of method, a cluster of seven paths is presented in Figure 5, with 

Figure 5 (a) being its representative path. It can be observed that the clustered paths possess 

high spatial similarity among each other and without any non-essential erroneous path that 

might affect the overall cluster error, indicating the reliability of the designed framework. In 

addition, the proposed framework can also be used to identify the nested structure of the 

observed path choices, as each cluster represents a nest of similarly perceived paths.  
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Figure 5 Visualization of the paths in cluster\ 

6. Conclusion 

Path choice set identification is an essential requirement for route choice modelling and traffic 

assignment. Availability of detailed vehicle trajectories from large datasets such as Bluetooth 

MAC Scanners (BMS) unleash opportunities for empirical identification of the path choice set 

for drivers on the urban road networks. However, the paths observed from trajectory datasets 

are huge and diverse and require a realistic representation of the observed paths. Addressing 

the need, this paper proposed a multi-level trajectory clustering framework for a realistic 

representation of the path choice set. The algorithm minimizes the errors induced due to 

clustering and identifies the representative path identification from each cluster. As proof of 

concept, the methodology is applied on 8269 trajectories to reduce 415 paths. The optimal 

output resulted in 19 representative paths with an error of  8.9%  and corresponding hyper-

parameters as Eps =0.2, minPts=3, respectively. Lastly, the visualization of the representative 

paths and their reduced paths indicates that the obtained results satisfy the spatial similarity and 

generate suitably distinct clusters, suggesting its practical applicability. 
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