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Abstract 14 

Latent class (LC) discrete choice models have been found to exhibit identifiability problems. 15 

Theoretical identifiability addresses this issue in general, but no empirical identifiability analysis 16 

has been performed previously for these models. Here, we analyse the identifiability of LC 17 

models and through this, establish that differences among classes are crucial in identification. 18 

We quantify the relationship between behavioural difference and empirical identifiability using 19 

maximum likelihood analysis, and proceed to show empirically that is informative in Bayesian 20 

estimation. Then, we simulate a common scenario of potential non-identifiability with multiple 21 

choice heuristics in a real transport mode choice context. Based on our simulation results, we 22 

show that Bayesian estimation procedures are more robust than likelihood maximisation whilst 23 

recovering our main results. We show a graphical diagnostic for identifiability and provide 24 

examples of model non-identifiability, weak identifiability and strong identifiability.  25 

1. Introduction 26 

Latent class (LC) models are finite mixture models representing several clusters of individuals 27 

(Kamakura and Russell, 1989). They have been widely applied either exclusively with 28 

exogenous variables (Rossetti et al., 2018) or in conjunction with latent variables in a MIMIC 29 

model (Hess and Stathopoulos, 2013); with diffuse choice sets (Ben-Akiva and Boccara, 1995); 30 

and either using exclusively utility maximization heuristics or allowing different choice 31 

heuristics within each latent class (Hess et al., 2012; Gonzalez-Valdes and Raveau, 2018).  32 

For LC models to be useful, they must be identifiable. Walker and Ben-Akiva (2002) 33 

investigated theoretical and empirical identifiability. Here, we focus on the latter, where in 34 

theory the model can be identified, but due to the model structure and data, the Hessian matrix 35 

is singular or nearly so (Cherchi and Ortúzar, 2008). Huang and Bandeen-Roche (2004) explored 36 

theoretical identifiability in LC models specifying conditions for identifiability in each of the 37 

components of a latent class – latent variable choice model. Yet, conditions for empirical 38 

identifiability when no latent variables are used have not been addressed completely. 39 

Among the applications of LC models, one of the greatest challenges in identifiability arises 40 

when multiple heuristic choice models are considered. Indeed, these LC models have resorted 41 

to latent variables (Hess and Stathopoulos, 2013) and normalizations (Leong and Hensher, 2012) 42 

for identifiability. Therefore, our empirical application will focus in this challenging context. 43 
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To understand empirical identifiability of LC models, first we develop a theoretical framework 44 

to analyse the interaction of the governing forces of identifiability. Then, we conduct Monte 45 

Carlo simulation experiments in a realistic transport context to assess the drivers of 46 

identifiability. The simulation of latent classes is performed in the context of modelling with 47 

multiple choice heuristics. We explore three meta-experimental variations: the type of choice 48 

heuristics, the proportions of each heuristic in the sample, and the correlation between the 49 

probability of using a given heuristic and the individual preferences. Our results provide a 50 

framework for practitioners to design experiments for LC models and explore the identifiability 51 

of multiple-choice heuristic models in practical applications.  52 

2. Theoretical Analysis 53 

2.1 Binary Case 54 

2.1.1 The balance of latent classes 55 

Suppose that individuals align their behaviour to either one of two latent classes, denoted as a 56 

and b, with probabilities πa and πb = (1 - πa) respectively. Let Pcqi(θ) be the probability that 57 

individual q chooses alternative i using parameters θ conditional on belonging to class c. Then 58 

Pqi(θ), the probability of choosing alternative i under this binary LC model, is given by (1): 59 

𝑃𝑞𝑖(𝜃, 𝜋𝑎) = 𝜋𝑎𝑃𝑎𝑞𝑖(𝜃) + (1 − 𝜋𝑎)𝑃𝑏𝑞𝑖(𝜃) . (1) 

The log-likelihood of this model with (θ, πa) is given by (2), where Pcq*(θ) represents the 60 

probability that individual q would have chosen the selected alternative aligning their behaviour 61 

to latent class c: 62 

𝑙(𝜃, 𝜋𝑎) = ∑log (𝜋𝑎  𝑃𝑎𝑞∗(𝜃) + (1 − 𝜋𝑎) 𝑃𝑏𝑞∗(𝜃))

𝑞

 (2) 

The maximum value of this function could arise either at a boundary or at an interior value of 63 

πa. In the first case (i.e. πa ∈ {0,1}), the optimal model consists of a single latent class. Whereas 64 

in the case of an interior solution (i.e. 𝜋𝑎 ∈ (0,  1) ), the two classes of individuals coexist in a 65 

mixture model. The solution depends upon the balance between the losses and gains in 66 

likelihood associated with including an additional class in the model and, therefore, reducing 67 

the proportion of the complementary one. A boundary solution will be obtained when it is 68 

optimal for the model to consider a single class of individuals, that is, when the improvements 69 

in likelihood from the inclusion of the other class do not compensate for the losses.  70 

In the more interesting case of an interior solution, the likelihood is maximised when the 71 

likelihood function is stationary with respect to variations in the class membership probability 72 

πa. This can be detected as an interior point at which the derivative of the log-likelihood function 73 

equals zero. Among the variables to examine, an interesting one is precisely πa, because it 74 

indicates the proportion of each class and, therefore, connects them in the model. The first order 75 

condition regarding πa is analysed next. 76 

We start by considering the case where the class membership function πa is constant across the 77 

population (i.e. the probability of class membership is the same for every individual). For the 78 

context of multiple-choice heuristics that we explore later, this is the most frequent formulation 79 

(Balbontin et al., 2017; Hess et al., 2012). Under this specification the following theorem 80 

describes the optimality for two class estimation or coexistence of the two latent classes: 81 
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THEOREM 1: Two latent classes coexist optimally in a discrete choice model with constant 82 

class membership probability if the vector  of estimated parameters satisfies the following 83 

balance: 84 

∑
 𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃)
𝑞

= ∑
 𝑃𝑏𝑞∗(𝜃)

𝑃𝑞∗(𝜃)
𝑞

 (3) 

where Pq*(θ) = πa Paq*(θ) + (1-πa) Pbq*(θ) represents the modelled probability that individual q 85 

chooses the alternative actually chosen. 86 

PROOF: For an interior solution, the first order condition for the maximisation is given by (4):  87 

𝜕𝑙(𝜃, 𝜋𝑎)

𝜕𝜋𝑎

= ∑
 𝑃𝑎𝑞∗(𝜃) − 𝑃𝑏𝑞∗(𝜃)

𝜋𝑎  𝑃𝑎𝑞∗(𝜃) + (1 − 𝜋𝑎) 𝑃𝑏𝑞∗(𝜃)
𝑞

= 0 . (4) 

Manipulation of (4) leads to (5):  88 

 ∑
 𝑃𝑎𝑞∗(𝜃)

𝜋𝑎  𝑃𝑎𝑞∗(𝜃) + (1 − 𝜋𝑎) 𝑃𝑏𝑞∗(𝜃)
𝑞

= ∑
 𝑃𝑏𝑞∗(𝜃)

𝜋𝑎  𝑃𝑎𝑞∗(𝜃) + (1 − 𝜋𝑎) 𝑃𝑏𝑞∗(𝜃)
𝑞

 . (5) 

Using the definition of Pq*(θ), this is equivalent to (3). 89 

Equations (3) and (5) indicate that when it is optimal for the model to include both latent classes, 90 

there is a balance between them. This balance is given by the sum of the ratio of the likelihoods 91 

of the class to the complete model, showing that the ratio of class-conditional to marginal 92 

probability of the observed choices is crucial. The magnitude of this sum is described by 93 

Theorem 2: 94 

THEOREM 2: Two latent classes coexist optimally in a discrete choice model with constant 95 

class probabilities if the balance quantity in (3) with likelihood maximising parameters    is 96 

equal to the sample size  Q . 97 

PROOF: Expanding the left-hand side of (3) leads to (6): 98 

∑
 𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

= ∑
𝜋𝑎 𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

+ ∑
(1 − 𝜋𝑎)𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

  

= ∑
𝜋𝑎 𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

+ ∑
(1 − 𝜋𝑎)𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

+ ∑
(1 − 𝜋𝑎)𝑃𝑏𝑞∗(𝜃) − (1 − 𝜋𝑎)𝑃𝑏𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

  

⟹ ∑
 𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

= ∑
𝜋𝑎  𝑃𝑎𝑞∗(𝜃) + (1 − 𝜋𝑎)𝑃𝑏𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

+ (1 − 𝜋𝑎)∑
𝑃𝑎𝑞∗(𝜃) − 𝑃𝑏𝑞∗(𝜃)

𝑃𝑞∗(𝜃, 𝜋𝑎)
𝑞

  (6) 

According to equation (1), every term in the first summation of the right-hand side of (6) is 99 

identically equal to one, therefore the summation adds to Q. The second summation is equal to 100 

zero because of stationarity (4) for the likelihood maximising parameters   . Because of (3) and 101 

in light of the symmetry between the latent classes, the condition corresponding to class a applies 102 

equally to class  b . Then, (7) describes the balance in a model with two latent classes and 103 

constant class membership function: 104 

 ∑
 𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃,𝜋𝑎)𝑞 = ∑
 𝑃𝑏𝑞∗(𝜃)

𝑃𝑞∗(𝜃,𝜋𝑎)𝑞 = 𝑄 . (7) 
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The balance is broken (i.e. the optimal model contains only one latent class) when it is optimal 105 

to not include any amount of the other latent class, as discussed previously. A diagnostic 106 

condition for this is presented in (8) and (9) for the case including latent class  a  alone: 107 

 
𝜕𝑙(𝜃,𝜋𝑎)

𝜕𝜋𝑎
|
𝜋𝑎=1

= ∑
 𝑃𝑎𝑞∗(𝜃)−𝑃𝑏𝑞∗(𝜃)

𝜋𝑎 𝑃𝑎𝑞∗(𝜃)+(1−𝜋𝑎) 𝑃𝑏𝑞∗(𝜃)𝑞 > 0 ⇒ 𝜋𝑎
∗ = 1  (8) 

 ∑
 𝑃𝑎𝑞∗(𝜃)

𝑃𝑏𝑞∗(𝜃)𝑞 < 𝑄 ⇒ 𝜋𝑎
∗ = 1  (9) 

In this case of a single latent class  a ,  𝑃𝑎∗(𝜃, 𝜋) ≡ 𝑃𝑎𝑞∗(𝜃)  so that  ∑
 𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃,𝜋)𝑞 = 𝑄 . The result 108 

of Theorem 2 shows that this equality extends to each latent class in a binary model; this is 109 

generalised to multiple classes in Theorem 4. 110 

 111 

The optimality of the single latent class  a  can be identified using (9) when 𝜋𝑎
∗ = 1  (or its 112 

counterpart for latent class b alone when 𝜋𝑎
∗ = 0 ). For this to occur, the prevalent latent class 113 

must perform well, even when individuals are better aligned to the other class. Conversely, for 114 

a balanced interior combination of classes to be optimal (10a) must hold for some observations 115 

and (10b) for others: 116 

 
 𝑃𝑎𝑞∗(𝜃)

𝑃𝑏𝑞∗(𝜃)
> 1   (10𝑎)                

 𝑃𝑏𝑞∗(𝜃)

𝑃𝑎𝑞∗(𝜃)
> 1   (10𝑏) .  (10) 

Together, this means that in a balanced solution, each of the latent classes must perform best 117 

for some of the observations. 118 

 119 

In the case that the class membership function πa is not constant but is instead some function 120 

πa(θ), the balance is stated in Theorem 3: 121 

 122 

THEOREM 3: Two latent classes coexist optimally in a discrete choice model if the vector   123 

of estimated parameters satisfies the balance specified by (11): 124 

∑
 
𝜕𝜋𝑎(𝜃)

𝜕𝜃
𝑃𝑎𝑞∗(𝜃)+ 

𝜕𝑃𝑎𝑞∗(𝜃)

𝜕𝜃
𝜋𝑎(𝜃)

𝑃𝑞∗(𝜃)𝑞 = ∑
𝜕𝜋𝑎(𝜃)

𝜕𝜃
 𝑃𝑏𝑞∗(𝜃)−

𝜕𝑃𝑏𝑞∗(𝜃)

𝜕𝜃
 (1−𝜋𝑎(𝜃))

𝑃𝑞∗(𝜃)𝑞   (11) 

PROOF: Equation (12) states the stationarity condition required for optimality.  125 

0 =
𝜕𝑙(𝜃)

𝜕𝜃
= ∑

𝜕𝜋𝑎(𝜃)

𝜕𝜃
 𝑃𝑎𝑞∗(𝜃)+𝜋𝑎(𝜃)

𝜕𝑃𝑎𝑞∗(𝜃)

𝜕𝜃
−

𝜕𝜋𝑎(𝜃)

𝜕𝜃
𝑃𝑏𝑞∗(𝜃)+ (1−𝜋𝑎(𝜃))

𝜕𝑃𝑏𝑞∗(𝜃)

𝜕𝜃

𝜋𝑎(𝜃)𝑃𝑎𝑞∗(𝜃)+(1−𝜋𝑎(𝜃)) 𝑃𝑏𝑞∗(𝜃)𝑞   (12) 

Equation (11) is a direct rearrangement of (12) that expresses stationarity in terms of the 126 

balance between the latent classes.  127 

 128 

Suppose now that the set of parameters β of the class membership function is disjoint from the 129 

set θ affecting the choices themselves. Then Theorem 3 has the following corollary: 130 

COROLLARY 3.1: If the class membership function, with parameters   ,  is independent from 131 

the choice heuristics, with parameters   ,  the balance required of sensitivity of class 132 

membership is given by 13):  133 

∑
 
𝜕𝜋𝑎(𝛽)

𝜕𝛽
𝑃𝑎𝑞∗(𝜃)

𝑃𝑞∗(𝜃,𝛽)𝑞 = ∑

𝜕𝜋𝑏(𝛽)

𝜕𝛽
 𝑃𝑏𝑞∗(𝜃)

𝑃𝑞∗(𝜃,𝛽)𝑞  .  (13) 
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The analysis presented in this section identifies when it is optimal for the model to include more 134 

than one latent class. Nevertheless, the coexistence of latent classes does not guarantee that the 135 

model is identifiable. This empirical identifiability issue is addressed next.  136 

2.1.2 Class behavioural diversity for empirical identifiability 137 

To study the identifiability of a multiple latent classes, that is when the estimator can be 138 

identified uniquely without any parameter set being observationally equivalent, we assume that 139 

the model has an interior solution. If the model had a boundary solution (i.e. only one class was 140 

estimated), then the conclusion is that one heuristic consistently outperforms the other in 141 

explaining all population’s behaviour. 142 

For a parametric model to be identifiable, the information matrix (14) must be non-singular. 143 

Moreover, for greater precision in the parameter estimates, we desire that the covariance matrix  144 

  has values on the principal diagonal the square roots of which are small compared to the 145 

corresponding point estimates of parameters, which we describe as strong identifiability. The 146 

covariance matrix is related to the model via the Fisher information matrix  F  by (15): 147 

 
𝐹 =  −𝔼(

𝜕2𝑙(𝜃)

𝜕𝜃𝑥𝜕𝜃𝑦

) 
(14) 

 
𝛴′ = 𝐹−1 

(15) 

The elements on the principal diagonal of  𝛴′ provide the Cramér-Rao lower bound on the 148 

variance of estimation of the parameters    in the corresponding elements of   𝛴 .  Thus, to 149 

obtain strong identifiability, the determinant of the information matrix should be large, hence 150 

requiring large values −𝔼(
𝜕2𝑙(𝜃)

𝜕𝜃𝑥
2 ) on its principal diagonal. 151 

Similar to the analysis of the first order condition for the two-class case, we analyse the 152 

information matrix at the point determined by πa. We analyse the case where the class 153 

membership function is constant. Thus, the diagonal element of the information matrix 154 

corresponding to πa is given by the derivative of (4) with respect to πa, and relates to the 155 

empirical identifiability of the class proportions:  156 

 
𝜕2𝑙(𝜃)

𝜕𝜋𝑎
2

= − ∑
(𝑃𝑎𝑞∗ − 𝑃𝑏𝑞∗)

2

𝑃𝑞∗
2

𝑞

 (16) 

For F to have a large determinant, and thus for the standard errors of the estimators to be small, 157 

it is necessary for expression (16) to be large. Noting that the maximum likelihood estimates are 158 

obtained when the probability 𝑃𝑞∗
2  is maximum, identifiability is determined by the numerator 159 

of (16). Thus, the expression (Paq* - Pbq*)
2 is an important element in the identification of latent 160 

classes. Large values of this expression are obtained when the classes exhibit disparate 161 

behaviour. We see from this that absence of substantial behavioural diversity between the two 162 

classes may cause identifiability problems. Therefore, this behavioural diversity requires not 163 

only that the functional forms are different but that it should also be reflected in the data used 164 

for estimation. 165 

2.2 Multiple Latent Class Case 166 

We now consider the general case in which several latent classes align with the population. We 167 

start by analysing the first order conditions to generalise the balance obtained in section 2.1. 168 

Then, the analysis of empirical identifiability is extended to this multiple class case. 169 
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Extending the notation of section 2.1, let πc be the probability that individual behaviour aligns 170 

to class c ∈ C so that ∑c ∈ C πc = 1 and πc ≥ 0 ∀c ∈ C. Then, the joint log-likelihood function 171 

l(π, θ) of the model is given by (19): 172 

𝑙(𝜋, 𝜃) = ∑ log(∑π𝑐𝑃𝑐𝑞∗(θ)

𝑐∈𝐶

)

𝑞

 (19) 

By extending Theorems 1 and 2, Theorem 4 indicates the necessary condition for the coexistence 173 

of several latent classes in a model: 174 

THEOREM 4: Several latent classes c ∈ C coexist optimally in a model when each of them 175 

contributes the same aggregated ratio  ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞 = 𝑄 . 176 

PROOF: The constrained maximum likelihood subject to the sum constraint ∑ 𝜋𝑐𝑐∈𝐶 = 1 (with 177 

Lagrange multiplier ) and positivity constraints  𝜋𝑐 ≥ 0 ∀𝑐 ∈ 𝐶  (with Lagrange multipliers  178 

c cC) is obtained when the Lagrangian (20) is stationary with respect to  πc ∀c∈C :   179 

 
L = −𝑙(𝜋, 𝜃) − 𝜆(1 − ∑ 𝜋𝑐𝑐∈𝐶 ) − ∑ η𝑐𝜋𝑐𝑐∈𝐶  . 

(20) 

Differentiating the Lagrangian L with respect to πc and equating to 0 for stationarity gives the 180 

necessary condition for the optimality with respect to the probability πc: 181 

  
𝜕

𝜕𝜋𝑐
L = 0 ⟺ ∑

𝑃𝑐𝑞∗

∑ 𝜋𝑎𝑃𝑎𝑞∗𝑎∈𝐶
𝑞 = 𝜆 − η𝑐   ⇒ ∑

𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞 = 𝜆 − η𝑐     ∀𝑐 ∈ 𝐶 .  182 

The first-order Karush-Kuhn-Tucker (KKT) conditions for the positivity constraints on  πc with 183 

multiplier  c  are:  𝜋𝑐 ≥ 0, 𝜋𝑐η𝑐 = 0, η𝑐 ≥ 0. According to the complementarity of  πc and c  184 

for each latent class c:  185 

𝜋𝑐 > 0  ⇒   η𝑐 = 0 ⇒  ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞 = 𝜆 , 𝜋𝑐 = 0  ⇒    μ𝑐 ≥ 0 ⇒  ∑

𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞 ≤ 𝜆 . (21) 

Now applying the equation for  Pq*, the stationarity condition for likelihood and the KKT 186 

conditions, we have  187 

𝑄 =  ∑
∑ 𝜋𝑐𝑃𝑐𝑞∗𝑐∈𝐶

∑ 𝜋𝑎𝑃𝑎𝑞∗𝑎∈𝐶
𝑞

= ∑𝜋𝑐 ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞𝑐∈𝐶

                 = 𝜆 ∑𝜋𝑐

𝑐∈𝐶

− ∑𝜋𝑐η𝑐

𝑐∈𝐶

= 𝜆 .

 188 

The sum constraint  ∑ 𝜋𝑐𝑐∈𝐶 = 1  yields the value    for the first term in the last line, whilst the 189 

Karush-Kuhn-Tucker complementarity conditions  𝜋𝑐η𝑐 = 0  𝑐𝐶  yields the value 0 for the 190 

second term.  191 

Using this in (21), 𝜋𝑐 > 0  ⇒   ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞 = 𝑄 . This proves Theorem 4 and extends the balance 192 

derived in section 2.1 to multiple latent classes: those present have identical aggregated ratio Q 193 

of  𝑃𝑐𝑞∗/𝑃𝑞∗ for the alternatives chosen; others have values that are no greater than  Q . 194 

Theorem 4 presents the balance condition for the optimal point, but again does not guarantee 195 

the empirical identifiability of the latent classes. For the vector π to be identifiable, the 196 

information matrix should be non-singular and, therefore, the Hessian matrix of the Lagrangian 197 

should be positive definite. This requires that all principal submatrices of the Hessian that 198 
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correspond to the second derivatives with respect to the proportions should have positive 199 

determinants. The mixed second partial derivatives of L are equal to those of the log-likelihood 200 

(because all the constraints are linear) and are stated in (22): 201 

 
𝜕2

𝜕𝜋𝑎𝜕𝜋𝑏
L= ∑

𝑃𝑎𝑞∗𝑃𝑏𝑞∗

(∑ 𝜋𝑐𝑃𝑐𝑞∗𝑐∈𝐶 ) 2𝑞 = ∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2𝑞  (22) 

Therefore, each 2×2 submatrix of this kind has the structure shown in (23):  202 

 

[
 
 
 
 
 ∑

𝑃𝑎𝑞∗
2

𝑃𝑞∗
2

𝑞

∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

𝑞

∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

𝑞

∑
𝑃𝑏𝑞∗

2

𝑃𝑞∗
2

𝑞 ]
 
 
 
 
 

 (23) 

Because both elements on the principal diagonal are positive, the submatrix is positive definite 203 

if the determinant exceeds zero. Moreover, if the determinant D given by (24) is large, then the 204 

covariance matrix of the estimators is small:  205 

 𝐷 = ∑
𝑃𝑎𝑝∗

2

𝑃𝑝∗
2

𝑝∈𝑄

 ∑
𝑃𝑏𝑞∗

2

𝑃𝑞∗
2

𝑞∈𝑄

− (∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

𝑞∈𝑄

)

2

 (24) 

Before analysing (24) to determine when D will be positive, note that the analysis is useful in 206 

the case that latent classes are distinct. In that case, we cannot have  𝑃𝑎𝑞∗ = 𝑃𝑏𝑞∗ ∀𝑞. Therefore, 207 

there will be a proportion of outcomes where class a outperforms the aggregate model and 208 

another proportion where its performance is worse. The quadratic structure of the expression 209 

𝑃𝑐𝑞∗
2 𝑃𝑞∗

2⁄   𝑐 ∈ 𝐶 tends to amplify the difference when one model outperforms the other. Provided 210 

that each class outperforms every other class for some observations, then every determinant D 211 

of the form (24) will be positive and thus the model is theoretically identifiable. Empirical 212 

identifiability is addressed in Theorem 5. 213 

THEOREM 5: If several latent classes coexist in an identifiable model, empirical identifiability 214 

increases as the value of the covariance of the latent classes decreases. 215 

PROOF: To make the analysis more convenient, we introduce notation for the moments of the 216 

ratios of probabilities 
𝑃𝑐𝑞∗

𝑃𝑞∗
  𝑐𝜖𝐶. Let the first and second moments be respectively:  217 

𝜇𝑐 = 𝔼(
𝑃𝑐𝑞∗

𝑃𝑞∗
) , 𝑐 ∈ 𝐶 , 𝜎𝑐

2 = 𝑉𝑎𝑟 (
𝑃𝑐𝑞∗

𝑃𝑞∗
)   𝑐 ∈ 𝐶  and  𝜎𝑎𝑏 = 𝐶𝑜𝑣 (

𝑃𝑎𝑞∗

𝑃𝑞∗
,
𝑃𝑏𝑞∗

𝑃𝑞∗
)     𝑎, 𝑏 ∈ 𝐶 218 

 219 

With this notation, the expectation of elements involved in (24) can be written as:  220 

𝔼(∑
𝑃𝑐𝑞∗

2

𝑃𝑞∗
2

𝑞∈𝑄

) = 𝑄(𝜇𝑐
2 + 𝜎𝑐

2)  and  𝔼(∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

𝑞∈𝑄

) = 𝑄(𝜇𝑎𝜇𝑏 + 𝜎𝑎𝑏) 221 

Therefore, the expectation of (24) can be rearranged to express D as an unbiased sample estimate 222 

of the population quantity:  223 

1

𝑄2
𝔼(𝐷) = 𝜇𝑎

2𝜇𝑏
2 (

𝜎𝑎
2

𝜇𝑎
2

− 2
𝜎𝑎𝑏

𝜇𝑎𝜇𝑏

+
𝜎𝑏

2

𝜇𝑏
2) + 𝜎𝑎

2𝜎𝑏
2 (1 −

𝜎𝑎𝑏
2

𝜎𝑎
2𝜎𝑏

2) . 
(25) 
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Recall that from condition (21), for both classes a and b to be present in the model we need 224 

μa = μb = 1 .  If the choice probabilities are perfectly correlated, 𝜎𝑎𝑏
2 = 𝜎𝑎

2𝜎𝑏
2: the right-hand side 225 

of (25) will be null so that the Hessian matrix would be singular in expectation. The expectation 226 

of the partial derivative of D with respect to the correlation ab in (26) is negative, so that the 227 

expectation of the determinant increases as this correlation decreases. In particular,  228 

𝔼 (
𝑑𝐷

𝑑𝜎𝑎𝑏

) = −2𝑄2(𝜇𝑎𝜇𝑏 + 𝜎𝑎𝑏) = −2𝑄2𝔼(
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

) ≤ 0 
(26) 

Consequently, estimation of the mixed model is better conditioned (as indicated by larger values 229 

of D) when correlation ab is reduced and as sample size Q increases, proving Theorem 5.  230 

The requirement for positive determinants of the principal submatrices of the Hessian, therefore, 231 

generalises the requirement for the binary classes case presented in section 2.1. To be 232 

identifiable, the behaviour of a class should outperform that of all other classes in at least one 233 

observation; the greater the behavioural difference, the bigger the determinant of (24) and hence 234 

the smaller the covariance matrix of the estimators.  235 

3. Empirical Experiments for Identifiability 236 

To test the theorems in an identifiable case that is not straightforward, we use the context of 237 

multiple-choice heuristics. Here, each choice heuristic is modelled under a different latent class. 238 

To build the experiment and to guarantee the presence of different choice heuristic and control 239 

the choice parameters, a synthetic population is generated. We investigate three dimensions 240 

affecting the choice process: the type of choice heuristic within each latent class, the proportion 241 

of each latent class (or choice heuristic) in the synthetic sample, and the correlation between the 242 

parameters of the probability of belonging to each class, and the parameters associated with their 243 

sensitivities for different attributes of the alternatives. Finally, for each of these three 244 

dimensions, ten experiments were performed. 245 

The first dimension is the type of choice heuristic. The analysis of section 2 establishes that the 246 

difference between the latent classes is key to their identification. Three different choice 247 

heuristics were tested against RUM, which is used most widely, to investigate whether they 248 

could be identified in a practical context. These are: Elimination by Aspects –EBA– (Tversky, 249 

1972), Stochastic Satisficing –SS– (González-Valdés and Ortúzar, 2018) and Random Regret 250 

Minimization –RRM– (Chorus et al., 2008). 251 

The second dimension is the proportion of each latent class (or choice heuristic) in the sample. 252 

The results (5) and (7) show that the greater this proportion, the greater the number of 253 

observations for which it will outperform other heuristics, thus increasing its identifiability. Two 254 

proportions were tested: 70% of the sample chooses according to RUM and 30% according to 255 

the other heuristic, and vice versa, i.e. πc ∈ {0.3, 0.7}.  256 

Finally, the third dimension is the correlation between the choice and the class membership 257 

probabilities. The purpose of this dimension was to analyse how any such correlation would 258 

impact on identifiability. Correlation was introduced in a personal trait that affects both the 259 

probability of belonging to a class and the choice preferences.  260 

We use a simulated dataset to investigate whether it was possible to capture a mixture of choice 261 

heuristics in a practical transport context. For estimation we required two components: a set of 262 

choice alternatives available to each individual and each individual’s choice from their set. The 263 

choice sets for each individual were extracted from a real revealed preference dataset to 264 

represent a realistic scenario; the individuals’ choices were simulated for the synthetic 265 

population under the various heuristics, to control the generating behaviours. 266 
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3.1 The Choice Sets 267 

The choice sets were created based on a dataset from a transport survey in Santiago de Chile 268 

(Gaudry et al., 1989; Guevara, 2016), considering trips from home to work of 1,374 individuals, 269 

who chose among nine modes. Because we wanted to control the number of alternatives 270 

available in the experiment, the simulation choice sets were constrained to three alternatives. 271 

Moreover, as these were labelled, alternative-specific constants (ASC) could be estimated. 272 

To create the simulated choice sets, two processes were performed separately: (i) fictitious 273 

choice sets of size 3 were created and (ii) each individual’s choice was simulated from one of 274 

these sets. In the first step, real choice sets were sampled from the databank and then adjusted 275 

as follows. If the sampled choice set had fewer than three alternatives, it was discarded; if it had 276 

more than three alternatives, alternatives were deleted at random until the desired choice set size 277 

was obtained. Accounting for all our different choice sets, we had a total of 28,477 different 278 

choice sets to pool from. We repeated this procedure of uniform random sampling with 279 

replacement from the 1,374 individuals to generate a synthetic sample of 10,000 choices. 280 

After the choice sets were built, the individual’s choice was simulated under the specified 281 

heuristic. Each alternative in the choice sets was characterised by four attributes: monetary cost, 282 

in-vehicle time, walking time, and waiting time. 283 

3.2 Synthetic Population and Choice Heuristics 284 

To obtain a chosen alternative from the simulated choice sets, the following approach was used. 285 

For each individual in the sample, a binary variable was first generated to represent a socio-286 

demographic attribute z (simply named trait) with probability pz. Each simulated individual was 287 

also assigned independently to use one of two available choice heuristics: RUM and the 288 

contrasting one (i.e. EBA, RRM or SS). In each case, the probability R of using RUM was 289 

given by the inverse logit function (27). 290 

 𝜋𝑅 =
exp(𝜃0 + 𝜃1𝑧)

1 + exp (𝜃0 + 𝜃1z)
 (27) 

The choice heuristics used were: (i) RUM in its simplest form, the multinomial logit (MNL) 291 

model (McFadden, 1973), with linear and additive in parameters utility function. In some 292 

experiments the cost attribute was modified based on the individual’s sociodemographic trait, 293 

to analyse the correlation between the class membership function and the parameters of the 294 

heuristics; (ii) Random regret minimisation (RRM, Chorus et al., 2008), selecting the μ-RRM 295 

formulation of RRM to increase the profundity of regret compared to the simplest version to 296 

increase the behavioural difference with RUM, and thus, the probability of identifying them 297 

jointly; (iii) Satisficing (Simon 1955), interpreted here as a heuristic according to which an 298 

individual chooses the first satisfactory (i.e. good enough) alternative they find, using the 299 

Stochastic Satisficing (SS) model of Gonzalez-Valdes and Ortúzar (2018); and (iv) Elimination 300 

by Aspects (EBA, Tversky, 1972), where every aspect is discrete, although the attributes may 301 

have continuous values, as in the present case. Acceptability thresholds are specified to achieve 302 

binary discrimination. 303 

Because our focus was to work with models that exhibit identifiability issues, we preferred 304 

Bayesian estimation over maximum likelihood estimation, as the latter is prone to be captured 305 

in local optima, although Train (2009, p290) showed that this has no impact when the sample 306 

size Q is large (as in our case). Bayesian estimation by Markov Chain Monte Carlo, specifically 307 

Gibbs sampling, used the JAGS package (Plummer, 2016) for the R software system (R Core 308 

Team, 2016). For each parameter, ten thousand useful samples were obtained after burn-in. For 309 

the prior distributions, low precision zero-centred normal priors were used. 310 
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4. ANALYSIS OF RESULTS  311 

Given the dimensions tested and the replications for each combination, a total of 120 312 

experiments were undertaken. First, we analysed – across the various dimensions – the 313 

proportion of replications of each model that resulted in a balance between the choice heuristics 314 

(latent classes). Then, we verified that Theorem 2 held for the models that identified both latent 315 

classes notwithstanding being estimated using Bayesian methods. Then, for each of the three 316 

cases (one for each combination of latent classes), the average of the parameter estimates was 317 

tested against the corresponding target ones. 318 

 319 

4.1 Analysis of Identifiability 320 

A model is non-identifiable if the information matrix is singular. In our context of Bayesian 321 

estimation, no matrix inversion is required; nonetheless, model non-identifiability can be 322 

detected when the standard deviations of the parameters are extreme with associated instability 323 

of the Markov chain. Even though we have described identifiability, we detected different 324 

degrees of non-identifiability. Therefore, to distinguish degrees of identifiability that models 325 

may exhibit, we developed three further descriptions: 326 

• Strong identifiability: all parameters of the model are estimated with acceptable standard 327 

deviations. Both latent classes are identified, thus there is a balance between them. 328 

• Weak identifiability: most of the parameters of the model are estimated accurately but a 329 

small proportion of them are estimated with extreme standard deviations. Nevertheless, the 330 

model is able to identify the two classes clearly.  331 

• Non-identifiability: either most parameters are estimated with extreme standard deviation, 332 

or no balance can be found between latent classes.  333 

In section 2 we analysed how behavioural differences may impact identifiability of the latent 334 

classes. Figure 1 provides a graphical diagnostic that shows the distribution of behavioural 335 

differences between the RUM class and the other choice heuristic classes among the alternatives 336 

of the dataset. This is quantified by the absolute difference between the probabilities given by 337 

two choice heuristics. For example, if two heuristics a and b estimate probabilities Pai 338 

(respectively) Pbi of choosing alternative i , then the difference is calculated as |Pai - Pbi|.  339 

Figure 1 shows that among the choice heuristics tested, the RRM latent class differs least from 340 

the RUM latent class. Thus, we expect the RRM latent class to be the one with the least chance 341 

of balance with RUM in this context. Conversely, each of the SS and EBA latent classes present 342 

a substantial behavioural difference from RUM. Note however, that because this analyses only 343 

one dimension of the information matrix, it is useful for generating hypotheses but does not 344 

guarantee support for them. We analysed each pair of latent classes separately and evaluated the 345 

results according to the three degrees of identifiability.  346 

 347 

We also analysed separately the importance for this identifiability of the proportions of latent 348 

classes and each of the correlation cases. Due to lack of space, we cannot provide further results 349 

here, but these are available on request from the authors. 350 

 351 
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 352 

Figure 1: Behavioural difference between RUM and each of RRM, SS and EBA 353 

 354 

5. CONCLUSIONS 355 

The theoretical framework developed here of LC models provides a basis for analysis of their 356 

identifiability. Through this, we established two analytical conditions for this: first, a balance 357 

must exist between the latent classes and second, the behaviour of the classes must differ 358 

sufficiently that they can be identified with acceptable accuracy in their parameters. The balance 359 

that is required for joint estimation is quantified in terms of the size of sample used. 360 

Our experiments show that estimation may fail to identify a pair of classes in a synthetic sample, 361 

even if the generating process contains a mixture of them. The existence of a balance depends 362 

on the performance of each class when interpreting the behaviour of the other. Indeed, the 363 

dominant class must perform poorly on some choices that were made following the other 364 

heuristic for the LC model to be able to estimate both of them.  365 

In the practical experiments, we investigated different pairs of choice heuristics representing the 366 

latent classes. The link between the theoretical and empirical approaches was a graphical 367 

analysis that presents the difference between classes. In the present mode choice context, 368 

Random Regret Minimization was found not to differ much from Random Utility Maximisation. 369 

However, important behavioural differences from Random Utility Maximisation were exhibited 370 

by each of Stochastic Satisficing and Elimination by Aspects. Therefore, a worthwhile strategy 371 

could be to analyse the classes before estimating a combined model, which can be undertaken 372 

using straightforward diagnostic tests presented here. This way, with some testing parameters, 373 

modellers can examine whether the datasets are sufficiently rich in their choice behaviour to 374 

estimate the desired heuristics. 375 

Our experiments show that, in principle, it is possible to estimate sophisticated class membership 376 

functions and latent classes simultaneously even when the difference in behaviour is given only 377 

by the choice heuristics. In fact, the model remains identifiable even if some variables affect 378 

both the class membership and choice levels of the model.  379 
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