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Abstract

Decision field theory (DFT) is a model that was originally developed within the context of cognitive psy-
chology to explain phenomena not expected under classical choice models. This meant that the model was
initially designed to explain choice behaviour observed under controlled laboratory settings. Recent work
has improved the mathematical foundations of DFT, such that it has become a tractable and more rigorous
model that is easier to apply to a wider variety of choice contexts. In particular, the inclusion of attribute
importance parameters has led to successful applications to stated preference data including travel mode
choice. However, thus far, implementations to real-life behaviour have been limited. The aim of this pa-
per is to extend decision field theory such that it can take further steps towards accounting for real-world
behaviour and a wider variety of contexts, in general. First, we give theoretical extensions for the model,
demonstrating that relaxing the assumptions around the normal error term within DFT can lead to more
flexible structures. Second, we demonstrate on two large-scale case studies of revealed preference mode
choice behaviour in the UK that DFT can incorporate a range of sociodemographic variables. Thirdly, we
demonstrate that our new ‘heteroskedastic’ DFT model substantially outperforms the original version of
DFT, as well as alternative econometric choice models.

1. Introduction

Decision field theory (DFT) is a dynamic, stochastic model, introduced by Busemeyer and Townsend (1992,
1993). The key idea within DFT is that the preferences for different alternatives update over time whilst
the decision-maker considers the different alternatives and their attributes. At some timepoint, the decision-
maker reaches a conclusion when the preference for an alternative reaches some (internal) threshold, or the
decision-maker runs out of time in which to deliberate on their options (an external threshold). A graphical
representation of the preference evolution process under a DFT model is given in Figure 1. Different alter-
natives may be chosen depending on whether an internal (the grey horizontal line representing a preference
value of 3) or an external threshold (represented by a vertical black line at 10 preference updating steps) is
assumed.

DFT was originally developed to explain decision-making in an uncertain environment or under time pres-
sure, but has subsequently been reformulated and adapted for modelling choice behaviour when an individ-
ual can choose multiple alternatives (Roe et al., 2001). There are multiple conceptual reasons for adopting
DFT models, as they specifically attempt to capture the decision-making process, with Busemeyer et al.
(2006) amongst others arguing that a better representation of the decision-making process may also lead to
a better representation of outcomes. In particular, DFT attempts to mimic the mental deliberation process
through preference changes for alternatives whilst the decision-maker considers different attributes of these
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FIGURE 1 : An example of the evolution of preferences for different alternatives under a DFT model
(adapted from Hancock et al. 2021).

.

alternatives, with the preferences accumulating until some threshold is reached. Notably, neurobiologists
have demonstrated that neural activation patterns appear similar to the accumulation of preference process
under a DFT model (Gold and Shadlen, 2000; Ratcliff et al., 2003). There are also empirical benefits, with
DFT capturing contextual phenomena that are not typically accounted for by standard choice theory, such
as the similarity, attraction and compromise effects. This has typically been the focus of implementations
of DFT within the context of cognitive psychology: how well it can explain these contextual effects (Roe
et al., 2001; Pettibone, 2012; Berkowitsch et al., 2014). However, a key limitations of the model at this
point was computational restrictions (Otter et al., 2008) that often led to restricted forms of DFT being ap-
plied. For example, the probabilities of different alternatives can be easily calculated if it is assumed that
decision-makers only make decisions when their preference values for the different alternatives have sta-
bilised (Berkowitsch et al., 2014). More recently, these restrictions have been lifted through improvements
to the underlying mathematical mechanisms (Hancock et al., 2019). This allows for easier implementation
of DFT models, and has led to its inclusion in the popular choice modelling R package apollo (Hess and
Palma, 2019).

The current most flexible form of the model is the specification by Hancock et al. (2021), which incorpo-
rates relative importance scaling parameters for different attributes, allowing for the inclusion of sociode-
mographic effects with equivalent functions to those used in random utility models. This means that, for
example, cost sensitivity can vary as a function of an individual’s income, without the importance of other
attributes being impacted (as was the case in the original scale-variant version of DFT, see Hancock et al.
(2019) for details). This is an important step towards applications of DFT to real-world data, with Hancock
et al. (2021) demonstrating that DFT could be applied to model the chosen service provider for train trips
to London. This also led to DFT outperfoming standard multinomial logit models, as well as models based
on random regret minimisation. However, whilst Hancock et al. (2019) demonstrated that random parame-
ters could be incorporated within DFT, it still does not have the same flexibility as standard choice models,
particularly in regard to the possible substitution patterns that can exist between alternatives. The aim of
this paper is to make further extensions towards increasing the flexibility of the model. We focus on the
development of a ‘heteroskedastic’ decision field theory, which relaxes the assumption of identical normal
error terms being added to the different preference values for each alternative during the deliberation pro-
cess. The rest of this paper is arranged as follows. First, we describe the current implementation of decision
field theory. We then detail the new theory and extensions for the model. Next, we consider two real-world
case studies of mode choice in the UK. Finally, we draw some conclusions and discuss options for future
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research.

2. Decision field theory: standard implementation and new extensions

In this section, we first describe in detail the current state of the art for implementing a decision field theory
(DFT) model. We then discuss how DFT generates probabilistic choices before detailing the new theory for
extending DFT, such that heteroskedasticity can be accounted for.

2.1. Standard implementation

Under a decision field theory (DFT) model, it is assumed that for an individual choice context (s), a decision-
maker (n) has a ‘preference value’ for each of the different J alternatives. This can be represented by a
preference vector PPPns,0, which gives the initial preference towards the different alternatives prior to any
consideration of them. This vector is often assumed to be a set of zeros, but could also be influenced by the
status quo or prior beliefs regarding the alternatives held by the decision-maker. It is then further assumed
that a decision-maker ‘updates’ their preferences by considering the levels of one particular attribute across
the full set of alternatives, such that the preference at the next step is:

PPPns,τ+1 = Sns ·PPPns,τ +VVV ns,τ+1, (1)

where τ represents the completed number of preference updating steps, S is a feedback matrix and VVV is a
random ‘valence’ vector, which gives information on the attribute attended to in the current step τ +1.

The feedback matrix S contains two ‘process parameters’ that define how the preference state evolves over
time:

Sns = Ins−φ2× exp(−φ1×D2
ns), (2)

where φ1 is a sensitivity parameter, which allows for similar (subjective) alternatives to subtract more pref-
erence from each other, thus controlling for the level of contextual effects predicted by the model (Roe et al.,
2001). φ2 is a memory parameter, which controls the rate of decay of the previously accumulated preference,
meaning that more recently attended attributes will be more important. Ins is an identity matrix of size J×J
and Dns is a matrix containing the Euclidean distances between the full set of pairs of alternatives measured
with respect to the attribute-levels and the relative importance of the different attributes.

We next detail the random valence vector. At step τ , we have VVV ns,τ , which can be calculated as:

VVV ns,τ =Cns ·Mns ·β ·WWW ns,τ + εεεns,τ , (3)

where Cns is a contrast matrix used to rescale the attributes, such that they sum to zero (see Roe et al.
2001). Mns is the matrix of attribute values for all of the alternatives, where each element is multiplied by
a corresponding attribute scaling coefficient, contained on the diagonal matrix β . We also have a random
column vector, WWW ns,τ , of size K, where K is the number of attributes. It is comprised of a set of zeros with
a 1 on the kth entry, corresponding to the attribute that is (randomly) attended to by the decision-maker at
preference updating step τ . Uniform draws can be used to simulate a DFT process and weights for the
likelihood of attending the different attributes, wk, where ∑

K
k=1 wk = 1, and wk represents the probability that

the decision-maker attends to attribute k. Finally, we have a ‘process noise’ entered through the variance
of the error term, with εεεns,τ = [ε1..εJ]

′, and εi ∼ N(0,σ2
ε ), distributed identically and independently across

alternatives, steps, individuals and choice tasks.
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To estimate the probabilities of different alternatives being chosen under DFT, we require the expected value
and the covariance of the preference values (ξξξ ns,τ and Ωns,τ ), where

E[PPPns,τ ] = ξξξ ns,τ = (Ins−Sns)
−1(Ins−Sτ

ns) ·µµµns +Sτ
ns ·PPPns,0, (4)

and

Cov[PPPns,τ ] = Ωns,τ =
τ−1

∑
r=0

[
Sr

ns ·Φns ·Sr′
ns

]
. (5)

with µµµns and Φns the expectation and covariance of the valence vector, respectively (Roe et al., 2001). These
are calculated µµµns =Cns ·Mns ·β ·www, where www is the vector of attribute attention weights wk, and:

Cov[WWW ns,τ ] = Φns =Cns ·Mns ·β ·Ψns ·β ·M′ns ·C′ns +σ
2
ε · I. (6)

Full formulations and derivations for these and the above equations given by Roe et al. (2001); Hancock
et al. (2019, 2021). This results in a choice probability for choosing alternative j from the set CSns at step τ

of:

Prob
[

PPPns,τ [ j] = max
i∈CSns

PPPns,τ [i]
]
=∫

XXXns,τ>0
exp
[
−(XXXns,τ −ΓΓΓns,τ)

′
Λ
−1
ns,τ(XXXns,τ −ΓΓΓns,τ)/2

]
/(2π|Λns,τ |0.5)dX .

(7)

with full details of this calculation again given by Hancock et al. (2021). As these probabilities are estimated
with the use of multivariate normal distributions, there are requirements for the normalisation of scale and
location. Numerous possibilities exist and are discussed by Hancock et al. (2021). Under typical implemen-
tations of DFT and the work in this paper, only one normalisation is required, with the size of the variance
of the process noise, σ2

ε , fixed to a value of 1.

2.2. Heteroskedastic DFT

Mathematically, there are of course similarities between DFT and probit, which are both in part reliant on
normal error terms. As the sum of normal variables are themselves normal, the fact that the interpretation
of the error under DFT (it is ‘process’ noise that occurs at each preference updating step, see Equation 3)
differs from that of probit is of little consequence. This is particularly the case for DFT models, which
estimate a large number of preference updating steps (e.g. Hancock (2019), Chapter 6) or are based on
situations, where it is assumed that preferences stabilise over time (e.g. Berkowitsch et al. 2014). However,
there are also key differences in the psychological assumptions of the model that also result in mathematical
differences. Firstly, DFT incorporates two ‘sources of error’: the random attribute attendance, as well
as the normal error. Secondly, the covariance under DFT is explicitly dependent on the attributes of the
alternatives in the current choice set (Mns enters Φns), whereas standard implementations of probit models
estimate covariance terms that are at an aggregate level, i.e. not necessarily dependent on attribute levels in
individual choice contexts. This is an issue for DFT in that it cannot capture observed correlations between
alternatives at an aggregate level, as its normal error term is distributed identically and independently across
alternatives, deliberation steps, individuals and choice tasks. For the work in this paper, we consider the
possibility of relaxing this assumption, such that the error terms are not identical across alternatives. We
thus define an error matrix ∆, which replaces σ2

ε · I in Equation 6. It is a diagonal matrix with different
elements σ2

ε, j for each alternative j. This essentially means that the size of the variance of the error term for
each alternative is different. For the calculation of the probabilities of choosing different alternatives under
this more flexible ‘heteroskedastic’ DFT, the only change is indeed in the calculation of the covariance of
WWW ns,τ in Equation 6. Fixing one of these elements in estimation will avoid identification issues in line with
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the previous version of DFT (see Table 1 of Hancock et al. 2021). The original version of DFT is of course
a restricted form of the heteroskedastic version, where insignificant differences between different σ2

ε, j result
in the latter specification collapsing back to the original DFT specification.

3. Empirical work

In this section, we first give an outline of the different models that we use for comparison purposes with our
proposed DFT specifications. We then present the two different case studies in turn. For each, we present
the dataset before detailing the specifications for our different models. We then initially compare our base
DFT model against a standard multinomial logit model before giving results of our extended versions of
DFT against a number of alternative models.

3.1. Models for comparison

We first discuss some different possible models that we use and compare against our DFT models. For
our basic DFT model without heteroskedastic errors, we use a standard random utility model (multinomial
logit, MNL, with the formula for generating probabilities of alternatives being chosen under this and all
other competing models given in Appendix A). This is a comparable model as in the context of choice-only
data (as used in the two case studies here) both models accept the same inputs (choice data and attribute
levels for the different alternatives) and return probabilities. For the heteroskedastic DFT model, additional
flexibility in the formulation of the process noise allows for more complex patterns of behaviour, thus we
require comparisons with alternative choice models that allow for a similar flexibility in error structure. We
thus use two extensions of the MNL model: nested logit and a heteroskedastic MNL model with equivalent
flexibility (through the addition of a corresponding scaling parameter for the utility of each alternative). Fur-
thermore, asymmetric choice models, which are variants of traditional random utility maximisation models
(e.g. MNL), aim to capture the asymmetry in the distribution of the error term that arises when there are
large differences in the observed shares of different alternatives in the data. In the two datasets we have used,
preliminary analyses show that there is a presence of imbalance in the choices, with 43% and 48% shares
for private car, respectively, in comparison to only 3% shares for cycling. This prompt us to explore asym-
metric logit models. We chose Scobit, uneven logit and asymmetric logit as they are the most commonly
used asymmetric models (Brathwaite and Walker, 2018).

3.2. First case study

For the first case study, we use the freely available London Passenger Mode Choice (LPMC), which was
collected via the London travel demand survey, where for each observation where an individual chose to
travel by one of the four modes (walk, cycle, transit and drive), the data was augmented such that attributes
for these four alternatives were derived for all observations (Hillel et al., 2018). We restrict observations
to home-based trips reported by individuals who are at least 12 years old, meaning that we use the same
subset as Krueger et al. (2020). The resulting dataset contains a total of 58,584 trip observations. 10% of the
sample is set aside for out-of-sample validation, resulting in 52,726 observations in our estimation subset.
For full details of the dataset, readers should refer to (Hillel et al., 2018).

5



ATRF 2021 Proceedings

3.2.1. Model specification

For our utility-based models, we follow the specification by Krueger et al. (2020), including a number of
marginal utility parameters β for alternative-specific attributes, as well as parameters for sociodemographic
variables α . Note that although we do estimate alternative specific constants, they are not included in the
equations below.

The utility for walking for individual n in choice scenario s is defined:

Vns,walk = βtt · xwalk,tt , (8)

where xwalk,tt is the travel time for walking.

The utility for cycling is defined:

Vns,cycle = βtt · xcycle,tt (9a)

+αcycle, f em ·n f em +αcycle,age ·nage +αcycle,winter · zwinter, (9b)

where xcycle,tt is the travel time for cycling, n f em is a dummy variable set to a value of 1 if individual n is
female, nage is a dummy variable set to a value of 1 if individual n is either under 18 or over 64 years old,
and zwinter is a dummy variable that is included if the trip was made between November and March.

The utility for transit is defined:

Vns,transit = βtt · xtransit,ovtt +βivtt · xtransit,ivtt +βcost · xtransit,cost +βch · xtransit,ch (10a)

+αtransit, f em ·n f em +αtransit,u18 ·nu18 +αtransit,o64 ·no16, (10b)

where xtransit,ovtt is the out-of-vehicle transit time corresponding to access time plus interchange time,
xtransit,ivtt is the in-vehicle travel time, xtransit,cost is the cost, xtransit,ch is the number of required interchanges
and nu18 and no64 are dummy variables equal to a value of 1 if individual n is under the age of 18 or over the
age of 64, respectively.

The utility for driving is defined:

Vns,drive = βivtt · xdrive,ivtt +βcost · xdrive,cost +βtv · xdrive,tv (11a)

+αdrive, f em ·n f em +αdrive,u18 ·nu18 +αdrive,o64 ·no16 +αdrive,cars ·ncars, (11b)

where xdrive,ivtt is the in-vehicle travel time, xdrive,cost is the cost, xdrive,tv is the traffic variability and ncars is
the number of household cars for individual n.

3.2.2. DFT specifications

For our DFT models, we define the attribute matrix Mns using the same set of variables as in our utility
specifications. We thus have:

Mns =


ηwalk xwalk,tt 0 0
ηcycle xcycle,tt 0 0
ηtransit xtransit,ovtt xtransit,ivtt xtransit,cost

ηdrive 0 xdrive,ovtt xdrive,cost

 , (12)

6



ATRF 2021 Proceedings

where all variables not relating to cost or time are summed within the alternative-specific η (i.e. ηcycle =
αcycle, f em ·n f em +αcycle,age ·nage +αcycle,winter · zwinter). The marginal utility parameters for cost and time are
then included within the DFT β matrix (see Equation 3, which is thus a diagonal matrix with elements:
1, βtt , βivtt , βcost). Note that we follow Table 1 of Hancock et al. (2021) in fixing the error term, thus
our DFT model has four additional estimated parameters over the base MNL model. These are the three
estimated psychological parameters and an additional initial preference parameter (δall , which is added to
all initial preferences such that we can still estimate whether the initial preferences are significantly different
from each other). We do not need to normalise an initial preference parameter as they are multiplied by a
factor of the feedback matrix S when they enter the expectation of the preference vector after τ steps (see
Equation 4). As S has a value that depends on the attribute-levels in a given choice context, adding the same
value to all parameters for the initial preferences results in a change that is also dependent on the choice
context. Our heteroskedastic DFT model has three additional parameters corresponding to the estimated
alternative-specific error terms.

3.2.3. Basic model results

We first give the results of our basic MNL and DFT models, with model outputs and parameter estimates
given in Table 1.

TABLE 1 : Basic model results for the London passenger mode choice dataset.

MNL DFT

Log-likelihood (estimation) -39,917.79 -38,647.77
Estimated parameters 18 22

Adj. ρ2 0.4539 0.4710
BIC 80,031.29 77,534.75

Log-likelihood (holdout) -4,428.57 -4,285.31

est rob. t-rat. est rob. t-rat.

δall 0.0000 NA -422.0176 -3.57
δwalk 0.0000 NA 0.0000 NA
δcycle -3.0983 -50.57 -13.9375 -30.96

δtransit -1.5149 -35.67 -8.8786 -27.15
δdrive -2.7170 -42.13 -15.2355 -26.47

βcost -0.1890 -21.68 -0.1293 -10.45
βtt -6.6805 -60.77 -6.5441 -18.14

βivtt -3.1821 -28.26 -1.7036 -13.96
βtv -3.4302 -34.24 -2.3404 -11.72
βch 0.7484 26.00 0.3669 7.34

αcycle, f em -1.1009 -12.74 -0.7310 -7.83
αcycle,winter -0.3343 -3.86 -0.2932 -4.55

αcycle,age -0.7924 -6.57 -0.5240 -3.87
αtransit, f em 0.1995 4.93 0.1369 4.03
αtransit,u18 0.3303 5.31 0.2967 5.34
αtransit,o64 0.5631 9.84 0.5161 9.53
αdrive, f em 0.1152 2.50 0.1136 2.66
αdrive,u18 -1.0330 -13.02 -0.9269 -8.86
αdrive,o64 0.5492 8.49 0.6639 7.54
αdrive,cars 1.5264 64.13 1.5609 11.37

τ 15.7116 27.54
φ1 0.0040 12.33
φ2 0.0154 3.38
σε 1.0000 NA

These results demonstrate that the DFT model substantially outperforms the MNL model, with an additional
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3 parameters resulting in an improvement in log-likelihood of 1,270 units. It is notable that all estimates
are of the expected sign with no discrepancies between MNL and DFT, which also have similar parameter
ratios. Both φ parameters in the DFT model are significantly different from zero, suggesting that the driving
factor in DFT’s better performance may be the fact that it can capture the competition between similar (at
the attribute-level) alternatives.

3.2.4. Heteroskedastic DFT results

We next look at the model outputs from across our full set of models, with results given in Table 2. This table
also gives outputs from models including elasticities, the relative importance of attributes, average probabil-
ities for choosing each alternative under the model and some policy forecasts (formulae for estimating these
are given in Appendix B.

TABLE 2 : Results from all models for the LPMC dataset.

MNL DFT CNL Het-MNL Het-DFT Scobit Un. Logit As. Logit

Model fit

Log-likelihood (estimation) -39,917.79 -38,647.77 -38,634.73 -38,947.79 -38,055.73 -38,919.04 -38,811.26 -39,050.19
Estimated parameters 18 22 29 21 25 22 22 21

Adj. ρ2 0.4539 0.4710 0.4714 0.4669 0.4790 0.4672 0.4687 0.4655
BIC 80,031.29 77,534.75 77,584.78 77,937.58 76,344.50 78,077.28 77,861.72 78,328.72

Log-likelihood (holdout) -4,428.57 -4,285.31 -4,275.70 -4,308.77 -4,206.09 -4,285.57 -4,272.43 -4,306.87

Elasticities for car
ECcost -0.0717 -0.0682 -0.0672 -0.0547 -0.0593 -0.0566 -0.0512 -0.0575

ECtt -0.3004 -0.2248 -0.2916 -0.4424 -0.2843 -0.3718 -0.3813 -0.3289
ECtv -0.3674 -0.2682 -0.2902 -0.2577 -0.2363 -0.2865 -0.2844 -0.3425

Relative importances
RItt (£/hr) 16.84 13.17 17.75 33.61 19.03 27.48 31.62 23.29

RIivtt (£/hr) 35.35 50.60 30.92 79.45 53.69 88.27 77.22 39.17
RItv 18.15 18.10 15.47 16.68 19.24 18.30 20.47 21.39

Average probability

PWalk 16.64% 16.49% 16.40% 16.64% 16.52% 16.64% 16.64% 16.64%
PCycle 3.20% 3.57% 3.21% 3.20% 3.19% 3.20% 3.20% 3.20%

PTransit 37.14% 36.59% 37.44% 37.14% 37.16% 37.14% 37.14% 37.14%
PDrive 43.02% 43.35% 42.95% 43.02% 43.14% 43.02% 43.02% 43.02%

Forecasts
5% transit cost -0.59% -0.62% -0.64% -0.18% -0.50% -0.17% -0.17% -0.36%

No bias winter cycling 8.94% 11.64% 9.12% 8.67% 6.62% 8.39% 8.62% 9.08%

With regards to model fit, the best performing model is our new heteroskedastic DFT (het-DFT) model,
which finds a gain in log-likelihood of 592 units at the cost of only 3 additional parameters over the basic
DFT model. The next best performing model is the cross nested logit (CNL) model,1 which substantially
outperforms the basic MNL model. Scobit, uneven logit and asymmetric logit all perform similarly but
slightly worse than the basic DFT model, and record substantially worse model fits that the heteroskedastic
DFT or CNL models. Out-of-sample log-likelihoods return similar results to the estimation results.

Table 2 also gives arc elasticities for a 10% increase in car cost, car time or the amount of traffic variability on
roads. All models return relatively low car cost elasticities. Some differences across the models are observed
for time and traffic elasticities, with all other models predicting less change relative to MNL under increased
traffic variability. The relative importance measures (which do not have an econometric interpretation under
DFT models) also vary substantially, with DFT models suggesting higher costs associated with out-of-
vehicle travel time relative to the base MNL model. All models give approximately 2-3 times higher ratios
for out-of-vehicle compared to in-vehicle travel times. We also compare model forecasts for a 5% increase in
transit cost (where DFT models again give similar forecasted reductions in choice of transit to MNL) and the
forecast for the increase in cycling if there was not a bias against choosing to cycle in winter. This is where
the DFT and het-DFT models differ most significantly, with DFT giving the largest increase in cycling,
but het-DFT giving the smallest increase. Given the variable impact of initial preference parameters in
DFT models, the average probability of choosing each alternative under the model does not reflect observed

1Note that we fix nesting parameters to a value of 1 if they are unacceptable values during testing.
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market shares. However, results in Table 2 also demonstrate that mean probabilities under het-DFT are
closer to observed shares than they are under DFT.

3.3. Second case study

The second dataset comes from a large-scale survey conducted as part of the DECISIONS project carried out
by the Choice Modelling Centre, Leeds University (Calastri et al., 2020). A number of elements of life and
travel patterns were recorded including participants’ mobility patterns, in-home and out of-home-activities
and information on their social networks. The data used for this work corresponds to the observed mode
choice behaviour where after extensive data cleaning and data enrichment (Tsoleridis et al., 2019), 12,524
trips made by 540 individuals remained. For each trip, individuals travelled by one of six modes: car, bus,
rail, taxi, cycling or walking. Again, we set aside the observations for 10% of individuals, leaving 11,176
observations in our estimation subset.

3.3.1. Utility model specifications

For our utility models, we follow the specification by Tsoleridis (2019). In this case, we include a number
of attribute-specific marginal utility parameters, as well as sociodemographic variables, where we again do
not list alternative specific constants in the utilities below, though they are estimated.

The utility for walking is defined:

Vns,walk = βwalk,tt · xwalk,tt (13a)

+αwalk,age ·nage,18,29 +αwalk,edu ·nedu, (13b)

where nage,18,29 is a dummy variable taking the value of 1 if the individual is between the ages of 18 and 29,
and nedu is a dummy variable set to 1 for individuals, who do not have a university degree.

The utility for cycling is defined:
Vns,cycle = βcycle,tt · xcycle,tt . (14)

The utility for driving is defined:

Vns,drive = βdrive,ivtt · xdrive,ivtt +βlogcost · ln(xdrive,cost) (15)

where the logarithm of cost is used after a cost damping effect (Daly, 2010) was found in initial specification
testing (Tsoleridis, 2019).

The utility for train is defined:

Vns,train = βtrain,ivtt · xtrain,ivtt +βtrain,ovtt · xtrain,ovtt +βlogcost · ln(xtrain,cost) (16)

where xtrain,ivtt and xtrain,ovtt are in-vehicle and out-of-vehicle travel times for travelling by train, respectively.

The utility for bus is defined:

Vns,bus = βbus,ivtt · xbus,ivtt +βbus,ovtt · xbus,ovtt +βlogcost · ln(xbus,cost) (17)

where xbus,ivtt and xbus,ovtt are in-vehicle and out-of-vehicle travel times for travelling by bus, respectively.
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Finally, the utility for taxi is defined:

Vns,taxi = βtaxi,tt · xtaxi,tt +βlogcost · ln(xtaxi,cost) (18a)

+αtaxi,age1 ·nage,18,24 +αtaxi,age2 ·nage,25,29 +αtaxi,male · (1−n f em)+αtaxi,edu ·nolevel, (18b)

where xtaxi,tt is the travel time for travelling by taxi, nage,18,24 and nage,25,29 are dummy variables that take
the value of 1 if the participant is aged 18-24 and 25-29, respectively, and nolevel is a dummy variable that
takes a value of 1 if the highest level of education obtained by the individual is O-level or equivalent.

3.3.2. DFT Specifications

For our DFT model, we define the attribute matrix Mns using the same set of variables as in our utility
specifications. Note that as we have attribute-specific marginal utility parameters, we incorporate these
directly within Mns. We thus have:

Mns =



βwalk,tt · xwalk,tt 0 0
βcycle,tt · xcycle,tt 0 0

βdrive,ivtt · xdrive,ivtt 0 βlogcost · ln(xdrive,cost)
βtrain,ivtt · xtrain,ivtt βtrain,ovtt · xtrain,ovtt βlogcost · ln(xtrain,cost)
βbus,ivtt · xbus,ivtt βbus,ovtt · xbus,ovtt βlogcost · ln(xbus,cost)
βtaxi,tt · xtaxi,tt 0 βlogcost · ln(xdrive,taxi)

 . (19)

For this version of DFT, we incorporate the alternative specific constants and the sociodemographic effects
(α) in the initial preference matrix Pns,τ .

3.3.3. Basic model results

We first give the results of our basic MNL and DFT models, with model outputs and parameter estimates
given in Table 3.

As was the case with the first dataset, we observe that DFT substantially outperforms MNL despite having
just four additional parameters, though the difference for the holdout sample is small. However, as a contrast
to the first dataset, we observe some significant differences in the estimates between MNL and DFT. Firstly,
the alternative specific constants for rail and taxi are not statistically significant under the DFT model.
Secondly, whilst the α and β parameter estimates are of the same sign, we observe some clear differences
in scale, particularly for the β parameters. For example, the ratio βbusovtt/βbusivtt is 2.3 for MNL and 4.2
for DFT, implying that the DFT model suggests a larger taste difference between the disutility for in and
out-of-vehicle travel times. Furthermore, the ratio for βcycle,tt/βwalk,tt is 0.51 for MNL and 1.05 for DFT,
which suggests that under a DFT model, the time sensitivity of walking is equivalent to cycling, but that
cycling time sensitivity is lower under the MNL model.

3.3.4. Heteroskedastic DFT results

We next look at the model performance from our full set of models, with results detailed in Table 4. As
before, this table also gives a wider set of model outputs.

The heteroskedastic DFT model again outperforms alternative models, with a 46 unit improvement in log-
likelihood over the basic DFT model at a cost of 5 parameters. Results are similar to those from Table 2,

10



ATRF 2021 Proceedings

TABLE 3 : Basic model results for the Decisions mode choice dataset.

MNL DFT

Log-likelihood (estimation) -4,483.69 -4,387.46
Estimated parameters 20 24

Adj. ρ2 0.6635 0.6704
BIC 9,153.80 8,998.64

Log-likelihood (holdout) -584.55 -581.26

est rob. t-rat. est rob. t-rat.

δall 0.0000 NA 1.2394 0.2908
δdrive 0.0000 NA 0.0000 NA

δbus -1.9785 -6.86 -4.3699 -6.31
δrail -1.0203 -2.57 -0.2952 -0.30
δtaxi -2.3479 -6.96 0.8738 0.46

δcycle -3.2842 -7.68 -7.1348 -4.26
δwalk 1.2853 4.79 3.2219 3.75

αtaxi,male -0.7888 -2.35 -2.3638 -2.54
αtaxi,age1 1.4047 4.51 5.6161 5.12
αtaxi,age2 0.7568 1.86 3.3656 2.48
αtaxi,edu -1.2467 -2.52 -3.1019 -1.96

αwalk,age 0.8909 3.54 3.8467 4.61
αwalk,edu -0.9748 -4.36 -2.8104 -3.93

βdrive,ivtt -0.1064 -7.65 -0.0606 -5.25
βbus,ivtt -0.0431 -6.61 -0.0245 -4.88
βbus,ovtt -0.1008 -3.47 -0.1028 -5.92

βtrain,ivtt -0.0407 -3.18 -0.0313 -3.41
βtrain,ovtt -0.0978 -7.01 -0.0834 -6.90

βtaxi,tt -0.1356 -5.13 -0.2056 -3.20
βcycle,tt -0.0753 -5.91 -0.0724 -4.10
βwalk,tt -0.1490 -14.18 -0.0691 -8.32
βlogcost -0.8923 -10.69 -0.5097 -7.16

τ 10.9586 5.39
φ1 0.2013 1.76
φ2 0.0683 1.23
σε 1.0000 NA

TABLE 4 : Results from all models for the Decisions mode choice dataset.

MNL DFT CNL Het-MNL Het-DFT Scobit Un. Logit As. Logit

Model fit

Log-likelihood (estimation) -4,483.69 -4,387.46 -4,468.06 -4,445.07 -4,341.58 -4,438.04 -4,443.44 -4,466.01
Estimated parameters 20 24 25 23 29 26 26 25

Adj. ρ2 0.6635 0.6704 0.6643 0.6662 0.6735 0.6665 0.6661 0.6645
BIC 9,153.80 8,998.64 9,169.16 9,104.54 8,953.48 9,118.45 9,129.24 9,165.05

Log-likelihood (holdout) -584.55 -581.26 -580.01 -582.70 -578.02 -582.96 -582.48 -581.94

Elasticities for car
ECcost -0.0700 -0.0682 -0.0671 -0.0836 -0.0620 -0.0862 -0.0785 -0.0636
ECtime -0.1625 -0.1467 -0.1635 -0.1393 -0.1479 -0.1324 -0.1366 -0.1560

Relative importances (£/hr)

RIdrive,ivtt 10.83 10.79 11.29 7.70 11.90 7.16 7.59 10.24
RIbus,ivtt 4.39 4.37 4.58 4.35 4.86 4.55 4.17 4.01
RIbus,ovtt 10.26 18.32 10.75 9.57 19.88 10.95 9.15 8.88

RItrain,ivtt 4.14 5.58 4.55 12.75 6.33 14.91 11.59 5.80
RItrain,ovtt 9.96 14.86 9.63 24.64 15.79 31.09 22.01 12.48

RItaxi,tt 13.80 36.64 14.27 3.56 37.01 3.70 4.25 17.95
RIcycle,tt 7.66 12.91 7.53 5.73 11.58 6.30 30.11 9.68
RIwalk,tt 15.16 12.31 15.38 8.47 12.46 21.98 14.66 19.09

Average probability

PDrive 48.49% 48.49% 48.49% 48.49% 48.65% 48.49% 48.49% 48.49%
PBus 14.75% 14.65% 14.91% 14.75% 14.69% 14.75% 14.75% 14.74%
PRail 5.04% 4.92% 4.92% 5.04% 4.91% 5.04% 5.04% 5.04%
PTaxi 3.11% 3.26% 3.11% 3.11% 3.20% 3.11% 3.11% 3.11%

PCycle 3.20% 3.34% 3.23% 3.20% 3.18% 3.20% 3.20% 3.20%
PWalk 25.41% 25.33% 25.34% 25.41% 25.37% 25.41% 25.41% 25.41%

Forecasts
5% rail cost -1.87% -1.70% -1.92% -0.74% -1.63% -0.61% -0.82% -1.47%
5% bus cost -1.95% -1.86% -1.91% -1.96% -1.75% -1.87% -2.00% -2.05%
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with the exception that scobit this time outperforms uneven logit. The holdout log-likelihoods are, however,
very similar across all models.

Table 4 also gives outputs including elasticities, which are similar across models. Notably, the elasticities
for car cost are remarkably similar to those from the LPMC dataset. As a contrast, car time elasticities
have a smaller magnitude. Relative importances are also often similar, though DFT models assign greater
importance to out-of-vehicle travel times. A clear exception is the value for taxi, which varies substantially
across models. Finally, 5% increases in the cost of rail or bus results in around 2% decreases in the uptake
of these alternatives. This suggests that survey participants in the second case study are more price sensitive
than those in the first case study, which is unsurprising given the high costs associated with living in London.
As before, het-DFT returns average probabilities that are closer to market shares than values observed under
DFT.

4. Conclusions and next steps

In this paper, we detail theoretical steps for improving the flexibility of decision field theory. In particular, we
focus on relaxing the assumption of identical normal error terms of across alternatives. This ‘heteroskedas-
tic’ version of DFT substantially outperforms the previous version of DFT on two large-scale revealed pref-
erence mode choice datasets. Notably, tests of the model on stated preference datasets (the Danish and UK
datasets tested in Hancock et al. 2021) did not result in significant improvements in model fit, implying that
this model is a step towards capturing real-life behaviour, where the relative shares of chosen alternatives
may be very unbalanced. Further tests are of course required. For example, tests on simulated datasets may
confirm the importance of unbalanced shares of chosen alternatives on finding significant improvements
through moving to a heteroskedastic DFT. Additionally, measures from models such as elasticities could be
compared in future applications.

Future work should also further investigate the concept of a ‘nested DFT’, which may be able to incorporate
the ideas of nested logit models through allowing correlations between the error terms for different alter-
natives within the DFT model. Future models could also test, for example, the incorporation of random
parameters or error components, which may alter the relative performance of the different models. Though
it is clear that there are many routes for future work, the results in this paper prove that decision field theory
is no longer a model just for laboratory or stated preference data.
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Appendix A: Models for comparison

A.1. Multinomial logit

For both case studies, we start with a standard random utility model with the typical multinomial logit
formulation, i.e, where we have utilities (Vns j) for the different alternatives and the assumption of type I
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extreme value error terms results in probabilities of choosing each alternative:

Pns j =
µJ · exp(Vns j +δ j)

∑
Jns
i=1 (µJ · exp(Vnsi +δi))

, (20)

where there are Jns alternatives for individual n in choice context s, and we have alternative specific con-
stants, δ j. Under our multinomial logit model, the alternative specific scaling parameters are fixed to 1.

A.2. Heteroskedastic MNL

There are multiple possibilities for specifying heteroskedastic extensions of multinomial logit models. For
the work in this paper, we define a heteroskedastic MNL model such that it has equivalent flexibility to our
heteroskedastic DFT model, meaning that it has an error structure that allows for different variances across
the different alternatives. We thus use Equation 20 but estimate the alternative specific scaling parameters,
µJ , where one must be fixed for model identification.

A.3. Cross-nested logit

For the cross-nested logit models, we follow the ‘generalised nested logit’ model by Wen and Koppelman
(2001). We thus have all nesting parameters freely estimated and we put constraints on the allocation
parameters, where 0≤ α j,m ≤ 1 and ∑ j α j,m = 1,∀m, with each α giving the membership of alternative j in
nest m. For our nesting structure, we define a nest (S1 to SM) for each and every pair of alternatives, meaning
that we have a total of M = (J)(J− 1)/2 nests, where J is the number of alternatives. The probability for
choosing an alternative j can then be calculated as a sum over nests with:

Pns j =
M

∑
m=1

(
PSm,ns ·P( j|Sm),ns

)
, (21)

where we have the probability of being within nest m given by:

PSm,ns =

(
∑i∈Sm(αi,me(Vnsi+δi))

1
λm

)λm

∑
M
l=1

(
∑i∈Sl

(αi,le(Vnsi+δi))
1
λl

)λl
, (22)

and the probability of choosing alternative j within nest m given by:

P( j|Sm),ns =
(α j,me(Vns j+δ j))

1
λm

∑i∈Sm(αi,me(Vnsi+δi))
1

λm

, (23)

where λm is the estimated nesting parameter for nest m.

A.4. Scobit

The probability of choosing alternative j under a multinomial scobit model (Brathwaite and Walker, 2018)
is defined:

Pns j =
exp
(
δ j− ln[(1+ e−Vns j)γ j −1]

)
∑

Jns
i=1 (exp(δi− ln[(1+ e−Vnsi)γi−1]))

, (24)

where each alternative j has an associated estimated scalar γ j.
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A.5. Uneven logit

The probability of choosing alternative j under an uneven logit model (Brathwaite and Walker, 2018) is
defined:

Pns j =
exp
[
δ j +Vns j + ln(1+ e−Vns j)− ln(1+ e−γ j·Vns j)

]
∑

Jns
i=1 (exp [δi +Vnsi + ln(1+ e−Vnsi)− ln(1+ e−γi·Vnsi)])

, (25)

where each alternative j has an associated estimated shape parameter γ j.

A.6. Asymmetric logit

The final model that we test is also introduced by Brathwaite and Walker (2018) and is called the asymmetric
logit model. Under this model, the probability of choosing alternative j is defined:

Pns j =
exp [δ j +Sns j]

∑
Jns
i=1 (exp [δ j +Snsi])

, (26)

where Sns j = ln(γ j)−Vns j ·ln(γ j) if Vns j≥ 0 and Sns j = ln(γ j)−Vns j ·ln(
1−γ j
J−1 ) if Vns j < 0, where J =max(Jns).

Unlike scobit and uneven logit, asymmetric logit has restrictions on the shape parameters with 0 ≤ γ j ≤ 1
and ∑J γ j = 1.

Appendix B: Model outputs

B.1. Elasticities

For all models, we estimate arc elasticities for car (AEC) with:

AEC = log
(

Forecasted Car Trips
Base Car Trips

)
/ log(1.1), (27)

where ‘Base Car Trips’ is calculated as the sum over the probabilities of choosing car across all choice
tasks in the dataset, with ‘Forecasted Car Trips’ calculated equivalently but with adjusted attributes. For
both datasets, we estimate cost and time elasticities by using a 10% increase of the controlling factor. For
the LPMC dataset, we additionally test for a 10% increase in traffic variability (see (Hillel et al., 2018) for
details on how variability is estimated).

B.2. Relative importances

The relative importance (RI) of an attribute, k, is calculated with respect to cost, such that:

RIk =
βk

βcost
. (28)

For the Decisions dataset, these values are multiplied by 60 to convert from minutes to hours, and by a
representative cost of £1.51 (to account for the fact that logarithmic transforms of cost are used). Note
that the relative importance of time is equivalent to the value of time under all models except the DFT and
Het-DFT models.
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B.3. Average probabilities

Average probabilities are calculated by averaging across the probability of an alternative being chosen under
a model across the full set of choice tasks.

B.4. Forecasts

We also obtain forecasts given a 5% increase in the cost of public transport. We calculate the forecasted
relative reduction (RR) in the amount the alternative (i) is chosen with:

RRi =

(
Forecasted Tripsi

Base Tripsi

)
−1, (29)

where the trips are calculated as the sum over the probabilities of choosing alternative i across all choice tasks
in the dataset. For the LPMC, we also estimate the relative increase in share of cycling if there is no winter
bias. For this scenario, ‘Forecasted Trips’ are calculated with the model estimates but with αcycle,winter = 0.
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