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1. Introduction 
Due to the high complexity of traffic system, traffic simulation is an essential and efficient 
approach for the analysis and evaluation of the traffic system by modelling traffic flow 
dynamics and vehicle mobility in response to information and control actions, where network-
wide traffic simulation could enable traffic engineers to predict the spatio-temporal movement 
patterns of vehicles and develop network traffic management strategies to alleviate traffic 
congestion (Mahmassani, 2001, Kim and Mahmassani, 2015). However, building conventional 
traffic simulation models is often time-consuming due to complex parameter estimation and 
calibration processes needed for a high-fidelity simulation model. Therefore, data-driven 
simulation has gained considerable attention in the recent decade with the increasing 
availability of high-resolution vehicle trajectory data and massive advances in deep learning 
models. While numerous data-driven microscopic traffic models have been proposed in the last 
decade, there is little effort made on network-wide mesoscopic/macroscopic traffic simulation 
based on trajectory data (Li et al., 2020). In this paper, we aim to develop a model that leverages 
both high-resolution trajectory data and deep learning to learn interactions between vehicles 
and a road network, which can provide the basis for enabling data-driven mesoscopic traffic 
simulation at the network-level. 
While it is a relatively new concept in the transport research community, several relevant 
research topics have been studied, including the next location prediction problem, which aims 
to predict the next location in a trajectory of a user based on the previously visited locations 
(Sun and Kim, 2021), and vehicle trajectory generation problem, which aims to generate 
synthetic trajectory data using generative models to learn the mobility patterns (Ziebart et al., 
2008, Choi et al., 2021). However, these studies model the movements of individual vehicles 
independently without considering the interactions between vehicles and between vehicles and 
a traffic network, which leads to limited applicability. 
Our study aims to model the interactions of vehicles and the road network by employing a 
multi-agent imitation learning (MAIL) framework, which learns behaviours of a multi-agent 
system based on demonstrations of a set of experts interacting with each other. By considering 
observed traffic and trajectory data ‘expert demonstrations’, the imitation learning (IL) 
approach can train a multi-agent model to generate trajectories and traffic effects that mimic 
the ‘demonstrated’ real-world behaviours. A naïve approach to building such a multi-agent 
model might be to model the whole vehicle population in the network as individual vehicle 
agents, but it is computationally expensive. Currently, the largest number of agents modelled 
in the literature of multi-agent imitation learning is only 100 (Bhattacharyya et al., 2018). As 
such, we propose the idea of learning the interactions between a subset of vehicles and road 
link traffic states, instead of attempting to model the interactions among all vehicles, by 
developing the Multi-Agent Generative Adversary Imitation Learning model with Vehicle and 
Link agents (MAGAIL-VL). Figure 1 shows our model framework. In a real-world traffic 
network, vehicles’ route choice actions determine the traffic states across the links (e.g., link 
speed) and the link traffic states, in turn, affect vehicles’ route choices. The consequences of 
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such interactions are captured through various network performance measures such as route 
distribution and travel times. Unlike traditional mesoscopic traffic simulation models, which 
typically use dynamic traffic assignment (DTA) to model route choice behaviour and vehicle-
road link interactions, our MAGAIL-VL model attempts to learn the vehicle-road interaction 
patterns directly from data by applying MAIL to a subset of vehicle trajectory data to train 
vehicle agents and all link traffic data to train link agents. This learned interaction is then 
transferred to a simulation environment, where a new subset of vehicles and link states can be 
generated and simulated to produce the network performance measures that mimic the network 
performance under the whole population. The goal is to predict the population network 
performance measures by modelling only a subset of vehicles and their interactions with the 
underlying road network.  

Figure 1: Schematic diagram of the concept of this study 

 
2. Methodology 
Imitation learning (IL) is a powerful alternative to Reinforcement Learning (RL) for learning 
sequential decision-making policies when manually defining reward functions is challenging. 
It attempts to recover an optimised reward function that could rationalise the expert 
demonstrations observed in the real data (Ho and Ermon, 2016). MAIL is an extension of IL 
which could learn multiple parametrized policies that imitate the behaviour of multiple experts 
from demonstrations of a set of experts interacting with each other in the same environment. 
MAGAIL is a specific algorithm of MAIL which applies generative adversarial networks 
(GAN) in the MAIL and includes a generator and a discriminator (Song et al., 2018). The 
generator controls the policies of all the agents, and the discriminator is a classifier trained to 
distinguish agent’s behaviour from that of the corresponding expert.  
2.1. Problem formulation 
In MAGAIL-VL, a traffic network is formulated as a multi-agent system consisting of two 
groups of homogenous agents—links and (a subset of) vehicles—and their interactions are 
modelled using a Markov game containing 𝑁 agents including 𝑛 link agents (1, … , 𝑖, … , 𝑛) and 
𝑚 vehicle agents (𝑛 + 1,… , 𝑗, … , 𝑛 + 𝑚 = 𝑁). The state of link agent 𝑖 is: 𝑠! = {𝑖, 𝑙𝑖𝑛𝑘𝑠𝑡𝑎𝑡𝑒}, 
where 𝑙𝑖𝑛𝑘𝑠𝑡𝑎𝑡𝑒 ∈ [1, … , 𝑘] indicates the congestion level of link 𝑖 (speed range). The action 
space for link agents represents possible changes in link congestion level: {𝐴!}!"#$ = 𝐴% =
{+1,… ,+(𝑘 − 1), −1,… ,−(𝑘 − 1)}, which allows the state to vary between {𝑖, 1}, … , {𝑖, 𝑘}. 
The state of vehicle agent 𝑗 is: 𝑠& = {𝑘, 𝑙𝑖𝑛𝑘𝑠𝑡𝑎𝑡𝑒}, where 𝑘 denotes the link that vehicle 𝑗 is 
travelling on, and 𝑙𝑖𝑛𝑘𝑠𝑡𝑎𝑡𝑒 is the congestion level of link 𝑘. The action space for vehicle 
agents represents possible movement of a vehicle on a link: :𝐴&;&"$'#

( = 𝐴) ={ Transfer to the 
leftmost link, the second leftmost link,…, the rightmost link, Stay on the same link, Enter the 
network, Exist the network, Stay outside the network before entering, Stay outside after 
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existing}, where a vehicle can choose to move to a downstream link or stay at the current link 
at each time step. The function 𝜂 ∈ 𝑃(𝑠) specifies the distribution of the initial states. Given 
that the agents are in state s* at time 𝑡 and agents take actions (𝑎#, … , 𝑎(), the state changes to 
s*'#  with probability 𝑃(s*'#|s* , 𝑎#, … , 𝑎(). Each agent achieves its objective by selecting 
actions through a stochastic policy 𝜋!: 𝑆 → 𝑃(𝐴!). While different policies are to be specified 
for distinct agents in the original MAGAIL, to enables the model to incorporate a much larger 
number of agents in one multi-agent system, we define the same policy for link agents as 𝜋% 
and the same policy for vehicle agents as 𝜋) . The reward function of each agent is 
𝑟!: 𝑆 × 𝐴%$ × 𝐴)+ → ℝ. The reward function of agents: {𝑟!}!"#$ = 𝑟% , {𝑟&}&"$'#( = 𝑟). The goal of 
each agent is to maximise the total expected return 𝑅! =H 𝛾*𝑟!,*

-
*". , where 𝛾  is discount 

factor. The joint policy is defined as 𝝅(𝒂|𝒔) = ∏ 𝜋!(𝑎!|𝑠!)$
!"# ∏ 𝜋&(𝑎&|𝑠!)(

&"$'# . The objective 
of this Markov game problem is to find the optimal reward functions and policies from the 
expert trajectories (vehicle trajectory and link state data) that could explain the expert behaviour 
(vehicle mobility pattern).  
2.2. MAGAIL-VL 
Using the GAN framework, MAGAIL-VL consists of the generator (𝐺 ) to make realistic 
vehicle trajectories and link state changes based on the policies and the adversarial 
discriminator (𝐷) to give reward feedback to the vehicle trajectories and link states generated 
by the generator until convergence. The policy and discriminator are both neural networks and 
the training process of MAGAIL-VL is as follows: With the initiated Markov game, we first 
generate vehicle trajectories and link states by rolling out the policies 𝜋% and 𝜋) for specific 
time steps. After sampling state-action pairs 𝜒/  and 𝜒0  from both expert trajectories and 
generated trajectories, respectively, the discriminator parameter could be updated by optimising 
the objective min	max	𝔼1! X∑ log ]𝐷2"(𝑠, 𝑎!)^

(
!"# _ + 𝔼1# X∑ log ]1 − 𝐷2"(𝑠, 𝑎!)^

(
!"# _ , where 

𝜔! is the parameter set of the discriminator. Implicitly, 𝐷2" plays the role of a reward function 
for the generator. Then the policy parameters are updated through reinforcement learning where 
a state-of-the-art natural policy gradient algorithm Multi-agent Actor-Critic with Kronecker-
factors (Song et al., 2018) is used. The learned policies and reward functions are then obtained 
with repetition of this process. With the well-trained models, we can then generate vehicle 
trajectories and link states to simulate the network operation. 
2.3. Baseline models 
In addition to the proposed MAGAIL-VL model, we have developed several models for 
comparison. The first baseline model is MAGAIL-V which only considers the vehicle agents, 
while other configurations are similar to the MAGAIL-VL model. Additionally, we develop a 
single agent model base on GAIL (Ho and Ermon, 2016), while vehicle trajectories are 
generated sequentially by applying the model for specific times and no interaction exists 
between the vehicles. Moreover, we adopt the long short-term memory (LSTM) model and 
LSTM combined with self-attention mechanism (LSTM-attention) model as baseline models 
since they were demonstrated as efficient models in learning long-range location relations and 
predicting vehicle trajectories (Sun and Kim, 2021). 
2.4. Evaluation measures 
To evaluate the performance of proposed models, we employ BLEU (bilingual evaluation 
understudy) score to evaluate the accuracy of individual generated trajectories, where BLEU-N 
measures how consistent a model can generate N consecutive locations with an observed 
trajectory. For the network-level performance measures, we use the Jensen-Shannon distance 
of route probability distribution between generated and real trajectories, the mean absolute 



ATRF 2021 Proceedings 

4 

percentage error (MAPE) of average link travel times, and the mean absolute error (MAE) of 
link traffic states between the simulated network and the real network. 
3. Data preparation 
The data used in this study are extracted from the open traffic drone data collected in Athens, 
Greece through 20 datasets covering a few hours over four days (Barmpounakis and 
Geroliminis, 2020). We extract the data for a moderate-scale network (including 143 road links) 
as shown in Figure 2 with the time step of 10s. After map-matching vehicles’ coordinate data 
using hidden Markov model (Meert and Verbeke, 2018), we obtained 600-800 vehicle 
trajectories for each dataset as population trajectories, where each trajectory dataset covers 80 
time steps (800s). We then randomly sample 200 vehicle trajectories from each of the 20 
datasets, resulting in 4000 vehicle trajectories in total. A sample of 200 vehicles per dataset 
represents approximately 25-33% of the population. The link states are identified according to 
the average speeds of vehicles on that link. We cluster five and three link states using K-means 
clustering method, for MAGAIL-VL-5 and MAGAIL-VL-3 model, respectively. In this study, 
we use the trajectories in first three days (15 datasets, training dataset) to train the models and 
test the models on the training dataset and further validate the model on the trajectories in the 
last day (5 datasets, validation dataset). 

Figure 2: The study network 

 
4. Results and Discussion 
Based on the proposed models, we generated the trajectories of new 200 vehicles and link states 
for a simulation period of 800s, which corresponds to the observation period of the actual 
trajectory datasets. Note that the departure times and locations of vehicles are given as per the 
observed trajectories, and vehicles then travel to other locations based on the generator policy 
of models. We assess the model performance by comparing the consistency of generated dataset 
with the observed dataset with the proposed evaluation measures. The evaluation results for the 
training dataset and the validation dataset are provided in Figure 3 and Figure 4, respectively. 
The MAGAIL models perform better than other models in terms of the vehicle trajectory 
accuracy indicated by higher BLEU scores, demonstrating the effectiveness of capturing agent 
interactions in learning realistic vehicle movements. For the network-wide performance 
measures, the proposed MAGAIL-VL models overall outperforms other models, especially in 
link travel time measure. The performance of MAGAIL-V is quite poor in link travel time 
measure, suggesting the importance of considering both vehicle and link agents, rather than 
vehicle agents only. The traffic state measure results are reported only for the two MAGAIL-
VL models with link agents that produce link state changes. The models with five traffic states 
and three traffic states have a MAE around 1 and 0.5, respectively, which indicates that the 
predicted link congestion level is on average half-state different from the actual link congestion 
level. Overall, MAGAIL-VL provides the most satisfactory performance in both trajectory-
level and network-wide measures. This study demonstrates the possibility of modelling the 
network-wide traffic state evolution by learning the interaction between only a subset of 
vehicles and the surrounding link congestion levels. This finding provides an important first 
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step towards enabling a fully data-driven traffic simulation model for a large-scale network in 
a more effective and efficient manner. 

Figure 3: Evaluation results for the training dataset 

 
 

Figure 4: Evaluation results for the validation dataset 
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