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1. Introduction 

Traffic incident management plays an essential role in Intelligent Transportation Systems since 

incidents such as vehicle crashes usually cause severe congestion on traffic networks and even 

human fatalities. Accurate incident prediction that estimates the probability of whether a traffic 

incident will happen or not in a specific region ahead of time would be helpful to provide road 

safety guidance and improve traffic conditions by preventing congestion. However, it is 

challenging to achieve acceptable prediction performance since traffic incidents could be 

caused by multiples factors such as traffic condition, weather condition, road structures, and 

driver behaviours, which are often difficult to capture in a given prediction model due to a lack 

of data or a challenge in fusing heterogeneous data sources. Recently, with the ubiquitous 

availability of location-aware sensor technologies such as GPS devices, more diverse sets of 

traffic data have become available in addition to traditional loop detector data. The increase in 

diverse traffic data can facilitate traffic prediction solutions, but a new challenge arises in the 

fusion of data from multiple sources with different granularity and penetration. As such, data-

driven approaches that can flexibly leverage diverse data sources are highly desirable. In the 

literature, many classical machine learning methods are applied in traffic incident prediction 

such as K-nearest neighbor (Lv, Tang, and Zhao 2009) and Bayesian Network (Hossain and 

Muromachi 2012), which make predictions based on manually generated features extracted 

from traffic incident data. The generalisation ability of these algorithms is relatively low since 

important factors causing incidents including traffic flow data, road networks, and 

meteorological data are not considered. Recently, deep learning techniques have been applied 

to predict traffic incidents integrating more data sources. Particularly, Ren et al. (2018) 

developed a model base on Long Short-Term Memory (LSTM) to predict traffic incident risk 

by learning periodical temporal patterns and regional spatial correlation, and the Hetero-

Convolutional LSTM model (Yuan, Zhou, and Yang 2018) learns from the inputs as flattening 

vectors extracted from the images of the map. But no topological information of the underlying 

traffic network is captured by these models. Later, Yu et al. (2021) handled this problem by 

proposing a graph-based model to learn spatial-temporal, external features from a graph that 

represents a road network. However, most of the existing work fail to consider data fusion from 

multiple sources to enhance the model performance. 

In this paper, we propose a Data-driven Hybrid Graph-based Neural Network (DHGNN), which 

aims to predict the likelihood of traffic incidents within a given region ahead of a certain time 

period. There are three major contributions to our work. (1) All-in-One: Unlike most of the 

existing work that one model can be applied to only one specific region or sub-network of the 

whole traffic network, our solution is able to predict the incident occurrence for different city-

wide sub-networks by one model. Specifically, we randomly sample thousands of sub-networks 

from one studied traffic network as the underlying input graphs with different structures. 

Features are extracted regarding multiple factors for each sub-network. By learning the spatial 

and temporal correlations (Table 1) of incident/nonincident cases occurring in different other 
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sub-networks, our model can predict whether a given sub-network has an incident or not ahead 

of time. (2) Data Integration: Heterogeneous data from different sources relevant to traffic 

incidents, including traffic data (flow, occupancy, speed), network structures, and temporal 

information are integrated and normalised to form the features for different sub-networks. Our 

data are captured by two different types of sensors—loop detectors and probe vehicles—and, 

thus, the data granularity and coverage vary widely. In order to deal with the data sparsity 

problem in one dataset to match the density of the other, we apply the K-Pod clustering 

technique (J. T. Chi, E. C. Chi, and Baraniuk 2016) to figure out the representative samples to 

fill the missing data points based on similarity. (3) Hybrid Neural Networks: Since our two 

datasets cover different roads in the same region, we must construct different sub-networks to 

form input cases. However, a single graph neural network is insufficient to deal with one sample 

with two different graph structures. Thus, we propose a hybrid graph neural network that 

contains two sub-modules to embed two samples with different graph structures, followed by a 

general fully connected layer to output the prediction result. As a result, our model can achieve 

superior performance with 92.8% accuracy and 92.5% in AUC, which will be presented in detail 

in Section 4. Our model is flexible in terms of the extension to integrate other data sources by 

augmenting other corresponding neural networks. 

2. Data Preparation 

For output data, we use incident data from Queensland, Australia in 2017, where we mainly 

focus on vehicle crashes among various incident types. For input traffic data, we use two 

different data sources: STREAMS (n.d.) and HERE (n.d.) from Queensland, Australia in 2017. 

STREAMS dataset contain traffic flow and occupancy collected from loop detectors, while 

HERE dataset contain speed captured by GPS probes. While both are link-level measures, they 

use different link systems and network representations. We normalise the data in 5-minute 

aggregation and extract features for these two datasets separately: 16 features from STREAMS, 

Xs=< 𝑥1
𝑠, 𝑥2

𝑠, . . . , 𝑥16
𝑠 > and 8 features from HERE, Xh=< 𝑥1

h, 𝑥2
h, . . . , 𝑥8

h >, as summarised in Table 

1. 

Table 1: Description of Features from STREAMS and HERE Data 

Notation Feature description Notation Feature description 

𝑥1
𝑠, 𝑥2

𝑠, 𝑥3
𝑠 p𝑡−2, p𝑡−1, p𝑡  𝑥4

𝑠, 𝑥5
𝑠, 𝑥6

𝑠 
𝑟𝑝𝑡−2, 𝑟𝑝𝑡−1, 𝑟𝑝𝑡 (𝑟𝑝𝑡 =

𝑝𝑡 − 𝑝𝑡⃗⃗  ⃗

𝑠𝑝𝑡

) 

𝑥7
𝑠, 𝑥8

𝑠, 𝑥9
𝑠 𝑓𝑡−2, 𝑓𝑡−1, 𝑓𝑡 𝑥10

𝑠 , 𝑥11
𝑠 , 𝑥12

𝑠  
𝑟𝑓𝑡−2, 𝑟𝑓𝑡−1, 𝑟𝑓𝑡 (𝑟𝑓𝑡 =

𝑓𝑡 − 𝑓𝑡⃗⃗⃗  

𝑠𝑓𝑡
) 

𝑥13
𝑠  30-minute flow ratio 𝑥14

𝑠  free-flow speed 

𝑥15
𝑠  length of link (STREAMS) 𝑥16

𝑠  level of service (STREAMS) 

𝑥1
ℎ, 𝑥2

ℎ, 𝑥3
ℎ v𝑡−2, v𝑡−1, v𝑡 𝑥4

ℎ, 𝑥5
ℎ, 𝑥6

ℎ 
𝑟v𝑡−2, 𝑟v𝑡−1, 𝑟v𝑡 (𝑟v𝑡 =

v𝑡 − v𝑡⃗⃗  ⃗

𝑠v𝑡

) 

𝑥7
ℎ speed limit (HERE) 𝑥8

ℎ length of link (HERE) 

• 𝑡: 5-minute time interval; 

• p𝑡/𝑓𝑡/v𝑡: aggregated occupancy/flow/speed at t; 

• p𝑡⃗⃗  ⃗/𝑓𝑡⃗⃗⃗  /v𝑡⃗⃗  ⃗, sp𝑡/s𝑓𝑡/sv𝑡:  are historical mean and standard deviation of occupancy/flow/speed at 𝑡; 

• flow ratio: the increasing/decreasing trend across the previous 6 time slots 
1

6
∑ (𝑓𝑡-𝑓𝑡-1)

6
t=2  

Rather than studying the link-level incident prediction, we focus on sub-networks. Specifically, 

we randomly sample thousands of regions with 500-m radius in Brisbane and, for each region, 

we construct two sub-networks representing traffic data from the abovementioned two sources, 

each of which contains its own set of road links with features. One challenge in using the HERE 

data we have was a missing data problem, where a lot of links had no speed observation for a 
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specific time period. To address this issue, we apply the K-Pod clustering technique to capture 

the representative pattern of speed for each sub-network for a given time period and use it to 

replace any missing data. 

3. DHGNN Model 

In this section, we introduce the overall framework of our model. Figure 1 shows the 

architecture of DHGNN, which is comprised of three major components: input module, sub-

network embedding module, and output module. 

 

 

Figure 1: The overview of Hybrid Graph-based Neural Network 

 

Input Module. As illustrated on top of Figure 1, we prepare the input data for our model by 

integrating multiple data sources using the approach introduced in Section 2. Then, for each 

case (incident/non-incident), we have two sub-networks with different graph structures but 

representing the same geographical region. Note that the nodes in the graph represent road links 

and edges indicate the connectivity among links. We attach two sub-networks with two different 

groups of features Xs and Xh respectively. 

Sub-network Embedding Module. Next, in the sub-network embedding module, there are two 

graph neural networks (GNNs) taking the two featured sub-networks as input, respectively. It 

is expected that incidents happening on one link could be affected by traffic conditions or other 

factors from its nearby links. Generally, GNNs capture the dependence of graphs following a 

neighbourhood aggregation strategy, in which the massages of a node are iteratively updated 

by aggregating massages of its neighbours. After k iterations of aggregation, one node’s 

massages then contain the structural information within its k-hop network neighbourhood. 

Thus, the correlations of multiple factors that influence traffic incidents in the sub-networks can 

be learnt by such models. In our work, we apply the ChebyGIN (Knyazev, Taylor, and Amer 
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2019) model, which is a variation of the Graph Isomorphism Network (GIN) Xu et al. (2019). 

Intuitively, the underlying network structure is an important factor for the occurrence of traffic 

incidents. Compared to other GNNs, the GIN model is capable to learn the difference of graph 

structures from different sub-networks. As shown in Figure 1, the input sub-networks are fed 

into the initial graph convolution layer, where features in the nodes are propagating to their 

neighbours. Afterwards, before the next iteration of message passing, multi-layer perceptrons 

(MLPs) is used as the composition of aggregation functions. In the readout stage, where the 

node-level massages are summarised to generate the final embedding capturing all the 

information from the entire graph, rather than making use of only the final iteration, we use 

information from all iterations of the model to consider all the structural information. In the 

end, the readouts from two ChebyGIN models are concatenated to generate the embedding of 

two sub-networks. 

Output Module. After the sub-network embedding, we apply a fully connected layer to 

generate the final prediction result. The output of the prediction result is either True or False 

representing there exists incident or non-incident within the given region ahead of time. 

4. Experiments 

4.1. Experimental settings 

In our experiment, our model is evaluated by four metrics: Accuracy, AUC (Area Under the 

Curve), Precision and Recall. Regarding the prediction horizon, we make use of up to 30 

minutes of historical traffic data to predict whether there will be an incident in the following 15 

minutes. The traffic incident predicted by our model are mainly vehicle crash. Since traffic 

incidents are rare events, we adopt the undersampling method to balance the cases for incident 

and non-incident. There are 800 incident cases from one-year data, and we randomly sample 

another 800 non-incident cases from the same year. For model training, we split our dataset into 

three parts: 70%,10%,20% for training, validating, testing, respectively. We evaluate the 

performance of our model compared to two baseline models that contain only one ChebyGIN 

making use of loop detector & context data and GPS probe data respectively, denoted by GNN-

1 (using loop detector & context data only) and GNN-2 (using GPS probe data only). 

 

 
 (a) Training (b) Validation 
Figure 2: Training and Validation Performance 

4.2. Prediction Performance 

Figure 2 shows the accuracy during training (a) and validation (b) in DHGNN, GNN-1 and 

GNN-2. The performance tends to be stable when the number of epochs is around 80, showing 

the successful learning of our model. Table 2 reports the evaluation metrics of our DHGNN, 

GNN-1, GNN-2. The performance of DHGNN is better than that of GNN-1 and GNN-2, 
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indicating the importance of using all the information from loop detector, context, and GPS 

probe data, which was possible through our model’s ability to integrate multiple data sources 

with different link representations and graph structures. 

 
Table 2: Performance of Models on Test Set 

Models Accuracy AUC Precision Recall Accuracy: (TP+TN)/(TP+TN+FP+FN) 

Precision: TP/(TP+FP) 

Recall: TP/(TP+FN) 

TP:True positive; TN:True negative; 

FP:False positive; FN:False negative 

DHGNN 

GNN-1 

GNN-2 

0.928 

0.911 

0.712 

0.925 

0.919 

0.724 

0.910 

0.892 

0.732 

0.950 

0.938 

0.668 

5. Conclusion 

In this paper, we propose a deep learning model, named DHGNN, for traffic incident prediction, 

which contains two GNNs sub-modules to learn the correlations of traffic data from multiple 

sources. Experimental results show the superiority of our hybrid model compared to the one 

with one GNN making use of a single data source. In the future, we will extend our model by 

augmenting another neural network sub-module integrating more data sources, e.g., weather 

data. 
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