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Abstract 
Internet-based ride-sourcing platforms have become an important component of urban 

transportation systems in recent years. The spatial-temporal mismatch of supply (available 

vehicles) and demand (passenger requests) deteriorates the performance of ride-sourcing 

services. Hence, repositioning available vehicles to service unserved requests can be effective. 

In this paper, we propose a real-time repositioning method that considers both the 

responsiveness to immediate demand and the long-term operation efficiency simultaneously. 

The proposed method is achieved by integrating the solutions of two procedures: i) A single-

agent Markov Decision Process (MDP) model is employed to evaluate the long-term influence 

of the repositioning on platform efficiency. ii) A binary nonlinear programming (BNLP) is 

introduced to model the multi-driver repositioning problem in real-time, which is solved by an 

Iterative Edge Cutting (IEC) algorithm. Numerical experiments demonstrate that the proposed 

method significantly outperforms several repositioning benchmarks regarding both platform 

efficiency, including servicing more orders and reducing order cancellations, and users’ 

experience including reducing passengers’ waiting time and increasing drivers’ occupied rate. 

1.Introduction 

With the development of GPS-enabled technologies and the proliferation of smartphones, 

traditional taxi industries have witnessed radical changes. The emergence of mobile-based E-

hailing services, such as Uber, Lyft, and Didi Chuxing enabled taxi drivers (or self-scheduled 

contractors) to be automatically matched with passengers without random cruising on streets. 

E-hailing platforms continuously receive passengers’ trip requests, geographical coordinates, 

and occupancy status of E-hailing vehicles (driven by contractors), and periodically dispatch 

idle drivers to serve unassigned orders (Vonolfen et al. 2016). Also, platforms might reposition 

the drivers who fail to receive a pick-up order to a different location for the prospect of less 

cruising time in the future. 

Aiming to minimize pick-up times or maximize system profit, a plethora of order dispatching 

algorithms have been investigated (Agatz et al. 2011, 2012). Nonetheless, once drivers are not 

matched in the dispatching procedure, E-hailing systems face a critical question (or an 

opportunity): where is the best location for idle drivers to find a passenger at subsequent times?  

To design a repositioning method to tackle the above question, we model the repositioning 

process as a many-to-one matching problem between idle drivers and repositioning 

destinations. Each matched driver-destination pair can be considered as a repositioning 

instruction for the drivers and determined by two terms: (i) a term representing the impact of 

the instruction on the future efficiency and (ii) an instantaneous matching probability attained 

from the real-time demand-supply information. These are achieved by employing an MDP 
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model to evaluate the long-term influence of the repositioning on platform efficiency, 

developing a multi-driver optimization method to optimize the real-time demand satisfaction, 

and integrating the solutions of the MDP and the multi-driver optimization into the final 

repositioning solution. 

2. Single-agent Markov Decision Process 

Without loss of generality, we employ hexagonal grids 𝑯 = {𝒉𝟏, 𝒉𝟐, … , 𝒉𝑵}, to represent an 

area unit in the digital map. Also, 𝑻 = {𝒕𝟏, 𝒕𝟐, … , 𝒕𝑴}  is introduced to indicate the rolling 

repositioning decision step. Let 𝜟 be the time interval between each two steps. By viewing each 

idle driver as an intelligent agent, we model the searching movement as a Markov Decision 

Process (MDP) endowed with a set of spatial actions, while the whole operating area is 

considered as the environment. The key elements of the MDP formulation are listed below. 

 

Figure 1: The basic action setting of MDP, red arrows are neighboring actions and blue arrows represent 

global actions. 

(1) State: 𝑠 = (ℎ, 𝑡, 𝜇), where ℎ and 𝑡 are current hexagon and time step, 𝜇 = {0,1,2} indicate 

Searching, Picking up, and Serving. 

(2) Action: For any idle drivers in States 𝑠 =  (ℎ, 𝑡, 0), ∀ ℎ ∈  𝐻, ∀ 𝑡 ∈  𝑇, their action sets 

are: 𝐴(𝑠) = 𝐴neighbor(ℎ) ∪ 𝐴global(𝑡) , where 𝐴neighbor(ℎ)  is the set of neighboring 

hexagons of ℎ including ℎ itself. and 𝐴global(𝑡) indicates the set of top-k hexagons with the 

most unserved orders in current step 𝑡 (See Fig. 1).  

(3) Reward: Reward function evaluates the policy and quantifies the goal of the repositioning. 

𝑅(𝑠, 𝑎) = {
Δ

𝜏(𝑠,𝑎)
, if driver receives an order

0,           otherwise.           
                               (1) 

where 𝜏(𝑠, 𝑎) is the shortest travel time from hexagon ℎ of State 𝑠 to destination 𝑎. 

(4) State-Action Value, 𝑄(𝑠, 𝑎) is the expected reward that the driver can earn being in State 

𝑠 after performing Action 𝑎:  

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + ∑ 𝛾𝑃(𝑠, 𝑎, 𝑠′)𝑉∗(𝑠′)𝑠′                               (2) 

where 𝛾 is a discount factor, and 𝑃(𝑠, 𝑎, 𝑠′) is the state transition probability from State 𝑠 

to 𝑠′ by taking Action 𝑎, which can be estimated from the historical data. 

(5) Optimal State Value, 𝑉∗(𝑠) is the optimal expected reward for the driver at State s: 

𝑉∗(𝑠) = max{𝑄(𝑠, 𝑎)|∀ 𝑎 ∈ 𝐴(𝑠)}.                                   (3) 

(A) Neighbor actions (B) Global actions
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(6) Optimal Policy, 𝜋∗(𝑠) is the optimal policy that maximizes the expected reward of State 

𝑠, which is 

𝜋∗(𝑠) = argmax𝑎∈𝐴(𝑠) {𝑄(𝑠, 𝑎)}.                                    (4) 

The proposed MDP above can be solved by dynamic programming approach (Cormen et al. 

2009). However, note that the deterministic policy derived from Equation 4 is optimal (and 

effective) when there is only one idle driver following the repositioning policy. Intuitively, 

given interactions and competitions among multiple idle drivers available for repositioning, 

careful design of multi-driver optimization based on the developed single-agent MDP is 

required.  

3. Multi-driver Optimization 

To address the repositioning among multiple drivers, an optimization model is proposed in this 

section. The repositioning problem between multiple drivers and a hexagon can be modeled as 

a many-to-one matching problem.  

Suppose there are two finite sets 𝐷𝑡
n, a set of drivers with no repositioning instruction or who 

have arrived at the repositioned destination, and 𝐷𝑡
e , a set of idle drivers who have been 

repositioned and are en-route, collected at each decision step 𝑡. Here, only idle drivers in 𝐷𝑡
n 

are considered for the optimization model. The optimization problem at decision step 𝑡 aims to 

maximize the estimated number of matched drivers during(𝑡, 𝑡 + Δ], so a binary nonlinear 

programming (BNLP) can be formulated as: 

max ∑ ∑ 𝑥𝑑,ℎ ⋅ 𝑝match(ℎ, 𝑡 + Δ)𝑑ℎ                                           (5) 

s.t. ∑ 𝑥𝑑,ℎ ≤ 1, ∀𝑑 ∈ 𝐷𝑡
n

ℎ∈𝐴((ℎ𝑑,𝑡,𝑡,0))                                          (6) 

 𝑥𝑑,ℎ = 0, ∀ℎ ∈ 𝐻, ∀𝑑 ∈ 𝐷𝑡
n, if 𝑝match(ℎ, 𝑡 + Δ) ⋅

Δ

𝜏((ℎ𝑑,𝑡,𝑡,0),ℎ)
< 𝜖            (7) 

Equation 5 presents the objective function of the repositioning. 𝑝match(ℎ, 𝑡 + Δ)  is the 

matching probability in ℎ at time step 𝑡 + Δ, which is correlated to the number of unserved 

orders and the number of idle drivers at step 𝑡 + Δ. The constraint in Equation 6 ensures each 

idle driver in 𝐷𝑡
n will be assigned at most one repositioning instruction, and ℎ𝑑,𝑡 is the current 

hexagon of driver 𝑑 at time step 𝑡. By setting a threshold 𝜖, Equation 7 guarantees that only a 

repositioning instruction with a reasonable matching probability and a proper repositioning 

duration can be generated in our model. 

Once we achieve the optimal solution 𝑋opt for the problem in Equation 5, idle drivers can be 

partitioned into two groups 𝐷𝑡
n,1

, a set of idle drivers assigned a repositioning instruction in 

𝑋opt, and 𝐷𝑡
n,0

, a set of idle drivers without a repositioning instruction. To ensure every idle 

driver in 𝐷𝑡
n will be assigned a repositioning instruction, MDP optimal policy is considered for 

drivers in 𝐷𝑡
n,0

 to generate a repositioning instruction. Consequently, the final solution can 

optimize the immediate demand pick-up responses and the long-term operation efficiency 

simultaneously. 

4. Solving Approaches 

To solve the problem in Equation 5, if we abstract idle drivers in 𝐷𝑡
nand hexagonal space 𝐻 as 

two sets of vertices, and all valid repositioning instructions as the set of edges, the above 

problem can be represented as a bipartite graph. As shown in Fig. 2, green vertices are the idle 

drivers and blue vertices represent the hexagons to be repositioned, there is a matching 
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probability associated with each hexagon, which is considered as the weight of the 

corresponding edges linked to this hexagon. Thus, we can show the BNLP is equivalent to the 

maximum weight matching problem in the graph. 

 

Figure 2: Graphical representation of the repositioning. 

Since existing approaches (Kuhn et al. 1955) are unable to solve the nonlinear bipartite 

matching problem as in the graph in Fig. 2, we introduce an Iterative Edge Cutting (IEC) 

algorithm to achieve the optimal matching in the graph:  

(1) Relax the constraints in Equations 6 and 7, and then initialize a bipartite graph that each 

idle driver links to all the hexagons of his action space.  

(2) Remove the edges linked to the hexagons without unserved orders.  

(3) Compute the matching probability on each hexagon and update the objective function. 

(4) Collect all the drivers with more than one edges into set 𝔻𝑡
𝑛 . Accounting for both the 

matching probability and the repositioning duration, the edge 𝑥𝑑∗,ℎ∗  with the following 

minimal criteria will be cut off.  

𝑑∗, ℎ∗ ← argmin𝑑,ℎ{𝑝match(ℎ, 𝑡 + Δ) ⋅
Δ

𝜏((ℎ𝑑,𝑡,𝑡,0),ℎ)
|∀𝑑 ∈ 𝔻𝑡

𝑛, if 𝑥𝑑,ℎ = 1}             (8) 

(5) Repeat steps 3 and 4 until the constraints in Equations 6 and 7 can be satisfied 

5. Experiments 

The real road network (6,533 nodes and 10,206 directed links) and taxi data-sets of NYC 

Yellow Cab are considered in the experiments. We consider the orders between 07:00 AM and 

10:00 AM and initially generate 3000 vehicles randomly distributed in the road network. The 

order dispatching (by classical one-to-one matching method) and repositioning are determined 

by every 10 seconds and 30 seconds.  An order will be canceled if not being matched within 90 

seconds. The performance of the following benchmark repositioning methods are evaluated:  

(1) Parking: Idle drivers park at their current location once they drop off the passengers. 

(2) Random Walk: Idle drivers head toward a random hexagon among their neighbor 

hexagons.  

(3) Local Hotspot: Idle drivers move to the hexagon with the highest demand density 

sequentially.  

(4) MDP Walk: Idle drivers choose the hexagon according to the optimal policy in Equation 

4. 

Without any prior knowledge of the historical operation data, we employ the Random Walk as 

the repositioning method in the simulator to generate 14 days of training data. Subsequently, 

the single-agent MDP is trained from the above data by setting 𝛾 to 0.8. Further, we introduce 

seven new days as the test data. 
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Table 1: The experimental results of testing. 

Methods Avg. 

Response 

Avg. 

Cancellation 

Avg. 

Response Time 

Avg. 

Pickup Time 

Avg. 

Occupied rate 

Parking 21026.3 

(82.8%) 

4101.7 

(16.1%) 

18.5 78.0 50.7% 

Random Walk 21785.8 

(85.8%) 

3369.2 

(13.3%) 

15.6 70.4 52.7% 

Local Hotspot 22469.1 

(88.5%) 

2741.8 

(10.8%) 

13.7 67.3 53.9% 

MDP Walk 23373.5 

(92.0%) 

1815.5 (7.1%) 9.3 63.8 56.9% 

Proposed 

method 

24438.1 

(96.2%) 

817.3 (3.2%) 8.1 60.9 61.8% 

Table 1 summarizes the numerical results of the four repositioning methods. The proposed 

method is designed for optimizing the operation efficiency for the central platform; not only 

does it achieve the best performance for the platform with 96.2% average response rate, 3.2% 

average cancellation rate, it also leads to an increase in passengers' service quality and drivers' 

working efficiency, average response time and average pick-up time of passengers are reduced 

to 8.1 s and 60.9 s, and average occupied rate of drivers can be increased to 61.8%. In summary, 

the proposed method brings remarkable improvements to both platform efficiency (serving 

more orders and reducing order cancellations) and users experience (reducing passenger’s 

waiting time and increasing driver’s occupied rate). 

6. Summary 

In this paper, we propose a novel method for the centralized E-haling platform to implement 

repositioning instructions to idle drivers. The proposed method is designed to optimize both the 

immediate demand satisfaction and the long-term operation efficiency simultaneously. To this 

end, a single-agent MDP model is designed to evaluate the long-term influence of the 

repositioning on platforms efficiency, and a binary nonlinear programming (BNLP) is also 

introduced for the real-time multi-driver repositioning problem, which is solved by an Iterative 

Edge Cutting (IEC) algorithm. The final repositioning solution is the integration of the solutions 

of the MDP and the BNLP. Through extensive numerical experiments based on field data of 

Manhattan, the proposed method improves both platform efficiency and users experience and 

shows a great potential to be deployed in real-world applications. 
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