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Abstract 

With a greater focus on placemaking in urban centres, the provision of loading docks can make 

a significant contribution to traffic management in urban centres This paper describes a 

Decision Support System (DSS) to forecast the generated freight task of a development and 

determine the optimal provision of on-site loading docks in new major developments. A 

predictive model to estimate parking demand and vehicle movements by freight and service 

vehicles in loading docks is described.  

The model processes various parking surveys collected by Transport for NSW (TfNSW) from 

buildings in Sydney for different land uses across a three-weekday period. The output of the 

model is presented in two interactive templates. The first one is the 'Optimisation Solver' 

template that determines the recommended dock configuration for the building under 

consideration by calculating the optimal number of parking spaces. The goal is to minimise the 

parking area while keeping the dock's effectiveness (ability to accommodate incoming vehicle 

demand) to a user configurable service level. The second template is the 'Dashboard' which 

displays valuable insights about the parking demand, vehicle movements and utilisation of the 

dock. The Dashboard is an interactive and transferrable template that various stakeholders 

could use in different locations to input the parameters and generate results and outputs. The 

overall model development approach ensures a mathematically robust process to ensure the 

outputs' validity based on the observed datasets. 

The model has several applications and provides various stakeholders including transport 

authorities, city planners and property developers, with a user-friendly tool to assess the 

requirements in advance during the planning and approval process of new developments. 

Model applications include space proofing, supporting planning applications, enhancing the 

overall logistics delivery and service operations of a development, and streamlining traffic 

flows in and around the development, making it more attractive to tenants and end-users. 

 

1. Introduction 

Large buildings in urban centres generate significant freight tasks. Vehicular access for 

deliveries and servicing is essential to achieve efficient and productive distribution systems. 

However, the arrangement and provision of loading dock capacity during the design and 

planning processes and development approval is often contentious. In the city centres of many 

major cities where land values are high, servicing capacity is often a cause of disagreement 

between planning authorities and developers.  
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Large buildings (e.g., office towers, residential towers and hotels) have a on-site loading dock 

to allow freight and service vehicles to park and perform their activities within the building. 

This loading dock is part of the building and maybe located underground in the building or on 

the ground floor. It is accessible only to freight and service vehicles, such as mail deliveries, 

food deliveries, electricians, trash collection, or construction services. Freight and service 

vehicles generally access and park in the loading dock at buildings free of charge. The objective 

of planning authorities is typically that the building has capacity to be self sufficient. 

Current processes for arrangement and provision of loading docks demonstrate a limited 

understanding by various stakeholders on the number of goods and services traffic a building 

generates as well as the contribution that an adequate loading dock makes to a successful place 

outcome. There is also a low confidence in current guidelines used in planning processes that 

rely on very outdated data and inadequate articulation of all the considerations needed to 

provide suitable facilities which support existing processes. 

Given the above, there is a need to improve current forecasting models and develop a robust 

approach for the provision of loading docks in large developments so that they are suitable for 

wider use by transportation planners involved in permitting processes for new buildings. 

Ultimately, planning and transportation agencies can use the models to provide a new and 

improved process that provides greater insight, understanding and assistance in evaluating new 

developments and their loading dock provision. This is achieved by identifying a process to 

ensure the approach is mathematically robust to ensure the validity of the outputs as well as to 

enable the easy addition of new data sets. Such an approach will lead to greater trust among 

stakeholders within the Development Approval process and better outcomes for our cities. 

Many building owners consider loading dock facilities to be secondary to maximising valuable 

retail space in new buildings. The result can be inadequate facilities that detract from the 

amenity surrounding a building and create other negative externalities. A building with an 

inadequate design and loading bay capacity relies on roadside space adjacent to the building. 

If off-street loading space capacity is not provided to make a building self-sufficient, and 

roadside space is not available, buildings become challenging to serve, inefficient for 

deliveries, and less attractive to customers, resulting in impacts on the urban environment.  

2. Review 

Currently, the method for determining the size of loading docks typically relies on 

transportation and planning authorities either providing quantities and formulae in their 

Development Control Plans (DCPs) or requiring a property developer to refer to traffic and 

building guidelines issued by local authorities. Models and methods that support the process 

of freight and service vehicles demand estimates are generally outdated and poorly applied.  

The size of a loading dock depends on several key building characteristics, such as the size of 

the building and its primary use and local planning ordinances. Factors influencing the loading 

dock requirement, include the size of the development, it’s primary land use, zoning and local 

regulations, vehicle type mix, operational practices, peak hour volumes, average dwell time 

and characteristics of the loading dock. 

In NSW, loading rates in the DCPs are based on regulations issued by the Roads and Traffic 

Authority (RTA) in 2002, which were produced using driveway counts carried out in the early 

1970s, leading some developers to claim that they are outdated and unreliable. Hence, the 

planning and approval process for the size and capacity of a loading dock goes through several 

rounds of negotiation between authorities and developers until both parties reach a consensus. 

Given the importance of effective freight management to large developments, local 

governments have made several regulations to reduce the reliance on on-street parking for 

freight and service activities. One such approach is necessitating off-street parking in large 
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developments where in Freight and Service (F&S) vehicles do not overload the heavily utilised 

on-street parking facilities, and instead utilise specially designated areas in a loading dock 

inside the buildings (Holguín-Veras et al., 2018). On-site loading docks need to be designed 

appropriately to avoid any mismatch between the requirements of the vehicle and the parking 

space and to accommodate the geometric needs of current and future freight vehicles. The 

delivery characteristics of vehicles including type, size, schedule, type of cargo and the loading 

equipment should be considered in such facilities (Butrina et al., 2017).  

The planning and provision for on-site loading docks in new developments are defined in local 

land-use zoning codes that are regulated by local planning and transport authorities (Chen et 

al., 2017). These building codes provide guidelines for the capacity of a loading dock. The 

recommended number of loading spaces is determined for a land-use type by multiplying its 

relevant parking provision rate by the scale of the development, number of dwellings in a 

residential tower or Gross Floor Area (GFA) in a commercial tower. However, the performance 

approach adopted in these codes provides flexibility to enable a proposal to be supported where 

the proponent can demonstrate to the satisfaction of local authorities that the objectives can be 

met either by provision of a lesser on-site rate or by utilising spare capacity in publicly available 

on-street or off-site parking. Parking provision rates were mostly based on historical studies 

and unreliable vehicle generation estimates that are outdated and do not reflect current 

operational requirements and practices of last mile delivery (Holguín-Veras et al., 2018).  

Further, local authorities often overlook freight demand by receiving establishments and 

incorrectly apply minimum requirements for passenger car parking spaces in the provision of 

loading spaces in commercial or retail uses (Shoup, 2011). This results in developers looking 

only at how they can supply the number of spaces and ignoring the efficiency of the loading 

dock. In some cities such as New York, the focus is mainly on commercial developments while 

no loading requirement exists for residential buildings. Most planning regulations do not 

specifically discuss how on-site docks should be set or managed to facilitate efficient loading 

infrastructure for F&S vehicles. Supply is further constrained by lack of freight elevators that 

increase delivery times to large establishments and lead to higher average parking times for 

vehicles and lower rates of parking turnover. Having access to a freight lift can reduce  delivery 

service times (Jaller et al., 2013 and Bassok et al, 2013). However, it was noted that there are 

no requirements for freight elevators in many US cities, including New York. 

Relevant literature ranges from evaluation of commercial parking availability and demand-to-

supply ratio at different times of day to simulation models of urban commercial parking 

behaviour. Three major approaches applied for evaluation and selection of loading 

infrastructure for F&S vehicles are econometric models and freight generation approach, 

optimisation models and facility location problem approach, and traffic simulation approach.   

In econometric models, the primary consideration is that the choice of parking space or freight 

generation is influenced by social, economic and environmental factors such as number of 

parking spaces available, parking price, accessibility, seeking time, and multiple other 

parameters related to the driver (Parmar et al., 2020). This approach models parking or freight 

generation as a function of average turnover rate, parking lot occupancy, parking price impact 

coefficient, level of service of parking facility, motor vehicle growth, differences in land uses 

(Jaller et al, 2013; Dalla Chiara and Cheah, 2017; Chiara et al, 2020). These works are in search 

for efficient models that can estimate the number of freight vehicle trips attracted and produced 

by urban establishments. Some publications define the parking demand rate as a freight trip 

generation rate multiplied by the average parking time. The freight trip generation rate has been 

traditionally estimated as a function of the number of employees, type of industry, 

establishment area or land use. Parking supply is defined as the number of parking spaces. A 

large number of these studies applied disaggregate data-driven models to capture freight 

drivers’ parking behaviour. Modelling of such systems usually involves regression based 
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methods (Sánchez-Díaz, 2017). The aim is to build a predictive model that uses data and 

statistics via mathematical and computational methods to forecast outcomes with data models. 

Parameters help explain how model inputs influence the outcome. Predictive modelling is often 

performed using curve and surface fitting, time series regression, or machine learning. 

The second optimisation modelling approach relies more on data driven complex mathematical 

methods to find a feasible solution for the optimal location or configuration of the loading 

facility (Aira and Taniguchi, 2006; Muñuzuri et al., 2012; Figliozzi and Tipagornwong, 2017). 

Techniques such as genetic algorithms are often employed in such an approach using very 

complex datasets. However, these models require a high level of computational approaches by 

software solvers and are not easily transferrable to a real-life context. The final approach 

considered by researchers is based on traffic simulation and is in general, less explored than 

the other two approaches discussed in literature. This more holistic approach considers various 

aspects of freight management such as the preliminary phase, planning requirements, 

management aspects, and control as parts of a single integrated system to accurately represent 

transportation networks and loading zones, generate commercial vehicle trips and their parking 

times and estimate delays for commercial vehicles (Nourinejad et al., 2014; Comi et al., 2018). 

3. Data Collection 

To develop a prediction model, a comprehensive data collection effort was conducted by 

TfNSW to survey buildings of varying sizes, anticipated vehicle types, and land use types. The 

project team collected detailed parking surveys “driveway counts” of 17 different buildings for 

the parking activities of freight and service vehicles that used the on-site loading docks in these 

buildings to park their vehicles. The parking activities were collected from 12 different 

commercial buildings and five residential towers. Additionally, the sample included a diverse 

range of building characteristics “commercial area, retail area and/or residential area” in order 

to ensure a representative sample of the most common buildings in central business district of 

Sydney. For instance, the size of commercial buildings ranges from smallest building having 

15,000 m2 of commercial area, while the largest building has 57,000 m2 of commercial area 

with 42 floors. Moreover, residential towers range from a building with 14,000 m2 residential 

area with 211 apartments on 17 floors to the largest tower having 38,000 m2 residential area 

with 292 apartments on 50 floors. The surveys were conducted over a three-weekday period, 

"Tuesday, Wednesday and Thursday" during different weeks in November and December 

2020. These weekdays were selected because they represent the busiest weekdays for freight 

and service vehicle visits in Sydney CBD based on TfNSW traffic counts. Loading docks were 

observed throughout the 24 hours, and each parking event was recorded. The surveys also 

captured where the F&S vehicle parked on the street close to the building. 

The template contained variables for three main categories: building information, loading dock 

characteristics and parking events of each unique F&S vehicle as shown in the template in the 

Appendix (Figure 5). Data captured for buildings included the land-use types, areas, and 

number of floors. Loading dock characteristics collected included operational hours, number 

and size of loading bays and number of loading elevators. Details recorded for each parking 

event included date and arrival time, vehicle type, activity type and exit time. 

Due to the ongoing pandemic (COVID -19), the sample size was somewhat smaller than 

expected. This was also due to specific privacy issues. Thus, the model and analysis are based 

on the observations and data collected from 17 buildings. A robust assessment of the raw data 

was conducted to understand the various patterns associated with vehicle arrivals, types, 

durations and relationship to land use. Figure 1 shows sample charts that were produced by the 

descriptive analytics of the raw data obtained in the parking surveys. 
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Figure 1. Snapshot of the analysis conducted into assessed buildings 

4. Model Development 

The model's main aim is to develop a decision-support system using a predictive model to 

estimate the levels and types of freight and servicing activity and hence the parking demand 

and recommend the optimal dock configuration for the planned building.  

The following objectives were defined to achieve the overall aim: 

(i) estimate the vehicle movements, i.e. total number of daily movements of freight and service 

vehicles that a proposed building will typically generate, 

(ii) estimate parking demand based on vehicle movements and building characteristics, 

(iii) develop an optimal dock configuration, i.e. determine the recommended number of parking 

spaces (small, medium, and large spaces) in a loading dock in the proposed building to 

efficiently accommodate the estimated vehicles, 

(iv) assess the efficacy of the recommended dock configuration, and 

(v) facilitate a flexible and scalable approach for model inputs to add future datasets efficiently. 
 

The decision-support tool was developed using a predictive modelling approach that 

incorporates Regression Analysis with a Clustering technique. The selection of the mathematic 

approach to building the DSS using predictive modelling was based on several factors: 

(i) systematically promoting a versatile and scalable method for model inputs, allowing 

different datasets and new variables to be used (e.g. new land-use types or vehicle types), 

(ii) being ideal for typical land-use styles and building sizes, 

(iii) externalisation and sharing of the model and its outputs to external stakeholders were made 

possible by the modelling environment transferability. Using freely available analytics 

platforms, the model could be shared as an interactive tool (e.g. MS Excel), and 
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(iv) prescriptive analytics may be used to assist decision-makers in deciding on a course of 

action and providing appropriate suggestions based on future predictions and inferred 

observations and trends in datasets. 

 

The model uses data collected from the surveys conducted at 17 different buildings, including: 

(i) Building Information capturing the relevant characteristics for each of the buildings, 

(ii) Loading Dock Characteristics, capturing the parameters for the loading docks, and 

(iii) Parking events of each unique F&S vehicle accessing the loading dock, capturing the 

vehicle activities with each data point representing a different unique parking event for an 

individual F&S vehicle that is parked in a loading dock during that specific day. 

Model constraints includes vehicle types, activity types (delivery, pickup, service & 

maintenance, waste, construction), variable dwell time per vehicle class, operating capacity of 

the loading space per hour across the day, estimated vehicle movements and allocation of 

loading space types. The mathematical approach (regularised general linear model with 

clustering) allows relatively effortless updating of results when new surveys become available.  

The approach involved data entry, demand inference and computing peak demand. For each of 

the 17 buildings, vehicle records were captured over three working days. Data was used to 

generate descriptive statistics. Demand was calculated for each time point t (minute) of each 

of three days for each building for small, medium and large vehicles. The peak demand for 

each vehicle class for each building over the three days was corrected for outliers. As minimum 

and maximum are unbounded - there can be very unusual values that are not informative. We 

used the 99th percentile of peak demand instead of the absolute maximum so that extremely 

unusual demand situations occurring less than 1% of the time are neglected to exclude sporadic 

demand. This approach is standard in empirical research and is known as 1% winsorisation 

(Wilcox, 2005). 

The peak demand was modelled by creating three models: one for each vehicle class, based on 

17 observations (1 per building). This model was intended to predict peak demand for each 

vehicle class for a given building, using residential area, number of apartments, commercial 

and retail area, and availability of a dedicated elevator as inputs. The potential pool of 

predictors was based on the conceptual model, which considered moderating effects of the 

number of floors, presence of a dedicated elevator, and primary use type on the relationship 

between residential, commercial, and retail space peak demand. 

The estimation procedure was selected according to several criteria that allow the inclusion of 

nonlinearities (such as log-linear relationships instead of linear ones) and interactions to 

account for the possibility of a differential effect of one variable on the outcome depending on 

the value of another variable. The model should be able to work with many predictors when 

the sample size is small. Regularised generalised linear regression models appeared to meet the 

above criteria. Regularisation essentially means eliminating irrelevant predictors. The LASSO 

and the stepwise variable selection minimisation technique selection techniques were used. 

Separate relationships were estimated for the demand for small, medium and large vehicles 

based on the amount of retail and commercial area as well as based on the number of residential 

apartments and the number of dedicated elevators. The model implies that having dedicated 

freight elevator results in a faster turnaround of vehicles in the commercial's building dock. 

Despite the natural presence of some unexplained heterogeneity in peak demand across 

buildings, the resulting set of three models was shown to fit data reasonably well. Predicted 

demand values and actual demand across the 17 buildings are strongly correlated as Pearson's 

correlation coefficient of 0.89 represents a high (strong) correlation. The mean absolute error 

(MAE) is two vehicles, which is a good result considering that the total demand varies across 
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17 buildings from 5 to 21 with a mean of 9.4 and standard deviation of 5. The R2 of the 

predictive model is 0.79, which indicates a reliably accurate model prediction for the demand. 

Although peak demand “maximum parking demand throughout the whole day” varies 

depending on the building's size and other factors, intra-day trends of relative demand 

(percentage of peak demand) were found to be consistent across buildings of the same primary 

use category. Simply, the demand patterns based on relative demand is more accurate than 

values of demand, i.e. more accurate to predict that 45% of peak demand in a building happens 

at 9:35AM than predicting three small spaces are specifically occupied at 9:35 AM. 

Buildings were clustered using all 18 variables produced using the six time periods and three 

vehicle classes present in the model to reveal common shapes of intra-day dynamics of relative 

demand (for example, average relative parking demand for small vehicles from 6 am to 9 am 

and so on). Two distinct clusters were discovered using a model-based clustering technique. 

Cluster one is distinguished by a distinct peak between 9 am and 12 pm. Cluster 2 lacks a 

consistent peak and has a more evenly distributed parking demand during the day. It was 

discovered that revealed clusters are linked to the primary use sort. Cluster membership 

prediction is rational and straightforward since all primarily commercial buildings belong to 

cluster 1 and all primarily residential buildings belong to cluster 2. 

The model outputs have been summarised in the below list:   

(i) Characterisation of the freight and service (F&S) vehicle movements, including arrivals 

volume, profiles, distribution, and parking duration at any given time for each vehicle class 

and activity type category. 

(ii) Estimation of the parking demand for the three most popular vehicle groups (van/ute, SRV, 

and MRV/HRV) at various time intervals during the day. 

(iii) Recommendation for the number and distribution of the three types of loading spaces that 

should be used (small, medium and large) in a loading dock. 

(iv) Capacity evaluation and use of suggested loading spaces (performance and efficacy 

evaluation) for the estimated F&S vehicle movements of the three major vehicle groups at 

various time intervals. 

5. Model Application 

The two main outputs of applying the predictive modelling approach to create the DSS resulted 

in two model templates, the Optimisation Solver and the Dashboard (Figure 2). Determining 

an optimal number of parking spaces while keeping the desired efficacy levels is an 

optimisation problem. Microsoft Excel's Solver Add-in has been used to generate a solution to 

this problem as illustrated for the example building shown in Figure 2. The optimisation 

algorithm searches over various combinations of small, medium and large spaces to find the 

optimal solution that meets the required efficacy level of meeting a certain threshold of parking 

demand. Simulated demand for a building with user-specified characteristics is carried out and 

then assessed to the extent to which a given dock configuration can meet the simulated demand. 

Peak demand was determined based on the regression coefficient and the input building 

characteristics. Peak demand (maximum daily demand) was highly dependent on building 

characteristics. Best-fitting regression models were calculated to allow for peak demand 

prediction for small, medium, and large vehicles based on building characteristics. Forecasts 

are strongly associated with real data and make sense from a domain knowledge perspective. 

Overall, the optimal dock configuration recommended by the optimisation solver does not only 

focus on satisfying the estimated parking demand, but also considers minimising the overall 

area of the dock and other supporting regulations such as specified minimum number of loading 

spaces for medium and/or large vehicles. Hence, the multi-criteria perspective applied in the 
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decision-support process facilitates considering the various requirements and expectations of 

the different stakeholders.  

 

 

 
Figure 2. Optimisation Solver outputs 

The Dashboard provides additional valuable insights into a building’s freight and servicing 

activity levels and loading dock operations and efficiency through several parking 

characteristics (Figure 3). This allows users to understand the performance of operations, dock 

occupancy, peak requirements and parking availability throughout the day. For instance, the 

efficacy of different dock configurations can be compared with the likely success of the 

recommended loaded spaces in meeting different parking demand thresholds. Additionally, the 

highest and lowest hour intervals are identified in terms of highest parking demand, vehicle 

arrivals by class, activity visits and success and/or failure to accommodate incoming vehicles.  

Different stakeholders could directly utilise these outputs to optimise further (as an example) 

any new delivery vehicles could be provided with an appropriate time slot when the overall 

activity levels are low within the day. These insights provide an ability to develop a booking 

management system to schedule freight and service vehicle trips. 

The Dashboard provides many additional valuable insights into building’s freight and servicing 

activity levels and the loading dock's operations and efficiency through several parking 

characteristics. This has many use cases to understand the performance of the operations, 

occupancy of the dock, peak requirements, parking availability at the time of the day. For 

instance, the efficacy of different dock configurations can be compared in terms of the likely 

success of the recommended loaded spaces in meeting a different threshold of parking demand. 

Additionally, the highest and lowest hourly intervals are identified in terms of highest parking 

demand, vehicle arrivals, vehicle classes and activity visits and success and/or failure to 

accommodate incoming vehicles. 
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Figure 3. Snapshot of the dashboard outputs 
 

Different stakeholders could directly utilise these outputs to optimise further (as an example, 

any new delivery vehicles could be provided with an appropriate time slot when the overall 

activity levels are low in the day). These insights provide an ability to develop a booking 

management system to schedule freight and service vehicle trips. 
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6. Discussion and Implications 

The model could be shared as an interactive tool using publicly accessible analytics software. 

Prescriptive analytics can help decision-makers choose a course of action and make 

recommendations based on potential forecasts, inferred findings, and patterns in datasets.  

The acquired knowledge and insights from existing loading docks facilitates an enhanced 

understanding and depicts an accurate picture of the current utilisation of docks by F&S 

vehicles. Moreover, the data-adjusted decision-support tool developed overcomes the 

shortcomings of existing dock provision approaches and provides all the stakeholders involved 

in new building approval applications with an enhanced understanding and confidence about 

the optimal configuration of loading docks in new major developments. For instance, the model 

outputs offer detailed characterisation scenario analysis of the likely efficiency of different 

dock configurations, as shown for the example building illustrated in Figure 4 below. 

 

 

 
Figure 4. Efficiency of Different Dock Configuration (different combination of loading spaces) 

The model templates allow users to compare the suitability and efficacy of different dock 

configurations in terms of accommodating the estimated parking demand and vehicle arrivals. 

This will contribute to greater confidence and less contention between different stakeholders 

within the building planning and approval process. Moreover, the model helps plan an optimal 

loading dock configuration that keeps a balance between the amount of space required and 

fulfils the freight and service vehicle demand optimally. Thus, eliminating issues around long 

queueing times, a large share of vehicles parking illegally, and road safety concerns when the 

drivers load and unload goods on the street. Urban planners may take a proactive approach to 

incorporate the derived knowledge on vehicle movements and parking demand in land-use 

ordinances of on-site loading docks for sustainable integration with sensitive surrounding uses.  

Additionally, the outputs from the model could allow local authorities to recommend 

supporting measures and regulations to accommodate vehicles' different operational 

requirements and practices. For example, off-peak delivery programs could be considered to 

encourage F&S vehicles to utilise loading docks during off-hours with a broader aim to reduce 

non-essential traffic from the road network during peak hours. The idea of creating a 

consolidation centre where the F&S operations of several adjacent but inter-connected 

developments could be consolidated should be pursued further. These criteria are supported by 

the model as most activities happen during peak hours, which may be used to explicitly 

promote the evaluation of such proposals, including testing off-peak delivery schedules. 
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7. Conclusions and Outlook 

Freight and service vehicles need to park close to their customers, and they require an 

operationally effective loading dock to perform their services in buildings. However, an onsite-

loading dock becomes a viable solution only when enough spaces are present. 

Regression and clustering analysis techniques used to develop the predictive modelling 

methodology promotes a versatile and scalable model input system that allows different 

datasets and variables to be used (e.g. different land-use types and/or vehicle types). Due to its 

value and applicability, this method is ideal for the most common land use forms and sizes. 

The predictive model was not intended for a certain form or size of a building. The 

transferability of the environment/platform modelling will allow the model to be externalised 

and accessed by relevant external stakeholders. Additionally, the inclusion of a diverse and 

representative list of buildings with a different mix of land-use types “commercial, residential 

and retail” in the collected parking surveys and model inputs facilitates producing valid and 

reliable estimates for most common building types and sizes that are common in CBDs.  

In terms of model implementation, stakeholders should be mindful of data quality and 

coverage. The stronger the input data (in terms of data quality, coverage, survey program size 

and scale and various building types covering all sizes and activity types), the higher the 

predicted degree of model robustness. Other variables that may influence data inputs include 

seasonality, holiday times, and other factors such as demographics of property tenants, which 

affects the length and demand for service vehicles. 

There are a few limitations of this study that include the relatively low number of collected 

parking surveys, as the relatively low response rate indicates there might be other types of land-

use categories that might have been excluded from the analysis. The relevance of the developed 

decision support system is highly dependent on the relevance and representativeness of the 

model inputs. However, the difficulty of accessing and observing a larger number of 

commercial buildings in the highly competitive CBD area could be expected due to the 

extremely busy and challenging business environment for the various building management 

business tenants in these buildings that might be reluctant to participate in such surveys.  

Hence, there are several future research directions that could be recommended to improve the 

applicability and usefulness of the developed model. The model will be further enhanced by 

including new datasets from other building types in future. Further studies can expand the 

model by applying more effort to create a template that would capture the operational setup of 

a loading dock and the underlying building regulations and business requirements of building 

tenants. A future study could focus on incorporating freight demand management initiatives 

such as off-hour deliveries, consolidated deliveries and booking systems that would reduce the 

number of delivery vehicles entering loading docks. 
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Appendix 

 

Figure 5. Parking Survey Template used in the Data Collection Process 


