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1.Introduction 

With the advance of self-driving technologies, ride-hailing companies would likely deploy their 

company-owned fleets of automated taxis (a-taxis) to explore new business opportunities and 

benefits. Therefore, this research aims to investigate the effects of a mixed fleet of vehicles, 

autonomous and human-driven, in the market. It tries to optimise relevant operational variables 

to maximise the platform’s profit and improve the overall service quality. 

Since the sharing economy and autonomous vehicle (AV) concepts are relatively new, there 

exits only a few publications investigating the operation of a mixed fleet and market 

segmentation. Most fleet management and dispatching studies focus on a single mode, either 

traditional taxis or ride-hailing vehicles (Horn, 2002; Maciejewski et al., 2016; Nourinejad and 

Ramezani, 2020). This paper identifies optimal price and wage structures for human-driven 

vehicles (HVs) while controlling the fleet size of active AVs. By utilising an event-based 

simulation as the plant, this research applies a model predictive control (MPC) approach based 

on a market state model. 

2. Market simulation 

The overall simulation structure can be summarised with four components, a group of 

individuals (passengers) interact with another group (vehicles including AVs and HVs) via a 

mechanism (trip match algorithm) in an environment (road network). 

 

The simulation considers the road network in Manhattan. Geographic information is obtained 

from OpenStreetMap before they are filtered (to remove irrelevant road types), pruned (to 

remove unconnected roads or isolated sub-network), and grouped (to reduce duplicated or very 

close coordinates). The result is a strongly connected directed graph, with roads as edges and 

intersections as nodes. In this simulation, microscopic traffic conditions are simplified by 

assigning time-invariant unique road speeds which are pre-calculated and calibrated. 

 

Passengers are constructed based on New York City Taxi & Limousine Commission (NYC 

TLC) yellow taxi trip records in June 2016. Passengers make trip requests based on historical 

data. In addition, a passenger needs to select a type of vehicle between AV and HV before 

requesting, and the passenger may cancel the request if it takes too long to be assigned to a 

vehicle of the chosen type. 

Three types of service vehicles are available: an autonomous vehicle (AV), a human-driven 

vehicle (HV), or any other mode of transportation such as active modes or public transport 

(others). This decision-making is simulated by a Logit choice model based on the generalised 

cost (GC) of each choice as its (dis)utility which consists of a monetary cost (trip fare) and a 

non-monetary cost (waiting time), as shown in the following equation: 

GC𝑚 = (𝑓1
𝑚(𝑡) + 𝑓2

𝑚(𝑡) 𝑡o) + 𝜔 (𝜙𝑚 𝑡a
𝑚)        ∀ 𝑚 ∈ {AV, HV} 

where, 
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GC𝑚 is the generalised cost of vehicle type 𝑚, which is either an AV or HV; 

𝑓1
𝑚(𝑡)  is the flag-off fee, which is a time-varying control variable; 

𝑓2
𝑚(𝑡)  is the add-on price per unit time, which is a time-varying control variable; 

𝑡o  is the expected trip time for the passenger; 

𝜔  is the passenger value of time, used to quantify the non-monetary cost; 

𝑡a
𝑚  is the waiting time to the nearest vacant vehicle of type 𝑚 when making a request; 

𝜙𝑚  is an approximation coefficient to calculate the estimated waiting time from 𝑡𝑤
𝑚. 

 

Without loss of generality, GC for other modes is grouped and assumed to be fixed as $25. 

Once a passenger selects either an AV or HV, the platform would try to assign a vacant vehicle 

to the trip request based on the matching algorithm (see Section 2.4). If the passenger selects 

other modes or fails to be assigned a vehicle for some extended time, the request would be 

cancelled which incurs penalties. In this simulation, a passenger may wait for some time ranging 

from 30 to 90 seconds. 

 

This paper considers two main labour market theories: the neoclassical theory and the income-

targeting theory. Generally, neoclassical drivers are motivated to work more when the wage is 

higher because of the higher expected income (Farber, 2015). In contrast, income-targeting 

drivers have a desired level of daily income, so they would stop working after reaching it. A 

higher wage could cause earlier termination and fewer work hours (Camerer et al., 1997). 

Each neoclassical HV has an opportunity cost to compare against the expected gain of working 

in the ride-sourcing market. This cost represents alternative preoccupations so that it is only 

profitable to work if the benefit exceeds the cost. The expected benefit is calculated as the 

product of the system utilisation ratio 𝜃HV, and the dynamic wage 𝑔HV. The value of 𝜃HV is 

calculated as the ratio of occupied HVs to total HVs, updated after each drop-off. Likewise, 

drivers make the same comparison to decide whether to leave or stay in the market. Each 

income-targeting HV has a daily income goal. Different targets can reflect whether the driver 

prefers full-time or part-time shifts. An income-targeting HV would always start working at 

their preferred starting times, and end working after a passenger drop-off if the target is reached. 

 

Without repositioning, a vacant vehicle remains stationary until the matching system assigns it 

to a waiting passenger. The assigned vehicle picks up the passenger and moves to the requested 

destination via the shortest travel time path, then waits for the next assignment. AV supplies 

are directly managed (by the company), while HV supplies are more unpredictable and dynamic 

as a result of individual driver’s work preferences. 

The demand and supply are matched via a central platform. A batch matching algorithm with a 

fixed interval (e.g. 10 seconds) is used to pair a set of unassigned trips with vacant unassigned 

vehicles. A complete bipartite graph is used to represent all possible pairs with each edge weight 

representing the travel times for pick-ups. A minimum-weight full matching solution thus gives 

the optimal assignment plan. For a complete bipartite graph, the number of matched pairs is 

equal to the size of the limiting set, thus there are min{𝑝w(𝑡), 𝑛v(𝑡)} assignments at time 𝑡, 

with 𝑝𝑤  waiting passengers and 𝑛𝑣  vacant vehicles. Matching is conducted separately and 

independently for AVs and HVs at every interval. 

3. Market control 

Market management can be dynamically optimised with a model predictive control (MPC) 

approach. The MPC uses a state prediction model to estimate future market conditions within 

a definite horizon and optimise variables such as wages offered to HVs, passenger fares, and 

the fleet size of AVs to maximise platform’s profit. Figure 1 illustrates the method framework 
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with two main parts, the simulation plant and the MPC. The plant models individual behaviours 

and market dynamics (Section 2). The MPC is executed at discrete time intervals to maximise 

the net profit which consists of revenues from passenger fares, expenditure from HV driver 

wages, and AV operational expenses. Order cancellations induce penalties in the objective as 

the service quality is compromised. 

 
Figure 1: Methodology framework. The plant simulates market interactions between passengers, drivers, 

and AVs. The controller relies on a dynamic state prediction model to optimise control inputs and 

maximise platform profit. The model receives state corrections from the plant at specific instances. The 

MPC computes the optimal control values in a receding horizon manner. 

 
 

The market states are modelled as a set of difference equations. Vehicle states change from 

(v)acant, to (a)ssigned, then (o)ccupied, and finally vacant again via the matching, picking-up, 

and dropping-off events respectively. Variable ∆𝑁𝑚(𝑡)  is the net number of vehicles 

entering/exiting the market, which is controlled for AVs and estimated for HVs; ∆𝑁p(𝑡) is the 

number of new passenger requests; 𝛽1, 𝛽2, 𝛽3 are a linear coefficients for estimating passenger 

drop-offs, pick-ups from assignments, and order cancellations respectively. 

MPC-optimized variables include passenger fare prices {𝑓1
AV(𝑘), 𝑓2

AV(𝑘), 𝑓1
HV(𝑘), 𝑓2

HV(𝑘)}, 

wages offered 𝑔HV(𝑘), and the change in AV fleet size ∆𝑁AV(𝑘). By manipulating these 

control inputs, the platform aims to maximize its total profit for each receding horizon from 𝑘0 

to 𝑘0 +  ℎ. The profit depends on (i) revenues from passengers choosing either HV or AV 

service, reserved when making trip requests; (ii) wage payments to HVs, registered when 

assigned to passengers; (iii) constant operational cost of active AVs; and (iv) penalties from 

passenger order cancellations which offset the respective reserved revenues. 
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4. Results 

Table 1 presents simulation statistics for two scenarios to demonstrate how the plant reacts to 

changes in driver wage rates. The first scenario applies a constant wage rate throughout the 

simulated period and the second scenario applies time-varying rates. Wages are manually 

increased to attract more drivers to participate during peak hours, such that passenger demand 

can be better served. As the result indicates, a higher unit wage can attract more neoclassical 

drivers and reduces the total number of order cancellation. However, it also leads to more 

expenditure paid to drivers and eventually less overall profit. Although this specific pricing 

plan is not optimal, it shows how the wage variable can impact the market operation. 

Table 1: Simulation statistics 

 Scenario 1 Scenario 2 

Passenger fare (fixed) HV = $3 + $0.8/min in-vehicle travel time 

AV = $6 + $0.6/min in-vehicle travel time 

AV fleet size (fixed) 200 

HV wage rate $50/hr (fixed) $50/hr (04:00 – 07:00) 

$60/hr (07:00 – 11:00) 

$40/hr (11:00 – 18:00) 

$60/hr (18:00 – 22:00) 

Passenger mode choice 

HV/AV/others 

 

39801 / 9932 / 16052 

 

39331 / 10074 / 16380 

Total assignments 

HV/AV 

 

33748 / 8940 

 

34215 / 8879 

Total order cancellation 

HV/AV 

 

6053 / 992 

 

5116 / 1195 

Total profit $147,841.34 $86,076.15 

Trip statistics (HV / AV) 

Median trip distance (m) 

Median trip time 𝑡o̅ (min) 

Median pick-up time 𝑡a̅ (min) 

Median trip fare ($) 

 

6145 / 7319 

9.77 / 11.65 

6.00 / 8.12 

$10.81 / $12.99 

 

6122 / 7195 

9.75 / 11.55 

6.45 / 8.20 

$10.80 / $12.93 

HVs (neoclassical / income-targeting) 

Total participation 

Median daily income 

Median hourly income 

Median work hours 

 

557 / 1283 

$69.10 / $117.32 

$22.50 / $22.90 

3.06 / 5.18 

 

903 / 1242 

$103.01 / $136.48 

$28.48 / $28.73 

3.28 / 4.60 



ATRF 2021 Proceedings 

5 

Figure 2: 30-minute rolling horizon prediction of market states between 08:00 and 09:00, with historically 

fitted 𝜷𝟏, 𝜷𝟐, 𝜷𝟑 parameter values. The plant corrects state values every 5 minutes. Exogeneous demand and 

supply values are assumed to be given. Grey lines are the actual values and coloured lines are predictions. 

 

Figure 2 plots the predicted system state values based on dynamics described in Figure 1. 

Parameter values 𝛽1
𝑚, 𝛽2

𝑚, 𝛽3
𝑚 are obtained from linear regression models of historical system 

data for both AVs and HVs. The simulation set state corrections every 5 minutes such that 

values can be estimated for the next 30 minutes. Exogeneous demand and supply values are 

assumed to be known in this example to show how well the linear coefficients can predict 

market conditions. As shown in the figure, the fluctuation in 𝑝w
𝑚 can be captured if the number 

of new demands is known. However, the fluctuation in 𝑛a
𝑚 and 𝑛o

𝑚 is not always reflected by 

assuming linear coefficients. This suggests a more complicated model may be necessary. 
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