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Abstract 
This paper proposes a combined framework of Lighthill–Whitham–Richards (LWR) 

shockwave theory with Kalman Filter (KF) for real time vehicular queue length estimation at 

signalized intersections on urban arterial roads. LWR shockwave theory was used as the base 

to identify traffic state changing points (e.g., capacity, jam density, free flow), which we call 

break points by relying on high resolution (2 seconds) traffic signal data. Once we identify the 

traffic state changing points, time at which these points occur can be used to reconstruct the 

shockwaves happening at the intersection in each signal cycle. Finally, these shockwave speeds 

were utilized in calculating the maximum queue length of each signal cycle. This model can 

identify traffic state changes that distinguish upstream arrival traffic flow from queue formation 

flow (jam density state). Thus, this approach can estimate time varying queue length even when 

the signal links are over saturated with long queues.   Although shockwave theory successfully 

describes the complex queuing process, these models assume known vehicle inflows, which 

cannot be satisfied for most of situations. In our methodology we incorporate a different 

framework to estimate the vehicle arrivals by using 2 seconds vehicle detector data and adjacent 

Bluetooth detector data from the upstream intersection for real world applications. This 

estimation model can be applicable to scenarios when detailed “event-based” data are not 

available. The estimated maximum queue length has been evaluated using simulated ground 

truth data using AIMSUN. Evaluation results demonstrate that the proposed models can 

estimate long queues with satisfactory accuracy with the availability of only 2 seconds vehicle 

occupancy data, arrival flow and known signal timing data. Expansion to the base model is 

proposed using Kalman Filter (KF) to improve the reliability of the proposed model.   

Limitations of the proposed model are also discussed in the paper. 
 

1. Introduction 

Real-time queue length is a crucial information, which is increasingly needed for signal 

operation and signal optimization purposes. Essentially, two distinct model types have been 

proposed to tackle the real-time estimation of vehicle queues in signalized intersections. The 

first type is based on the analysis of cumulative traffic input–output to a signal link, was first 

proposed by Webster (1958) and later improved by several researchers. Nevertheless, this 

particular approach has significant drawbacks in estimating long queues that exceed beyond a 

specific detector location. Second type of models are constructed based on the analysis and 

modelling of traffic shockwaves. Shockwave theory was first demonstrated by Lighthill and 

Whitham (1955) and Richards (1956) for uninterrupted flow; and later expanded to signalized 

intersections. Even though shockwave theory can successfully explore the complex queueing 

process in both temporal and spatial dimensions, in real world applications the main drawback 

is that it assumes a known and steady vehicle inflow which is hard to infer without upstream 

detectors further away from the stop line. Without such arrival state information, existing 
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shockwave models cannot be utilized to estimate intersection queue lengths (Liu et al., 2009). 

In recent years, many researchers have utilized trajectory data readily to infer key traffic 

parameters, i.e., traffic volumes and the fundamental diagram (FD) parameters (e.g., free flow 

speed, capacity, jam density). Nonetheless, it has been widely recognized that one challenge 

for traffic state estimation using vehicle trajectory data is its low penetration rate (Wang, Huang 

and Lo, 2019). 

 

The objective of this paper is to develop a methodology to estimate long queues with the 

availability of high-resolution vehicle detector occupancy data, signal timing data and vehicle 

inflow. We are particularly interested in the maximum queue length that occurs in each signal 

cycle. In this study, we emphasize the fact that high resolution detector data, in our case 2 

seconds occupancy data, could be utilized in identifying traffic flow pattern changes. We apply 

the shockwave theory together with such high-resolution traffic data collected from loop 

detectors to estimate maximum queue length accurately.  

 

2. Methodology 

2.1. Shockwave analysis and break point identification 

The relationship between flow and density at any point of the road is known as the fundamental 

diagram (FD). FD can be fully calibrated with three parameters: capacity 𝑞𝑚, free flow speed 

𝑉3 and jam density 𝑘𝑗, as shown in Figure 1a. Other parameters can be derived from them, such 

as critical density (𝑘𝑚 = 𝑞𝑚 𝑢𝑓⁄ ) and congested wave speed (𝑉2 = (𝑞𝑚 − 0) (𝑘𝑚 − 𝑘𝑗)⁄  ). 

Shock waves are an imaginary type of waves appearing at a road segment closer to an 

intersection due to the stop and go nature of vehicles. Accordingly, three main types of shock 

waves occur at a signalized intersection within one signal cycle namely, queue formation wave 

(𝑉1), queue discharge wave (𝑉2),  and the departure wave (𝑉3) respectively. If the queue is not 

cleared within one signal cycle, another shock wave called residual queue forming wave (𝑉4) 

will be formed. Detailed formation of these shockwaves appears in many literatures such as 

(Skabardonis and Geroliminis, 2005) and (Liu et al., 2009) and will not be discussed in detail 

in this section. These shockwaves can be represented in a space time diagram aligned with the 

signal timing (red timing and green timing) of a signal cycle (refer Figure 1b).  

 

In this study, break points are defined as the points in time at which the traffic state changes 

occur. These break points can be identified by exploring the high-resolution occupancy data 

obtained via vehicle loop detectors. In Figure 1b, points A, B and C illustrates the break points 

observed at the vehicle loop detector site placed upstream of the stop line. We utilized 

occupancy data recorded every 2 seconds from the STREAMS database to identify these 

defined break points at which traffic state variations occur.  Our methodology is initiated based 

on the methodology proposed by (Liu et al., 2009). They utilize high-resolution “event-based” 

data which contains vehicle events and signal events. This study considers two shockwaves, 

namely the queue discharge (𝑉2) and the departure wave (𝑉3) to identify the intersection point 

corresponding to the maximum queue length 𝐿𝑚𝑎𝑥
𝑛 . The study does not make use of 𝑉1 as it 

heavily depends on the arrival flow which is not observable in their methodology. 

 

In this study, we execute a similar approach in the absence of event-based data (only using 2 

seconds occupancy data). The performance of the developed analytical models for the 

maximum queue length estimation in a signal cycle were further improved by utilizing them in 

a univariate Kalman filter framework explained in section 2.2.  
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Figure 2 summarizes the implementation algorithm in calculating the maximum queue length. 

Once we get the 2 seconds occupancy data through simulation, with the available signal cycle 

timing information the algorithm separates the signal cycle to green and red phases and then 

defined threshold conditions are applied to identify points A, B and C. Next, the times at which 

these break points occur 𝑇𝐴 , 𝑇𝐵 , and 𝑇𝐶  are inferred and used to calculate the shockwaves. 

Finally, the maximum queue length at each signal cycle is calculated using the calculated 

shockwave speeds.  

Figure 2: Implementation steps of queue length estimation algorithm 

Break point identification is challenging using 2 seconds occupancy data compared to utilizing 

event-based data, but not impossible. Figure 3 depicts how A, B and C break points are identified 

using 2s occupancy data. We defined separate threshold values for the occupancy data recorded 

to identify each of these break points. In detail, the time that point A appears (𝑇𝐴) is the moment 

that the queuing shock wave 𝑉1  propagates backward to the location of the loop detector. 

Between 𝑇𝑟
𝑛 (start of red phase) and 𝑇𝐴, the vehicles pass the loop detector with the traffic state 

Figure 1: a. Fundamental diagram, b. Shockwave diagram at a congested intersection 

a 

b 
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(𝑞𝑎
𝑛, 𝑘𝑎

𝑛) while between 𝑇𝐴 and 𝑇𝐵, no vehicle can pass the loop detector because of the jam 

traffic condition (0, 𝑘𝑗). Point A is not difficult to identify; as after 𝑇𝐴, the detector is occupied 

for a relatively long time, so the value of the detector occupancy time is relatively large. In this 

study, based on our observation, if there is an occupancy change from less than 100% to 100% 

occupancy and if the occupancy value is kept at 100% for more than 4 s (2 of 2-seconds time 

intervals) within red phase, it can be categorized as a “A” break point. 

Point B indicates the time (𝑇𝐵) that the discharge shockwave passes the detector. Between 

effective green start 𝑇𝑔
𝑛and, 𝑇𝐵 the traffic state over the detector is (0, 𝑘𝑗); after 𝑇𝐵, vehicles are 

discharged at saturation flow rate and traffic state changes to ( 𝑞𝑚 ,  𝑘𝑚 ). based on our 

observation, if the occupancy remains 100% at least for two consecutive time intervals and then 

drops to a lower value than 100% occupancy within green phase, it can be categorized as a “B” 

break point. 

Identification of point “C” is the most challenging step. Point C indicates the time (𝑇𝐶) when 

the rear end of queue passes the detector. Shockwave 𝑉3 act as the interface between saturation 

traffic state (𝑞𝑚, 𝑘𝑚) and the arrival traffic state (𝑞𝑎
𝑛, 𝑘𝑎

𝑛). Therefore, before point C appears, 

vehicles discharge at the saturation flow rate at the location of loop detector, i.e., the traffic 

state is (𝑞𝑚 , 𝑘𝑚 ). After the wave propagates to the detector location, the traffic condition 

becomes to (𝑞𝑎
𝑛, 𝑘𝑎

𝑛). Based 

on our observations, having 

0% occupancy for at least 

two consecutive 2 seconds 

time intervals (4s) in a green 

phase assure the appearance 

of point C. These identified 

break points are utilized to 

generate preliminary results 

and expect to analyze 

further in future works.  

 

 

 

 

2.2. Queue estimation model using Kalman filter  

As depicted in Figure 1b, it is understandable that any two shockwaves out of 𝑉1, 𝑉2 and 𝑉3 can 

be used to estimate the maximum queue length happening inside a signal cycle. But which 

shockwaves to utilize in calculating the maximum queue length depends on the accuracy of 

identifying each break point and the available traffic state details to calculate the shockwave 

speeds. In our study, 3 models were developed to calculate the maximum queue length and only 

the basic model (model 1) utilized in the framework of Kalman filter will be discussed under 

the scope of this section.  

Considering the shockwave diagram (refer Figure 1b), an approximation for the maximum 

queue length of the nth cycle ( 𝐿𝑚𝑎𝑥
𝑛 ) can be derived as: 

 

𝑀𝑜𝑑𝑒𝑙 1 =  𝐿𝑚𝑎𝑥
𝑛 =

𝑁𝑛

𝑘𝑗
+ 𝐿𝐷                                                                                                              (1) 

Where  𝑁𝑛 =  the number of vehicles detected between break point B and C. 

Figure 3:Break point identification using 2 seconds occupancy data 
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A univariate Kalman filter was developed assuming a random walk model as the process model 

(equation 4 below) and equation 3 as the measurement equation neglecting the  𝐿𝐷term (the 

detector was placed very close to the stop line). 𝑛 was considered as the measurement while the 

state variable was defined as the maximum queue length occurring in each signal cycle in 

meters.  

 

Kalman filter equations. 

Process Model: 𝐿𝑚𝑎𝑥
𝑛+1 =  𝐿𝑚𝑎𝑥

𝑛 + 𝜔                                                                                       (2) 

Measurement Model: 𝑁𝑛 = 𝑘𝑗 ∗ 𝐿𝑚𝑎𝑥
𝑛                                                                                   (3) 

𝜔 and 𝜈 are process noise and the measurement noise respectively.  

The concept and formulation of Kalman filter can be found in  Vigos, Papageorgiou and Wang, 

2008.   

3. Results and Discussion  

Intersection of Skiff Road and Ferry Road (intersection M5020) in Gold Coast, Queensland 

was selected as our testing site. Through movement lane (middle lane) along the Ferry Road 

was considered in the calculation of the maximum queue length. With the availability of CCTV 

camera recordings and technical drawings of the intersection, we replicated the intersection 

M5020 using AIMSUN software, and the simulation was conducted for 1 hour, from morning 

07:00am to 08:00am. In the AIMSUN modelling framework, we assume a link input detector, 

i.e., a detector placed sufficiently upstream so that input traffic flow to the traffic signal can be 

measured and it replicates our vehicle inflow estimation framework in the simulation model.  

 

Figure 4 summarizes the results of model 1 without and without applying the Kalman filter and 

validated against the ground truth data. The results emphasis that utilizing Kalman filter 

framework increase the performance of the model.  Comparing the Mean Absolute Percentage 

Error (MAPE) of the models with and without Kalman filter confirms the fact that the Kalman 

filter can incorporate the uncertainty associated with the measurements, process, and the state 

to give a better estimate. In Figure 4, y axis depicts the queue length in meters and x axis 

represents the signal cycle number between (20 signal cycles) 07:00am to 08:00am.   

 

 
Figure 4: Model results of maximum queue length estimation 
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4. Conclusion  

This proposed methodology is applicable in situations with no event-based data or detailed 

trajectory data available but only with the availability of high-resolution detector data. In the 

real-world application, it is necessary to assume a fundamental diagram and calibrate the road 

sectional parameters such as capacity, free flow speed and jam density. Further, vehicle 

effective length plays an important role in the model output in which we have assumed a fixed 

value to convert number of vehicles into a length.  It is advisable to conduct a calibration to 

estimate the vehicle effective length which will improve the results. When utilizing 2 seconds 

occupancy data, identification of point A and B is accurate than identifying of point C. Even 

though point C is identifiable, our results shows that it can cause large errors. This is due to the 

large fluctuation happening to the occupancy at the detector location once its traffic state 

changes from saturation condition to the free flow arrival condition. Due to this reason, this 

methodology will not capture the over-saturation conditions accurately. Another limitation with 

this methodology is the arrival vehicle flow should be known which in some cases might not 

be available. To improve the model accuracy and to mitigate the existing limitations, an 

expansion to the existing model using Kalman filter in the LWR framework was proposed. 

When utilizing the Kalman filter it is important to capture the system dynamics correctly to be 

reflected by the process and the measurement models. Possible expansions to the proposed 

Kalman filter are to consider more variables as measurements and to consider nonlinear models 

to explain the system dynamics with extended Kalman filter.   
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