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1.Introduction 

Since the concept of the Macroscopic Fundamental Diagram (MDF) has been introduced by 

(Geroliminis and Daganzo, 2008), many studies have investigated the existence and 

characteristics of the MFD using empirical and simulation data. MFD is a powerful and 

efficient model for monitoring and managing large-scale urban networks. For instance, 

perimeter control (Ingole, Mariotte, & Leclercq, 2020), regional route guidance (Yildirimoglu, 

Sirmatel, & Geroliminis, 2018), demand management (Yildirimoglu & Ramezani, 2020) and 

control of city-scale ride-sourcing systems (Ramezani & Nourinejad, 2018). Nevertheless, 

estimating the MFD for large-scale networks faces important challenges; monitoring resources 

are often limited in such networks. Furthermore, common sensors that are used to collect traffic 

data (i.e., loop detectors and probe vehicles), have limitations of their own. For instance, loop 

detectors are fixed sensors and cannot provide accurate density measurements (Buisson and 

Ladier, 2009, Courbon and Leclercq, 2011). On the other hand, to estimate the MFD using 

probe vehicle data, the probe penetration rate must be known a priori. Given that the individual 

sensors cannot provide complete and accurate traffic measurements, combining the traffic data 

from multiple sources may improve the estimation of the MFD (Ambühl and Menendez, 2016, 

Beibei et al., 2016, Ji et al., 2018, Leclercq et al., 2014).  

Our aim in this study is to develop a data fusion method that takes advantage of both (limited 

number of) loop detectors and probe vehicles, which may or may not be homogeneously 

distributed in the network. This study builds on the premise that full-scale traffic data (i.e., 

covering all links in the network), albeit approximate, is available for the network, which is 

produced as a result of our earlier work (Saffari et al., 2020). Very briefly, the previous study 

identifies a small number of critical links in the network where loop detectors should be 

installed, and produces an approximation of complete traffic variables (i.e., flow and density) 

for all links. In this study, in addition to loop detector measurements from the critical links, we 

assume that real-time probe vehicle data with an unknown penetration rate is available. These 

two data sets are the inputs to our fusion algorithm.  

2. Methodology 

In this section, we present the proposed methodology to combine real-time probe vehicle data, 

with an unknown probe penetration rate, and approximate full-scale traffic data (resulted from 

our earlier work). Applying the proposed fusion method, we can calculate link-flow and link-

density for all the links in the network. Figure 1 presents the main steps of the proposed 

methodology. There are two main parts shown in the flowchart; 1) calculating the local 

penetration rates, and 2) applying the Bayesian fusion method. In the first part, we start with 

probe vehicle and loop detector observations on the critical links; this allows us to calculate 

the penetration rate for each critical link where a loop detector is installed. We then find the k-
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nearest critical links for each link in the network, and calculate the average penetration rate of 

these k links. This allows us to estimate a local penetration rate for each link, which may vary 

across the network. In the second part of the algorithm, we upscale probe vehicle observations, 

applying the estimated local penetration rates. This data is one of the inputs to the Bayesian 

fusion model. As shown in Figure 1, two traffic sources (i.e., approximate full-scale traffic data 

and upscaled probe vehicle measurements) are combined applying the proposed Bayesian data 

fusion model. The output of the model is fused link-flow and link-density values which we 

later use to estimate the MFD for the network.  

 
Figure 1: Flowchart of the proposed methodology 

The data fusion method that we adopt in this study is based on Bayesian inference. As 

mentioned, in our problem, there are two sets of data, real-time probe vehicle and approximate 

full-scale traffic data, that we aim to combine by applying a Bayesian data fusion model. Let 
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where 𝜇𝑞
𝑖,𝑡

 and 𝜇𝑘
𝑖,𝑡

 denote the value of the fused flow and fused density of link i in time t, 

respectively. We omit i and t in the notation in the following equations for the sake of brevity. 

Note that to avoid duplication and due to space limitation, we write the final equation only for 

calculating fused link-flow. The same formula will be applied for density to calculate the fused 

density values for the network links. Here, we assume that 𝜇𝑞 , 𝑞𝑎, 𝑞𝑝follow normal 

distributions, 𝑁(𝜇0, 𝜎0
2), 𝑁(𝜇𝑞 , 𝜎𝑎

2) and 𝑁(𝜇𝑞 , 𝜎𝑝
2), respectively. 𝜇0 and 𝜎0

2 denote the mean 

and variance of the prior distribution, respectively. We can find the mean of fused link-flow 

(𝜇𝑓) as: 
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As mentioned earlier, we omit the link i and time t from the equations for simplification 

purposes. In other words, by applying Eq. 2, we calculate the fused flow value on link i in time 

interval t. Therefore, to find link flow values for all links in every time interval, Eq. 2 needs to 

be applied 𝑁 × 𝑇 times, where 𝑁 is the total number of links in the network and 𝑇 is the total 

number of time intervals. Once link-flow and link-density values are calculated, we can find 

the MFD parameters of network average flow 𝑄(𝑡), and network average density, 𝐾(𝑡), using 

the following formulas: 

𝑄(𝑡) =  
∑ 𝑞𝑖(𝑡)𝑙𝑖

∑ 𝑙𝑖
            𝐾(𝑡) =

∑ 𝑘𝑖(𝑡) 𝑙𝑖

∑ 𝑙𝑖
                                                                                     (3) 

where 𝑞𝑖(𝑡) and 𝑘𝑖(𝑡) are fused link-flow and density measurements from link i in time interval 

t, respectively. The length of each link is denoted by 𝑙𝑖. 

3. Bayesian data fusion results 

In this section, we investigate the performance of the proposed fusion algorithm based on a 

heterogeneous probe vehicle distribution and different subsets of critical links. The network of 

the study is a large-scale urban network of Eixample district in Barcelona, Spain, which is 

modelled in Aimsun, a well-known traffic simulation package. In order to generate probe 

vehicles and extract their trajectories, we use Aimsun API (Application Programming 

Interface) in a micro-simulation environment. The simulation period represents a 90-minute 

morning peak time. We consider seven replications of the explained micro-simulation model, 

representing '7 days' (i.e. the maximum number of observations is 𝑴 = 𝟕).  Note that the 

number of critical links shows the number of links with loop detectors placed on them. We 

explore subsets of 20, 40, 60 and 80 links that represent approximately 2%, 3%, 5% and 7% of 

the links, respectively. For each subset of critical links, we first apply k-NN to find the three 

nearest critical links for all the links in the network. Then, the penetration rate on each link is 

calculated by averaging the penetration rate of the three nearest critical links. Incorporating the 

penetration rates, we can upscale partial probe vehicle observations to complete traffic 

measurements (link-flow and link-density). Note that this is obviously an approximation of the 

complete traffic measurements. The upscaled real-time probe vehicle data set is one of the two 

inputs to the Bayesian fusion algorithm. The second input, as explained before, is the 

approximate full-scale traffic data. The next step is to apply the Bayesian data fusion method 

(Eq. 2) and combine the two aforementioned data sets and calculate the fused link-flow and 

link-density values.  

The next step after finding the link level estimations is to use Eq. 3 to find the network average 

flow and network average density and estimate the MFDs using this fusion method. Figure 2 

illustrates the estimated MFDs with respect to different subsets of critical links along with the 
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ground-truth MFD which is calculated from the trajectories of all vehicles in the network. One 

expected observation is that having more critical links, which subsequently means having more 

loop detectors in the network, results in a better fit and less scatter. Having more loop detectors 

spread out in the network leads to better local penetration rate estimations which essentially 

improves the MFD estimations.  

To evaluate our estimations, we compare the estimated network average flow and network 

average density with the ground-truth values by applying Eq. 4.  

𝑅𝑀𝑆𝐸(𝑄) =  √
∑ (𝑄̂(𝑡) − 𝑄(𝑡))2𝑇

𝑡=1

𝑇
         𝑅𝑀𝑆𝐸(𝐾) =  √

∑ (𝐾̂(𝑡) − 𝐾(𝑡))2𝑇
𝑡=1

𝑇
                  (4) 

where 𝑄̂(𝑡) and 𝑄(𝑡) stand for the ground-truth and estimated average network flow in time 

interval 𝑡, respectively; and 𝐾̂(𝑡) and 𝐾(𝑡) are the ground-truth and estimated average network 

density in time interval 𝑡, respectively. 

 
Figure 2: Estimated MFDs with respect to different subsets of critical links 

The results of this calculation are presented in Table 1. This table also compares the estimation 

errors of the Bayesian fusion method and the baseline method which is applied in our earlier 

study. As we can see in Table 1, the Bayesian data fusion method improves the average flow 

and the average density estimations in most of the scenarios. Although we do not see a 

significant difference between RMSE(Q) from the fusion and the baseline method, we clearly 

observe a great improvement in all RMSE(K) values when applying the fusion model. The 

improvement in RMSE(K) ranges from 23% to 46%, whereas the improvement in RMSE(Q) 

is at most 7%. Note that, loop detector observations form the basis of the approximate full-

scale traffic data. While the resulting flow estimations are fairly accurate and up to par with 

the fusion algorithm, the density estimations are significantly worse. These results can confirm 
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the fact that loop detectors cannot provide accurate density measurements in congested 

signalized traffic sections, while they provide reasonably accurate flow measurements. 

Therefore, incorporating probe vehicle observations using the proposed fusion algorithm can 

significantly decrease the bias in loop detector density measurements and result in more 

accurate density estimations. Additionally, one possible reason that we do not see a 

considerable improvement in flow estimations, when incorporating probe vehicle observations, 

is that loop detector measurements do not significantly differ from the probe vehicle 

measurements. In other words, adding probe vehicle measurements to the loop detector 

measurements may not provide more information about the traffic state on the links.   

Table 1: Estimation error with respect to different subsets of critical links 

                        Bayesian data fusion 

method 

Baseline method Percentage improvement 

(%) 

#Crirical 

links 

RMSE(Q) 

[veh/km] 

RMSE(K) 

[veh/km] 

RMSE(Q) 

[veh/km] 

RMSE(K) 

[veh/km] 

RMSE(Q) 

[veh/km] 

RMSE(K) 

[veh/km] 

20 35.86 6.65 37.00 12.30 3 46 

40 25.30 5.58 27.19 7.27 7 23 

60 22.25 4.52 22.66 7.23 2 37 

80 18.68 4.41 18.75 5.96 0 26 
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