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Abstract 

To compete with a growing number of alternative mobility options, bus operators and 
governments must be able to accurately anticipate bus demand and plan accordingly to 
encourage greater use in diverse areas. There is general understanding of the network design 
principles and built environment attributes that are more conducive to public transport use 
compared to private automobile use. However, relatively little is known about the importance 
of the built environment for bus use. Furthermore, there are some practical barriers to 
developing accurate and flexible bus demand prediction tools.  

This study addresses these two gaps by developing a bus demand prediction model based on 
neighbourhood typologies. The built environment attributes of bus stop catchments are 
combined, and clustered according to similar attributes. We compare the prediction 
performance of the model that predicts ridership using typologies, to a conventional 
multivariate model with individual built environment variables.  
 
The typological model explains slightly less variance but offers simpler interpretation and is 
more generalisable. Prediction models for individual neighbourhood typologies suggests that 
the relationships between the built environment and bus demand differ in parts of a city with 
different built environments. When the purpose of a model is to yield the most reliable 
prediction, the typological approach offers a simple way to predict demand while capturing 
spatial variation in the built environment. However, in situations where it is of interest to 
identify appropriate interventions for a particular site, it may be appropriate to collect and 
examine data for similar locations only.  

1. Introduction 

In many world cities, bus ridership is undergoing long-term decline (Berrebi & Watkins 2020). 
In Australia, bus use is growing slower than other public transport modes, namely train and 
tram, while its mode-share is decreasing (Pemberton 2020). Furthermore, the ubiquitous 
disruption caused by the COVID-19 pandemic has exacerbated this decline by supressing daily 
travel and motivating a mode-shift away from shared transportation (Beck et al. 2020; de Haas 
et al. 2020).  
 
Much research in the field of travel behaviour and forecasting has been directed towards 
understanding the determinants of transit use. The built environment is one important factor 
that affects public transport demand. Although some research attention has focused on this 
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relationship for bus, there is limited uptake of prediction tools for bus that incorporate land use 
and urban design.   
 
One barrier to developing effective demand prediction tools is the complexity of the built 
environment relationship with public transport use. Econometric models are used in research 
to quantify relationships. The outputs of these models can in turn be used to predict future 
demand and compare built environment scenarios. However, these models have become 
increasingly sophisticated to accommodate more variables, their interdependence; and 
nonlinear spatial impacts. Such advances can generate robust and precise findings for a given 
set of model assumptions, which may have limited application in practice.  
 
This study addresses these gaps with its aims, to: 
1. Examine the relationship between the built environment and bus use in different parts of a 

city. 
2. Develop and evaluate a simplified approach for estimating the underlying demand for bus 

using built environment typologies. 

In the remainder of this paper we first present recent developments and gaps in the built 
environment and public transport use literature. We describe the variables and built 
environment typologies developed for this study. We explain the analysis approach and then 
present the results of different models. Finally, we compare findings for bus in different parts 
of the city and evaluate the performance of the typological approach.  

 2. Literature Review 
Public transport is underperforming compared to other modes of transport in many world 
regions (Berrebi & Watkins 2020). In addition, COVID-19 has created an imperative for public 
transport agencies to attract riders back following suppressed ridership due to health concern 
and restrictions to mobility (Tirachini & Cats 2020). Bus transport also faces the most 
significant threat from flexible-route shared mobility options, with which it may compete for 
first- /last-mile services to fixed route public transport. Bus is also more commonly found in 
low density areas where the potential for value capture from adjacent land use does not justify 
the investment in fixed guideway infrastructure. In this context, it is important to have a 
detailed and nuanced understanding of the determinants of bus ridership.  

2.1 Factors influencing demand 

A significant body of public transport research focuses on the determinants of demand. Aside 
from service quality, several studies suggest that public transport demand is primarily affected 
by sociodemographic variables (Ewing & Cervero 2010); including bus use specifically 
(Berrebi & Watkins 2020). Mode choice studies have also identified an important role for the 
importance of the built environment on public transport use (Boulange et al. 2017). The 
influence of stop/station catchment-area built environment on ridership is well-documented 
(Aston et al. 2020b; Cervero 2007; Ibraeva et al. 2020). 
 
While the impact of service quality on public transport use is consistently positive, the 
influences of built environment and sociodemographic factors are less generalisable and not 
always linear (Holz-Rau & Scheiner 2019). Voulgaris et al. (2017) showed that neighbourhood 
built environment qualities synergise to produce significant impacts on mode choice in a 
comprehensive study spanning the USA. 
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2.2 Approaches to quantifying demand relationships 

Public transport demand studies typically focus on measuring the impedance (cost) or benefit 
of travelling by different modes and adopt statistical models to estimate relationships (Maat et 
al. 2005). The limitations of this approach are recognised, and include unreliable estimates of 
demand (Flyvbjerg et al. 2005; Voulgaris 2019), a lack of nuanced understanding of user-
related variables (Blitz & Lanzendorf 2020; Vecchio & Martens 2021) and findings that are 
not readily transferrable to policy (Dill et al. 2014). Such shortcomings are partly attributable 
to the simplification of the complex inter-relationships between land use and transport (Holz-
Rau & Scheiner 2019). Furthermore, relevant studies suggest that relationships between the 
built environment and travel behaviour may vary spatially (Ding et al. 2021) 
 
To address this, some studies have turned attention to examining overall neighbourhood 
character in relation to public transport use (Higgins & Kanaroglou 2016; Kamruzzaman et al. 
2014; Voulgaris et al. 2017). However, these studies examine public transport use, or more 
specifically, rail use. Most studies examine bus ridership at the level of an administrative area 
(De Gruyter et al. 2020; Taylor et al. 2009; Voulgaris et al. 2017), while those that examine 
station-level ridership typically focus on public transport in general or rail-based transport 
(Higgins & Kanaroglou 2016; Rodríguez & Kang 2020). Relatively few studies have 
considered the built environment determinants of bus use at the stop level, preferring the route, 
network or larger urban areas as the unit of study (Currie & Delbosc 2011). Such units of 
analysis provide limited opportunity to capture the effect of neighbourhood level 
characteristics. Furthermore, the majority of studies include individual built environment 
attributes as explanatory factors, rather than overall neighbourhood character.  
 
Of the studies that examine the impact of overall neighbourhood character, only one goes on 
to compare the predictors of ridership among different types of neighbourhood. Higgins and 
Kanaroglou (2016) found that stations with high density, higher walkability, and better mixed 
land use improved rates of public transport use. The analysis provided a series of transit-
oriented development (TOD) planning tools tailored to station-area context. This approach 
responds to the growing need for context-sensitive planning tools, that accommodate 
differences in intra-urban context, in terms of both spatial and user variables (Taylor et al. 
2009; Vecchio & Martens 2021). Stojanovski (2018) investigated built environments and bus 
use in Karlstad, Sweden, and identified a clustering of both types of variables into intervals 
which could be interpreted as neighbourhood typologies. The paper suggests that 
neighbourhood typology may be a simpler way of representing land use than individual 
variables when developing bus demand models. Further analysis would be useful to evaluate 
the predictions of bus use that arise using multivariate models with neighbourhood typologies 
instead of individual variables. 

3. Method 

3.1 Research setting 

This study examines the relationship between bus use and the catchment built environment in 
Greater metropolitan Melbourne. Melbourne occupies almost 10,000km2 and is home to over 
5 million inhabitants. Land use intensity declines radially from its strong core central business 
district (CBD). The inner suburbs are dense both by populations and dwellings featuring 
multimodal transport corridors and major activity centres (Fuller & Crawford 2011). The outer 
suburbs that developed after the introduction of cars are less dense, primarily served by 
freeways with some access to public transport and extending up to 50km from the city centre 
(Fuller & Crawford 2011). Melbourne also has an extensive multimodal public transport 



ATRF 2021 Proceedings 

4 

network. There are 18,000 bus stops in Melbourne, compared to approximately 2,000 tram and 
200 train stops. Melbourne’s bus network is extensive, a large share of which operate in a 
‘tailor-made’, meandering configuration that services the full gamut of Melbourne’s diverse 
urban form (Pemberton 2020). Together with the diversity of the land use it services, this makes 
Melbourne an ideal case study for exploring the importance of neighbourhood character on bus 
use. 

3.2 Variables 

This study leverages an existing database containing built environment and sociodemographic 
data for Melbourne’s public transport catchments (Aston et al. 2020a). This study uses four 
types of variables. The dependent variable is public transport ridership, measured as the 
average normal weekday daily boardings. Independent variables span three further themes: 
public transport supply, bus station-area demographics and bus station-area built environment. 
A complete list of variables is provided in Table 1, which also includes descriptive statistics 
for each cluster. A brief description of the variables is provided below, but more detailed source 
information and processing steps are detailed in Aston et al. 2020b. 
 
The variables were measured according to the unit of analysis that is relevant for behaviour.  
Public transport supply is gathered for the services that use any of the stops in a facility, as well 
as those that overlap within reasonable transfer distance (120m radius of the stop). Bicycle and 
car parking supply was also gathered for this transfer zone. Sociodemographic data and most 
of the remaining built environment variables were collected for a 400 metre network catchment 
of the bus stop, representing the walkable access and egress catchment (Boulange et al. 2017). 
Sociodemographic variables captured ethnicity, education, household size and employment 
status. Catchment built environment variables include population, employment and 
commercial density, land use mix, daily living destinations reachable, housing diversity, 
distance to activity centres, the proportion of urban land, and the ratio of population to housing. 
Finally, the regional connectivity from each stop was measured in terms of the number of jobs 
reachable by public transport, within 30 minutes during the morning peak. The methodology 
and sources for these variables have been documented earlier in Aston et al. 2020b.  
 
These variables are interrelated in ways that can affect statistical analysis. First, public transport 
supply may not only influence, but also be influenced by (endogenous to), demand (Taylor et 
al. 2009). Second, the variables tend to co-occur, or be self-reinforcing, thus introducing 
collinearity into statistical models. We describe how we address these issues in subsequent 
steps.  
 

3.3 Bus stop neighbourhood typologies 

This study uses the typologies developed in earlier published work by Aston et al. (2020b), 
exploring the performance of all public transport modes around stop/station catchments. The 
typologies were formed using cluster analysis.  
 
An important assumption of both cluster analysis and matching is to ensure the theoretical 
relevance of the variables. In the context of clustering to classify public transport stops into 
“like” station areas, it is primarily the access and egress catchment variables that are of 
interest 1 . In addition, regional accessibility (distance to activity centres and access to 

 
1 800 metres was used as the service area to generate clusters for a combined sample of train, tram and bus, in the 
original study (Aston et al. 2020b), so that the clustering was consistent across three different modes. However, 
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employment), though not a property of the neighbourhood catchment, are also linked to the 
spatial distribution of modes due to the mono-centric nature of Greater Melbourne. Finally, 
although demography is not a physical property of public transport facilities, the spatial 
distribution of population groups also varies systematically within cities (Delbosc & Currie 
2011). To control for this, it is also relevant to include the station-area demographic variables 
in the formation of clusters.  
 
In preparation for robust cluster analysis, factor analysis of the built environment variables was 
used to identify collinear variables so that this could be minimised (Hair et al. 2014). Factor 
analysis was carried out in RStudio (RStudio Team 2016). The ReDas package was used to 
confirm the appropriateness of the variables for factor analysis, using Bartlett’s test to 
determine whether sufficient collinearity existed among variables (Maier 2019). The factanal 
function in the psych package was used to conduct factor analysis based on the correlation 
matrix of the input variables (Revelle 2018a). 
 
Four factors were initially specified according to the groupings of density, diversity, local and 
regional accessibility. Several iterations of factoring were performed, with variables removed 
in a stepwise fashion if they did not fit the factor solution, denoted by low factor loadings. A 
three-factor solution, explaining 76% of variance across the catchment areas was determined 
to be suitable. One variable from each factor, representing employment density, accessibility; 
and residential density, was included in the cluster analysis. In addition to the three factors, six 
variables did not fit the factor solution were all included in cluster analysis. These were: 
proportion commercial, land use balance, land use diversity, pedestrian connectivity, bicycle 
connectivity and distance to nearest activity centre.  
 
Bottom-up (non-hierarchical) clustering was used to form clusters based on the k-means 
clustering algorithm. This algorithm assigns observations to one of k (pre-specified) centroids 
and iterates the cluster centroid such that the sum of squares of observations in the cluster is 
minimised (Boehmke 2019). The R package cluster was used to execute the clustering 
algorithm in RStudio (Maechler et al. 2021; RStudio Team 2016). K-means clustering requires 
pre-specification of cluster centroids. Various indices exist for calculating the optimum number 
of centroids, based on the similarity within groups and differences between groups. When 
applied to group large samples of spatial units according to land use, cluster solutions were 
characterised by three to seven clusters (Jeffrey et al. 2019; Kamruzzaman et al. 2014; 
Voulgaris et al. 2017). Given the large sample size (n = 10,631 across three modes) a range of 
cluster solutions were compared for the best fit.  A six-cluster solution was found to be most 
appropriate. The spatial distribution of the six resulting clusters are shown in Figure 1.  
 
The clusters represent neighbourhood ‘types’ and are distinctive both in terms of their built 
environment characteristics, but also in terms of their relative proximity to the central business 
district of Melbourne. This reflects the dominant mono-centricity of Melbourne, such that 
development intensity decreases radially with distance from the urban downtown area. As such, 
the clusters were named to reflect their spatial distribution and predominant uses. Descriptive 
statistics of each cluster are provided in Table 1. The Urban Core cluster (neighbourhood 
typology 1) includes bus stops in the central business district of Melbourne. It is distinct from 
the other clusters given its high scores in all the built environment variables considered in the 
analysis. The Inner Urban cluster (2) includes bus stops beyond the urban core cluster and up 

 
values for neighbourhood variables within the reduced bus walking catchment of 400 metres are used in 
subsequent econometric analysis, including this study.  
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to 15km from the central business district. The localities in the cluster have higher scores in all 
built environment characteristics than cluster 3, 4, 5 and 6. The Mixed-Use Suburban cluster 
(3) is relatively diverse, with mixed land uses and an abundance of multimodal transport 
facilities. The Residential Suburban cluster (4) is location at a similar proximity to the CBD to 
the Mixed-Use cluster, but scores low on most built environment attributes. The Industrial 
cluster (5) scores low in all built environment variables except employment access and density, 
signifying these are employment-oriented locations. Fringe Suburban stops (6) are located at 
the boundary of metropolitan, with the lowest scores for all built environment attributes.  
 
Table 1: Averages of built environment characteristics for six neighbourhood typologies 

Variable 
1 

Urban 
core 

2 
Inner 
urban 

3 
Mixed-use 
suburban 

4 
Residential 
suburban 

5 
Industrial 

6 
Fringe 

suburban 
Cluster built environment variables 
Total patronage  101 36.6 40.5 12.9 19.8 4.48 
Employment density 
(workers/km2) 

8,575 969 772 357 1,050 62.5 

Pop. density 
(residents/km2) 

6,135 3,123 1,844 2,405 112 440 

Commercial density  0.32 0.05 0.19 0.01 0.62 0.04 
Jobs-housing balance  0.14 0.08 0.12 0.04 0.49 0.04 
Land use entropy  0.48 0.31 0.47 0.23 0.30 0.37 
Housing diversity  7.6 6.4 5.3 4.3 3.8 3.0 
Intersection density (count 
per square km) 

153 80.8 85.6 80.3 55.3 48.6 

Bike connectivity (km) 86 318 213 142 15.6 30.6 
Destination score  5.08 3.33 2.69 2.09 1.29 1.44 
Bike parking cage 
available 0.00 0.01 0.02 0.00 0.00 0.00 
Dist. To CBD (km) 3.87 13.2 23.6 28.2 22.7 44.9 
Non-cluster built environment variables 
Dist. to Activity Centre 
(km) 

0.92 1.51 1.68 2.28 3.02 9.66 

% zone classified “urban” 
(%) 

0.78 0.87 0.68 0.89 0.11 0.36 

Employment access (jobs 
reachable in 30 minutes) 

256,162 30,654 16,242 6,256 16,189 1,077 

Car parking area (m2) 48.12 102.7 222 26.7 55.8 21.1 
Supply (arrivals/hour) 
Level of service (LOS) 183 116 116 76.5 76.1 44.7 
LOS overlapping bus  0.32 0.32 0.34 0.27 0.23 0.21 
LOS overlapping tram  0.91 0.13 0.04 0.001 0.01 0 
LOS overlapping train  0.07 0.03 0.03 0.01 <0.01 0.01 
LOS overlapping (total)  1.30 0.47 0.41 0.28 0.25 0.21 
Socio-demographic       
Proportion full time 
employed  

0.61 0.57 0.55 0.57 0.76 0.54 

Mean household size 
(persons/dwelling) 

2.40 2.76 2.84 5.02 5.69 5.27 

Proportion of foreign-born 
persons  

0.47 0.40 0.45 0.38 0.52 0.54 

Proportion of tertiary 
educated persons  

0.62 0.54 0.35 0.34 0.28 0.29 

 
  



ATRF 2018 Proceedings 

7 

Figure 1: Melbourne bus stops classified by catchment built environment. Source Aston et al. (2020b) 

 

3.4 Regression analysis 

Regression models were developed to explore relationship between different types of bus 
station areas, and bus use, in different parts of a city. Three models were specified for a 
combined sample of all bus stops. The three models comprised public transport supply 
variables and station-area demographics but differed in the granularity of the built-environment 
variables. The fourth approach segmented the sample into each of the six neighbourhood 
typologies, for which models were developed separately. This final approach was included to 
determine whether any additional useful information could be gained by examining each 
neighbourhood typology separately. The specification of bus stop catchment-area built 
environment, and sample, for each of the four approaches, is as follows: 

1. Conventional (Model I): individual built variables only (all bus stops), 
2. Typological (Model II): neighbourhood typology only (all bus stops),  
3. Combined (Model III): individual built environment variables and neighbourhood 

typology (all bus stops); and 
4. Segmented (Models IV – IX): individual built variables (individual models for each 

neighbourhood typology). 

In each model, the independent variables were regressed on total patronage using ordinary least 
squares regression. To ensure that the values of the independent variables do not influence the 
results of the regression, these values were standardised before analysis. Prior to conducting 
each regression variables with high interdependence (collinearity), indicated by variance 
inflation factors (VIF) exceeding 5, were removed.  A parsimonious model was formed by 
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removing variables on at a time if they did not contribute to the explanatory power (adjusted 
R2) of the model.  

3.5 Addressing public transport supply endogeneity 

Since public transport operators adjust supply in response to demand, it follows that in areas 
with higher densities, supply is likely to be higher. Efforts have been made by researchers to 
account for this endogeneity using instrumental variables for  level of service (Diab et al. 2020; 
Taylor et al. 2009). We attempted to develop and instrumental model for bus use, using 
spatially lagged density indicators. However, these models introduced prohibitive 
multicollinearity into the models, so we were unable to adopt the instrumented models. 

4. Results and Discussion 

4.1 The impact of spatial context on bus ridership 

The first aim of this study is to explore the relationship between the built environment and bus 
use in different parts of the city. We tested four approaches to achieve the study’s second aim 
which was to determine the most useful and robust way of understanding bus demand in 
different spatial contexts.  
 
We first ran a series of three regression models for all bus stops (9,484) in the sample. Results 
for Models I – III are shown in Table 2. Results suggest that the overall neighbourhood ‘type’ 
explains bus ridership almost as well as a model with individual built environment attributes. 
These results suggest that after accounting for individual attributes of the built environment, 
being in an industrial area has the largest impact on public transport use. In other words, 
Industrial Areas outperform other areas in terms of ridership, considering the baseline attributes 
of the built environment. This finding suggests that there may be latent demand for travel to 
industrial areas, but because their built form is not integrated with the surrounding transport 
and land use, usage remains low. This corroborates findings of an earlier study of Melbourne’s 
train network, which also identified mixed use areas as those with potential for urban 
intensification to encourage ridership (Jeffrey et al. 2019). Conversely, Urban Core areas 
underperform relative to other areas, considering the built environment. Despite showing the 
strongest relationship with bus use in the Cluster only model, being in the Urban Core did not 
predict any higher ridership than being in the Fringe. This likely reflects the bias of public 
transport users in the Urban Core toward light rail and heavy rail, which is amply supplied 
there. In the combined model (Model III), Inner Urban areas were the second most strongly 
linked to ridership relative to the Fringe Suburban Cluster. It is followed by the residential 
suburban cluster, and the Mixed-Use Activity Centres.  
 
Combining insights from Models I and III suggests that in general, higher densities and greater 
land use diversity, as well as active transport facilities, are linked with higher ridership. The 
differing relative importance of the neighbourhood typology with (III) and without (II) built 
environment variables in the equation suggests there is some non-linearity between the built 
environment and public transport use. In the next section, we unpack these relationships by 
typology.  
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Table 2: Models for bus ridership considering built environment and neighbourhood typology (Significance 
thresholds: * p< 0.05, ** p< 0.01 and *** p <0.001.) 

4.2 Predicting bus ridership by neighbourhood typology 

The purpose of the analysis was to compare the variation in the effects of built environment 
variables on bus ridership in different clusters of Melbourne. It was hypothesised that the built 
environment variables affecting bus ridership and the strength of their effects would be 
different for each cluster. To this end, we developed ridership models for individual clusters. 
Results are presented in Table 3.  
 
The second objective of this study was to identify the most important predictors of bus use for 
differential spatial typologies. From Table 3, it can be observed that the variables found to be 
significantly affecting bus ridership differ by spatial typology. Furthermore, the explanatory 
power of the models differed (denoted by their Adjusted R2 values). This was not necessarily 
related to a cluster’s size – despite being the largest cluster, the residential suburban cluster had 
the lowest Adjusted R2 value. This suggests that the relative importance of all three types of 
variables (level of service, built environment and sociodemographics) varies with spatial 
context. 

 
2 This model includes two indicators for which new data has been used since the publication of earlier research 
for Melbourne. The two indicators with new data are: proportion of residents born overseas, and transit service 
level.   

  I - BE only2 II - Typology III - Both 
 Observations 9,483 9,484 9,484 
 Variable Standardised (β) coefficient  

Supply 

Level of service (LOS) 0.569*** 0.578*** 0.564*** 
LOS overlapping bus -0.018* -0.049*** -0.031** 
LOS overlapping train  0.081*** 0.131*** 0.073*** 
LOS overlapping (total)   0.051*** 0.015 

Area-level 
sociodemographic 
variables 

Proportion full time employed 0.039*** 0.018* 0.028*** 
Mean household size  0.029** -0.021* 0.024** 
Proportion population foreign-born 0.143*** 0.160*** 0.141*** 
Proportion population tertiary educated 0.080*** 0.0345*** 0.072*** 

Built environment 

ln(employment density) 0.073***  0.064*** 
ln(population density) 0.086***  0.105*** 
Commercial density  0.056***  0.051*** 
Jobs housing balance 0.024***  0.014 
Land use entropy 0.040***  0.064*** 
Housing diversity -0.048***  -0.058*** 
Intersection density 0.030***  0.029*** 
Destination score 0.108***  0.104*** 
Bike parking cage available 0.044***  0.040*** 
Dist. to CBD 0.113***  0.125*** 
Dist. to Activity Centre 0.061***  0.081*** 
Count of Activity Centres 0.035***  0.041*** 
% zone classified “urban”  0.060***  0.039** 
Employment access -0.019*   
Car parking Area   0.012 

Station-area typology 
(ref: Fringe 
Suburban) 

Urban Core  0.280*** 0.115 
Inner Urban  0.226*** 0.276*** 
Mixed Use Suburban  0.155*** 0.136** 
Residential Suburban  0.220*** 0.238*** 
Industrial  0.099 0.457*** 

 Intercept <0.001*** -0.193*** -0.214*** 

 Standard Error 1.021 0.713 0.689 
 Multiple R-squared 0.525 0.493 0.527 
 Adjusted R-squared 0.524 0.492 0.526 
 Degrees of freedom 9,461 9,470 9,456 
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Table 3: Individual cluster models for bus ridership (Significance: * p< 0.05, ** p< 0.01, *** p <0.001.) 

Regression 
Statistics 

IV - Urban 
Core 

V - Inner 
Urban 

VI - Mixed 
Use Suburban 

VII - 
Residential 
Suburban 

VIII - 
Industrial 

IX –  
Fringe 

Suburban 
Observations 319 2,844 1,905 3,547 236 632 
Variable Standardized (β) regression coefficient (significance threshold) 
Supply       
Level of service 
(LOS) 

0.642*** 0.629*** 0.597***  0.583***  

LOS overlapping 
bus 

-0.118** -0.055**    -0.085* 

LOS overlapping 
train  

0.072 0.136*** 0.103***    

LOS overlapping 
(total)  

0.104* 0.063**     

Area-level sociodemographic variables 
Proportion full time 
employed 

  0.026 0.052** 0.129** -0.078 

Mean household size  -0.059 0.043** 0.058** 0.027  0.065 
Proportion of 
foreign-born persons 

 0.141*** 0.05* 0.196***   

Proportion of 
tertiary educated 
persons 

 0.101*** 0.054**   -0.071 

Built environment 
Employment density  0.059*** 0.116*** -0.093*** 0.189*** -0.135* 
Population density  0.063*** 0.072*** 0.129***  0.30*** 
Commercial density  0.045* 0.054** 0.03 0.123* -0.11** 
Jobs housing 
balance 

   0.06** 0.129** 0.075 

Land use entropy 0.096** 0.081** 0.061*** 0.113***  0.134*** 
Housing diversity  -0.076*** -0.02    
Intersection density   0.024 0.114*** 0.211*** 0.132** 
bike connectivity   0.022  0.054***  0.085* 
Destination score 0.137*** 0.057*** 0.059** 0.12*** 0.065 0.253*** 
Bike parking cage 
available 

 0.044** -0.066**    

Dist. to CBD -0.201*** 0.151*** 0.166***   -0.24*** 
Dist. to Activity 
Centre 

 0.082*** 0.077*** 0.018  0.169** 

Count of Activity 
Centres 

0.13*** 0.04** 0.076*** 0.04* 0.06  

% zone classified 
“urban” 

 0.048* 0.029 0.082**   

Employment access   0.076*** 0.134***  0.24*** 
Car parking area 0.073      
Intercept       
Multiple R-squared 0.652 0.566 0.560 0.173 0.593 0.294 
Adjusted R-squared 0.641 0.561 0.557 0.170 0.578 0.277 
Standard Error 1.03 1.03 0.927 1.12 0.98 1.12 

 
Seven variables were significant in the Urban Core cluster, the most important of which was 
level of service, followed by proximity to the central business district. This cluster was also the 
strongest model, with an explanatory power of 0.641. Eighteen variables were significant for 
the Inner Urban cluster, and 15 were significant for the Mixed-Use suburban clusters. The Inner 
Urban and Mixed-Use Suburban clusters demonstrate many similar relationships. In both 
cases, the most important factor for ridership was level of service.  
 
The second most important was distance from the CBD (an inverse relationship compared to 
that for the Urban Core). Despite being the largest cluster, the Residential Suburban cluster had 
the lowest explanatory power. The Fringe Suburban Cluster also had very low explanatory 
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power. The lack of significance of level of service in these two clusters may be due to the low 
average level of service, with 76 and 45 departures on average between 7am and 7pm 
respectively, compared to almost 120 for the higher order clusters. There may be a minimum 
level of service threshold, below which ridership is not sensitive to frequency.   
 
In contrast, bus stops classified as Industrial had a high explanatory power (R2= 0.58) despite 
its sample size of just 236 stops. Six variables were identified to be significant, of which level 
of service was most important followed by intersection density. Although this cluster also had 
low level of service, it is distinct from Residential Suburban and Fringe Suburban in that it is 
predominantly employment rather than residential land. Destination score explained changes 
in patronage across all clusters. It can be concluded that irrespective of the part of the city in 
which bus is found, destination score is always an important determinant of ridership. The 
impact of destination score on total patronage is highest in the Fringe Suburban bus stops, and 
lowest in the Inner Suburban bus stops. 
 
Employment and commercial density explain changes in total patronage across all typologies, 
except the Urban Core. The Urban Core had the highest employment and commercial density 
among all clusters. This may suggest that employment and commercial densities have reached 
a tipping point beyond which additional density does not attract additional riders. Conversely, 
employment and commercial densities had the highest impact on the Industrial typology; a 
logical finding considering these otherwise low-intensity neighbourhoods mostly comprise of 
employment opportunities. 
 
Although segmenting demand models by neighbourhood typology improves explanatory 
power, there are some important limitations to this approach in practice. By segmenting the 
sample into neighbourhood typologies, the sample size of each model is reduced; with some 
clusters having very small samples. There is a high risk of over-specification given the number 
of variables included in the model, especially among the smaller clusters. This limits the 
robustness of findings about individual variables; which may depend on the specific model 
conditions (including interdependence of variables) rather than reflecting actual relationships 
(Alonso 1968). Nevertheless, the results from models IV to IX suggest that the relationships 
observed in one part of a city, for example downtown areas, do not necessarily reflect those in 
another, such as outer suburban development. This finding is consistent with recent empirical 
research that shows there is a non-linear association in space, between the built environment 
and public transport use (Ding et al. 2021).  

5. Conclusion 
This study aimed to understand the spatially varying and synergistic effects of the built 
environment on bus ridership at the stop level. We segmented our sample according to 
distinctive patterns of the built environment in bus catchments. In this way, we reduced the 
spatial heterogeneity of each ridership model. The typologies also allowed us to examine the 
overall effect of neighbourhood typology on ridership. 
 
This study tested four approaches for exploring the relationship between the built environment 
and bus use in a city with diverse neighbourhood characteristics. Conventional approaches to 
analysis involve specifying multivariate models with many individual and often interdependent 
built environment variables. To simplify the analysis process and reduce multicollinearity, we 
instead proposed an approach that involves classifying bus station areas according to built 
environment characteristics, its ‘neighbourhood typology’, and using this to predict demand. 
We compare this approach to the conventional approach, for a sample of over 9,000 bus stops 
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in Greater Melbourne. A fourth method was also developed to explore variation in the demand 
predictors between the neighbourhood typologies (Table 4).  
 
We found that neighbourhood typology was significant for predicting bus use when 
considering both the supply and demographic attributes of the station area and treating the 
Fringe suburban typology as the reference. The model which used ‘typology’ as the only 
measure of the built environment explained almost as much variance in bus ridership as the 
model with all individual built environment variables. Depending on whether or not we include 
individual built environment attributes in the model, we find different results for the relative 
importance of neighbourhood typology for ridership. Results suggest there may be a latent 
demand for public transport in certain areas, which is not supported by the built environment. 
These nuances suggest that the overall character of the station environment is an important 
explanatory variable.  
 
Results from a series of models developed for each neighbourhood typology suggest that the 
relationships observed in one part of a city do not necessarily reflect those in another, where 
the built environment and sociodemographic characteristics vary significantly. However, in 
situations where it may be of interest to identify appropriate interventions for a particular site, 
it may be appropriate to collect and examine data for similar locations only. Nevertheless, 
predicting demand using neighbourhood typology instead of individual variables is a simple 
approach that accounts for spatial variation while also yielding reliable results for all parts of a 
city. The typological approach therefore offers a simple method to segment demand analysis 
for public transport, including bus. The approach developed in this paper can be adapted by 
agencies to develop prediction models based on typologies that reflect those aspects of the built 
environment, or even policy, which can be influenced by interventions. 
 
In this aggregate study, we did not have access to the kind of individual data that might have 
enabled us to separate the effects of self-selection from neighbourhood influence on travel 
behaviour. We also attempted to develop instrumental variables for public transport supply. 
However, multi-collinearity pervaded our models; and made our instrumented variable 
inappropriate. Thus, the impact of the built environment may be biased or masked. More work 
is needed to develop appropriate methods to account for this endogeneity issue in future 
research.  
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