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1. Introduction 

Traffic conflict techniques for road safety assessments have become popular in recent years. 

Several studies have demonstrated accurate and reliable estimation of both total crash frequency 

and crash frequency-by-severity levels from prevalent traffic conflict indicators using extreme 

value theory (Zheng et al., 2019a, Zheng et al., 2019b, Arun et al., 2021a). However, the traffic 

conflict-based methods lag behind crash-based safety assessment methods in the transferability 

of models, which refers to applying the crash prediction models developed for a set of sites to 

a new external site. While several studies (Sawalha and Sayed, 2006, Shew et al., 2013) provide 

methods for transferring crash prediction models among sites, typically located in separate 

jurisdictions, the transferability of traffic conflict-based crash prediction models is unknown. 

 

Traffic conflict-based crash prediction models are typically developed for a given set of study 

sites. However, the complexity of extreme value model estimation increases rapidly with data 

dimensionality (Arun et al., 2021b, Fu and Sayed, 2021), which can potentially limit the appeal 

of the more accurate multivariate extreme value models. Thus, this paper specifically 

investigates whether the multivariate model for estimating crash frequency-by-severity levels 

developed for signalised intersections in Brisbane in a previous study (Arun et al., 2021a) are 

transferable to other similar signalised intersections.  

2. Method 

2.1. Crash frequency-by-severity prediction model 

Recently, Arun et al. (2021a) used a bivariate extreme value modelling approach to estimate 

crash frequency-by-severity levels. They used Time-to-Collision (TTC) and Modified Time-to-

Collision (MTTC) as crash risk indicators and Delta-V (∆𝑣) as crash severity indicator to 

estimate the frequencies of severe (Maximum Abbreviated Injury Scale ≥3; MAIS3+) and non-

severe rear-end crashes at two signalised intersections in Brisbane, Queensland. ∆𝑣 is defined 

as the expected post-collision change in a vehicle’s velocity, which is assumed to have 

inelastically collided with another vehicle with the current velocity. The negated MTTC and 

∆𝑣 bivariate logistic was the best performing model in their study; hence, the same is tested for 

transferability in this study. The exact model specification is reproduced in Table 1 below. 
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Table 1: Crash frequency-by-severity prediction model from Arun et al. (2021a) (Logistic Negated MTTC 

and ∆𝒗 Model) 

 Parameter Values 
Marginals 𝜎̂1(SE) 0.141 (0.008) 

𝜉1(SE) -0.078 (0.043) 

𝑢1  -0.51 

ME1 821 

𝜎̂2(SE) 1.811 (0.098) 

𝜉2(SE) 0.061 (0.043) 

𝑢2  11.16 

ME2 637 

Dependence 𝜑  0.999 (2x10-6) 

JE 72 

Estimated 𝑵𝒕𝒐𝒕𝒂𝒍  5.073 

Estimated 𝑵𝒔𝒆𝒗𝒆𝒓𝒆  0.417 

Estimated 𝑵𝒏𝒐𝒏−𝒔𝒆𝒗𝒆𝒓𝒆  4.656 

Legend: 

𝑁𝑡𝑜𝑡𝑎𝑙 , 𝑁𝑠𝑒𝑣𝑒𝑟𝑒 , 𝑎𝑛𝑑 𝑁𝑛𝑜𝑛−𝑠𝑒𝑣𝑒𝑟𝑒 : Number of the annual total, severe, and non-severe crashes, respectively 

(𝝈̂𝟏, 𝝃̂𝟏, 𝒖𝟏) 𝒂𝒏𝒅 (𝝈̂𝟐, 𝝃̂𝟐, 𝒖𝟐) are the scale, shape, and location parameters for negated MTTC and ∆𝑣 margins, 

respectively 

ME1 and ME2: Marginal Exceedances of negated MTTC and ∆𝑣 margins, respectively; JE: Joint Exceedances; 

SE: Standard Error; 95% CI: Confidence Interval at 95% level of significance 

 

2.2. Transferability of models 

Transferability of conflict-based models involves estimating crash frequency at target 

intersections from the developed models using two approaches, namely, a) application-based 

approach and b) estimation-based approach (Essa et al., 2019). In the first approach, the 

uncalibrated model from Arun et al. (2021a) was directly applied to the conflicts observed at 

the target intersections. The underlying principle for this approach derives from the 

fundamental property of extreme value models wherein the number of conflict threshold 

exceedances is directly proportional to the number of expected crashes. Accordingly, expected 

crash frequency was estimated from Equation (1): 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑡𝑎𝑟𝑔𝑒𝑡 =  
𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑚𝑜𝑑𝑒𝑙

𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠,𝑚𝑜𝑑𝑒𝑙
× 𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠,𝑡𝑎𝑟𝑔𝑒𝑡     (1), 

where, 𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑡𝑎𝑟𝑔𝑒𝑡 is the number of predicted crashes (whether total, severe, or non-severe) 

at the target intersection, 𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠,𝑡𝑎𝑟𝑔𝑒𝑡  is the number of exceedances of the conflict 

indicator thresholds given in Table 1, and 𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑚𝑜𝑑𝑒𝑙  and 𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠,𝑚𝑜𝑑𝑒𝑙  are the 

corresponding model values. For estimating total crashes at a target intersection, the marginal 

exceedances of MTTC (ME1), the crash frequency indicator, were used as 𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠,𝑚𝑜𝑑𝑒𝑙. 

𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠,𝑡𝑎𝑟𝑔𝑒𝑡 then was the number of MTTC values in the target dataset exceeding MTTC 

threshold (𝒖𝟏). For severe crashes, the joint exceedances (JE) and the number of MTTC and 

∆𝑣 values in the target dataset over their respective thresholds (𝒖𝟏 and 𝒖𝟐) were used. 

 

In the second approach, specific model parameters were calibrated to increase the accuracy of 

crash estimates. Since the target intersections were located within the same jurisdiction as the 

modelled intersections, only the conflict threshold parameter of the peak-over-threshold models 

was calibrated using the target dataset while retaining the scale and shape parameters. 

Calibration here refers to adjusting the threshold parameter so that the estimated crashes from 

the extreme value models were within the 95% Poisson confidence interval of observed crashes. 

The annual frequency of total and severe crashes were estimated using the relationships derived 

by Arun et al. (2021a) given in Equation (2) and Equation (3): 
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𝑁𝑇,𝑡𝑜𝑡𝑎𝑙 =  
𝑇

𝜏
× Pr(−𝑀𝑇𝑇𝐶 ≥ 0) =

𝑇

𝜏
× [1 − 𝐹𝑀𝑇𝑇𝐶(0)]     (2) 

𝑁𝑇,𝑠𝑒𝑣𝑒𝑟𝑒 =  
𝑇

𝜏
 × Pr(−𝑀𝑇𝑇𝐶 ≥ 0 ∧ ∆𝑣 ≥ 16) =

𝑇

𝜏
× [1 − 𝐹(0,16)]   (3) 

where, 𝑁𝑇,𝑡𝑜𝑡𝑎𝑙 and 𝑁𝑇,𝑠𝑒𝑣𝑒𝑟𝑒 are the number of total and severe crashes, respectively; 𝜏 is the 

conflict observation period (in hours); 𝑇 is the desired crash estimation period, which in this 

study is equal to 1 year (=365×24 hours). The crash thresholds for the MTTC and ∆𝑣 indicators, 

namely, 0 s and 16 m/s, respectively, were adopted from Arun et al. (2021a). 

 

Both the approaches were validated using the method proposed by Songchitruksa and Tarko 

(2006), wherein crash estimates are deemed accurate if they lie within the Poisson confidence 

intervals constructed over the observed crashes. The two approaches were compared among 

themselves based on mean absolute deviations from the observed crashes. 

3. Data 

The study data included traffic conflicts collected in November 2019 at two intersections in 

Southeast Queensland (Table 2). This study defined traffic conflicts as any traffic interaction 

between two vehicles with a Time-to-Collision (TTC) value of less than or equal to 3.0 s based 

on previous studies (Zheng and Sayed, 2019, Arun et al., 2021a). The two target intersections 

were selected such that they were geometrically and operationally similar (four-legged 

signalised intersections) to the modelled sites. Moreover, to test the applicability of the 

uncalibrated model, the target intersections were selected from the same broad jurisdiction area 

(Southeast Queensland) as the modelled sites. Given that the models only considered rear-end 

conflicts, this study extracted and analysed the same type of conflicts. The details of the data 

collection and extraction methods are given in Arun et al. (2021a). 

 

The Modified Time-to-Collision (MTTC) and ∆𝑣 values were calculated for the rear-end traffic 

conflicts observed at the study sites using the standard formulae. The five-year (2015-2019) 

rear-end crash data for the sites were obtained from the Department of Transport and Main 

Roads, Queensland Government. No severe (MAIS3+) crashes were observed at the study 

intersections.  

 
Table 2: Intersection-wise descriptive statistics of crash and conflict data 

Intersection 

name 

No. of total 

rear-end 

crashes 

(2015-19) 

No. of severe 

rear-end 

crashes 

(2015-19) 

Conflict 

indicator 

(units) 

Mean Median Std. 

dev. 

Stafford Rd – 

Appleby Rd – Shand 

St (SA) Intersection  

6 0 MTTC (s) 1.01 0.88 0.53 

  ∆𝑣 (m/s) 6.31 6.17 3.16 

Gold Coast Hwy – 

Hope Island Rd (GH) 

Intersection 

12 0 MTTC (s) 0.85 0.86 0.23 

  ∆𝑣 (m/s) 5.33 5.01 2.13 

4. Results and discussions 

The annual total and severe crash frequencies were estimated using both the aforementioned 

approaches, and the results are given in Table 3. The application-based approach (with 

uncalibrated models) provided accurate estimates for the Gold Coast intersection. The 

estimated total and severe crashes were both within their respective observed 95% Poisson 

confidence intervals. However, the total number of crashes at the Stafford intersection was 

outside the 95% confidence interval, indicating that the application-based approach was 
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unsuitable for this intersection. Thus, the model thresholds were calibrated using the usual 

extreme value theory approach of investigating the threshold stability, mean residual life, and 

spectral measure plots (Arun et al., 2021a). Subsequently, the total and severe annual crash 

frequencies were estimated per Eq. (2) and (3) and compared with the observed crash 

frequencies. The calibration approach led to a distinctive performance improvement for the 

Stafford intersection for both total and severe crash predictions, as the new estimates were 

within the observed confidence interval and the mean absolute deviations were lesser than in 

the previous case. Some marginal improvement was also seen in the overall accuracy of the 

Gold Coast intersection total crash estimates after calibration; however, the mean absolute 

deviation of severe crashes for this intersection increased, indicating that the overall benefit of 

calibration was less in case of this intersection. 

 
Table 3: Estimation results for annual total and severe crashes using both approaches 

Intersection Category Parameters Values 

Application-based approach 

Stafford Rd – 

Appleby Rd – 

Shand St (SA) 

Intersection 

Total Crashes 𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠  442 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 2.731 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (95% 𝐶𝐼) 1.2 (0.44 – 2.612) 

Mean absolute deviation 1.531 

Severe Crashes 

(MAIS3+) 

𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠  26 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 0.151 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (95% 𝐶𝐼) 0.0 (0.0 – 0.738) 

 Mean absolute deviation 0.151 

Gold Coast Hwy – 

Hope Island Rd 

(GH) Intersection 

Total Crashes 𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠  462 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 2.855 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (95% 𝐶𝐼) 2.4 (1.24 – 4.192) 

 Mean absolute deviation 0.455 

Severe Crashes 

(MAIS3+) 

𝑁𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠  6 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 0.035 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (95% 𝐶𝐼) 0.0 (0.0 – 0.738) 

 Mean absolute deviation 0.035 

Estimation-based approach 

Stafford Rd – 

Appleby Rd – 

Shand St (SA) 

Intersection 

Calibrated Thresholds 𝑢𝑛𝑒𝑔𝑎𝑡𝑒𝑑𝑀𝑇𝑇𝐶  -0.63 

𝑢∆𝑉 11.16 

Total Crashes 𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 1.46 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (95% 𝐶𝐼) 1.2 (0.44 – 2.612) 

 Mean absolute deviation 0.26 

Severe Crashes 

(MAIS3+) 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 0.121 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (95% 𝐶𝐼) 0.0 (0.0 – 0.738) 
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Intersection Category Parameters Values 

 Mean absolute deviation 0.121 

Gold Coast Hwy – 

Hope Island Rd 

(GH) Intersection 

Calibrated Thresholds 𝑢𝑛𝑒𝑔𝑎𝑡𝑒𝑑𝑀𝑇𝑇𝐶  -0.6 

𝑢∆𝑉 10.5 

Total Crashes 𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 2.017 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (95% 𝐶𝐼) 2.4 (1.24 – 4.192) 

 Mean absolute deviation 0.383 

Severe Crashes 

(MAIS3+) 
𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 0.125 

𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (95% 𝐶𝐼) 0.0 (0.0 – 0.738) 

 Mean absolute deviation 0.125 

5. Conclusions 

This study examined two methods for transferring peak-over-threshold extreme value models 

from modelled sites to similar external sites. The study results show that the application-based 

approach with uncalibrated models might not be reliable. Calibrating the relevant model 

parameters can help increase the accuracy of the crash estimations from conflict-based extreme 

value models. Simply calibrating the threshold parameter can yield good results for transferring 

models within the same or nearby jurisdictions with similar traffic and driving patterns. In other 

cases, the calibration of scale and shape parameters may also be required. 

7. References 

Arun, A., Haque, M. M., Bhaskar, A., Washington, S., Sayed, T., 2021a. A bivariate extreme 

value model for estimating crash frequency by severity using traffic conflicts. Analytic Methods 

in Accident Research, 32, 100180. 

Arun, A., Haque, M. M., Bhaskar, A., Washington, S., Sayed, T., 2021b. “How Many are 

Enough?” Investigating the effectiveness of multiple conflict indicators for crash frequency-

by-severity estimation through automated traffic conflict analysis. under review at 

Transportation Research Part C: Emerging Technologies. 

Essa, M., Sayed, T., Reyad, P., 2019. Transferability of real-time safety performance functions 

for signalized intersections. Accident Analysis and Prevention, 129, 263-276. 

Fu, C., Sayed, T., 2021. Multivariate Bayesian hierarchical Gaussian copula modeling of the 

non-stationary traffic conflict extremes for crash estimation. Analytic Methods in Accident 

Research, 29, 100154. 

Songchitruksa, P., Tarko, A. P., 2006. The extreme value theory approach to safety estimation. 

Accident Analysis and Prevention, 38 (4), 811-822. 

Zheng, L., Sayed, T., 2019. Application of Extreme Value Theory for Before-After Road Safety 

Analysis. Transportation Research Record: Journal of the Transportation Research Board. 

Zheng, L., Sayed, T., Essa, M., 2019a. Bayesian hierarchical modeling of the non-stationary 

traffic conflict extremes for crash estimation. Analytic Methods in Accident Research, 23, 

100100. 

Zheng, L., Sayed, T., Essa, M., 2019b. Validating the bivariate extreme value modeling 

approach for road safety estimation with different traffic conflict indicators. Accident Analysis 

and Prevention, 123, 314-323. 

 


