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Abstract 

The traditional upper-level formulation in the bi-level OD matrix estimation process includes 

link flows and is mathematically an under-determinate problem. Various methods exist in 

literature to improve the quality of OD estimates by using additional traffic information 

including target OD, traffic speeds, travel times, turning proportions, trajectories, and partial 

OD flows. Irrespective of the type of traffic information, this study along with a few limited 

studies are of the opinion that structural information of OD needs to be accounted in the upper-

level formulation to improve the quality of final OD estimates. To this end, this study 

investigates if additional structural knowledge available through partial OD flows (referred as 

sub-OD flows) can improve the OD estimation quality. This study used two methods to capture 

the OD structure at two levels and refer to them as macro-OD and micro-OD structural 

information. Few studies in the past have applied the macro-OD structural information 

(captured using correlation coefficient) in OD estimation formulation. However, a method to 

account for micro-OD structure (captured using ratio of OD flows from the same origin and 

end into destinations with similar trip attractions) and integrate it into the upper-level objective 

function formulation was never developed and therefore is the major contribution of this study. 

The proposed methodology was demonstrated on Brisbane city network using synthetic link 

flows and partial OD flows from Bluetooth observations. The findings from this study revealed 

that exploiting the partial OD structural information through macro and micro sub-OD flows 

improved the quality of OD estimates better than using other candidate formulations.  

1.Introduction 

Origin-Destination (OD) matrix estimation has always been the topic of research in transport 

modelling. Several methods have been developed in the last three decades to estimate OD 

matrices (Van Zuylen and Willumsen, 1980, Cascetta, 1984, Yang et al., 1992, Cascetta and 

Postorino, 2001, Antoniou et al., 2004a, Michau et al., 2017a).  

Traditionally, OD estimation is based on observed traffic counts, a prior OD matrix and a user 

equilibrium assignment (derived from analytical or simulation model). Since, the number of 

OD pairs are far greater than the number of mapping relationships between link flows and OD 

flows, the mathematical problem is under-determined. Thus, there is a possibility of developing 

poor quality OD estimates if the objective function focusses only on the deviation of observed 

traffic counts (Antoniou et al., 2016). 

One of the ways to improve the quality of OD estimation is to focus on enhancing the structure 

of OD estimates in addition to matching link flows. The structure of OD matrix is defined as 

the distribution pattern of travel demand between different OD pairs (Djukic, 2014, Behara et 

al., 2020b). It is often assumed that target matrix contains important structural information and 
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can be used to minimise the problem of under-determinacy (Bierlaire and Toint, 1995). 

However, the solution search space is biased around target OD matrix and it might not improve 

the quality of OD estimate because target matrix is often constructed from outdated surveys 

(Yang, 1995, Cascetta and Nguyen, 1988).   

Variety of studies exist in the literature that estimated OD matrices indirectly from different 

other forms of traffic observations; for instance, travel speeds (Jaume and Montero, 2015), 

travel times (Barcelö et al., 2010), partial OD flows (Dixon and Rilett, 2002), turning 

proportions (Alibabai and Mahmassani, 2008) and trajectory data (Michau et al., 2017b). While 

these studies are based on indirect observations of OD flows, few proposed direct inference of 

OD flows from trajectory data such as taxi trajectories (Mungthanya et al., 2019, Liu et al., 

2019, Chu et al., 2019), and cellular probes (Calabrese et al., 2011). Direct and complete OD 

flow observations demand extensive resources and therefore are very expensive. Thus, limited 

studies in the past proposed to use direct but partial observations of OD flows but assuming 

that penetration rates are known (Nasab and Shafahi, 2019, Antoniou et al., 2004b, Antoniou 

et al., 2006, Michau et al., 2017b) or being estimated (Yang et al., 2017, Iqbal et al., 2014). 

To summarise, accounting for the structure of OD in the bi-level estimation process is 

important, and penetration rates of partial OD flows observed from emerging sources such as 

Bluetooth that provide up-to-date information are generally unknown. Therefore, there is a 

great need to develop methods that account for the OD structure without depending on the 

market penetration rates of partial OD flow observations.  

Addressing the above need, the study proposes:  

1. Two methods to compare structural information of sub-OD flows without the need to 

assume or estimate the penetration rates. The methods focus on capturing macro (it is 

high-level information at the level of OD matrix) and micro (it is a detailed information 

at the level of individual OD flows) structural knowledge of sub-OD flows. 

2. A new upper-level formulation to integrate sub-OD flows into OD estimation problem. 

Studies in the past have proposed ways to capture or compare macro structural information of 

OD matrices. For instance, Hussain et al. (2021), Djukic (2014), and Behara et al. (2020a) used 

correlation coefficient, and Behara et al. (2020b) proposed Levenshtein distance to compare 

high-level structure of OD matrices. The earlier works by Behara et al. (2021) and Behara et 

al. (2020c) designed method to integrate macro-OD structural information into bi-level 

formulation. Limited research such as the study by Kim et al. (2001) in the past have accounted 

for the micro-OD structure but as constraints outside objective function. To the best of our 

knowledge, no study in the past have attempted to include micro-OD structural information 

within the upper-level formulation. In this context, the method to compare micro structural 

information of sub-OD flows and further integrating it into the objective function formulation 

is the major contribution of this study. 

This article demonstrates the proposed methodology using traffic simulation on a synthetic 

Brisbane network. Bluetooth observations provide the sub-OD information in the present 

study. However, the proposed methodology holds good for sub-OD observed from any other 

data sources such as GPS, and mobile phone. 

The remaining of the paper is organised as follows. Section 2 discusses the methodology 

proposed in this study; Section 3 presents the experiments and results; and Section 4 concludes 

the paper. 
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2. Proposed Methodology 

The original objective function of OD estimation is based on the deviations of traffic counts 

(link flows). Link counts are only point-based measurements and do not significantly contribute 

towards the quality of OD estimates due to the problem of under-determinacy. Partial 

observations of OD flows (referred as sub-OD flows) provide some a-priori structural 

knowledge of travel demand. Therefore, a combined formulation that match observed sub-OD 

flows and link flows with their estimated counterparts might enhance the quality of OD 

estimates. However, in most cases, sub-OD flows are only a sample, and their market 

penetration rates are generally unknown. In such situations, there is a great need for alternative 

ways to exploit this additional information. To this end, we propose: 

a) Methods to compare sub-OD flows, and  

b) A new upper-level formulation to integrate the above methods into OD estimation 

problem. 

The proposed methodology is illustrated in Figure 1. The new upper-level formulation (Z(x)) 

includes deviations of traffic counts (𝐲̃ and 𝐲) and partial or sub-OD flows (𝐛̃ and 𝐛).  

 

Figure 1: OD estimation algorithm 

2.1. Structural comparison of sub-OD flows 

The concept of “OD structure” is used in the comparison of sub-OD flows. In literature, the 

structure of OD matrix is defined as the distribution pattern of OD flows, and is generally 

captured through the coefficient of variation between the normalized OD flows (Djukic, 2014) 

or using Levenshtein distance (Behara et al., 2020b). In this paper, we exploit the structural 

information from sub-OD flows from two different levels as discussed below.
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2.1.1. Macro sub-OD structural information 

Here, we propose to capture sub-OD structural information from the partial “skeleton” of OD 

matrix. For instance, grey shaded cells of OD matrix shown in figure illustrates partial 

“skeleton “of OD matrix for which partial OD flows are known a-priori. 

 D1 D2 D3 D4 D5 

O1      

O2      

O3      

O4      

O5      

Figure 2: Demonstration of macro-OD structure 

Let 𝐱∗ refers to true OD vector, x is the estimated OD vector, 𝐛̃ is OD vector with partial 

observations of OD flows (e.g. grey shaded OD pairs in Figure 2), 𝐱̃ and 𝐱̃∗ are the portion of 

x and 𝐱∗ that correspond to OD pairs used in 𝐛̃. We assume that the structure 𝐛̃ is a proxy for 

the structure of 𝐱̃∗ . Structural comparison of 𝐛̃  and 𝐱̃  should be equivalent to structural 

comparison of 𝐱̃∗ and 𝐱̃ ; and therefore, in the absence of 𝐱̃∗ we can use 𝐛̃ from emerging data 

sources such as Bluetooth. We have used Pearson correlation coefficient (𝜌) for the structural 

comparison of OD flows in our study. A higher correlation implies that both vectors (i. e. 𝐛̃ and 

𝐱̃ ) are structurally closer to each other. The macro structural comparison of sub-OD flows is 

expressed in the Equation (1). 

 
ρ(𝐛̃, 𝐱̃ ) =

(𝐛̃−𝛍𝐛̃)
T

(𝐱̃−𝛍𝐱̃)

√(𝐛̃−𝛍𝐛̃)
T

(𝐛̃−𝛍𝐛̃)√(𝐱̃−𝛍𝐱̃)T(𝐱̃−𝛍𝐱̃)

  
(1) 

 

2.1.2 Micro sub-OD structural information  

In this study, we propose to capture OD structural information at a micro scale; that is, at 

individual OD level. The ratio of OD flows from the same origin to destinations of similar trip 

attraction characteristics is defined as the micro-OD structure. Figure 3 shows an example 

demonstrating partial and complete OD flows from the same origin O1 and similar work-based 

destinations (D1 and D2). This study assumes that the ratio of complete to partial OD flows 

originating from the same zone to similar destinations remain same (in this example, 500/50 = 

1000/100 = 10). 

 

Figure 3: Demonstration of micro-OD structure 
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To demonstrate the ratio of OD flows, let 𝐛̃ and 𝐛 be the observed and simulated/estimated 

sub-OD vectors; and b̃ij  and   bij  correspond to flows between OD pair from origin, i to 

destination, j. Consider  b̃i1j1
 and  bi1j1

 between i1 and j1;  and b̃i1j2
 and  bi1j2

 between i1 and 

j2.  Since, b̃ij is only a fraction of  bij, let the relation between both is represented using a scaling 

factor, αij, as shown in Equation (2).  

 b̃ij =  αijbij (2) 

Using, Equation (2),  b̃i1j1
 and  bi1j1

  are related using  αi1j1
, and b̃i1j2

 and  bi1j2
 using  αi1j2

  as 

shown in Equations (2a) and (2b), respectively.  

 b̃i1j1
=  αi1j1

bi1j1
 (2a) 

 b̃i1j2
=   αi1j2

bi1j2
 (2b) 

 

Assuming  αi1j1
 ≅  αi1j2

, the ratio of b̃i1j1
 and b̃i1j2

 can be represented as shown in Equation 3, 

and the relationship between them as presented in Equation 3a. 

b̃i1j1

b̃i1j2

=
 αi1j1

bi1j1

  αi1j2
bi1j2

= ϔi1j1j2
 

if   αi1j1
≅  αi1j2

 

 (3) 

 bi1j1
=   ϔi1j1j2

bi1j2
 (3a) 

 

The ϔi1j1j2
 in Equation 3 is the OD demand ratio and refers to the micro-OD structural 

information for the OD pairs i1 and j1, and i1 and j2. The vector ϔ constitutes the ratio of OD 

flows between different sets of OD pairs and captures the micro-OD structural information. 

2.2 Integration of sub-OD structural information into upper-level 

formulation  

Traditional OD estimation methods attempt to minimise the deviations between traffic counts 

in the upper-level formulation. The structural information (both macro and micro) of sub-OD 

flows discussed in the previous section are two additional objectives that need to be integrated 

with the deviations of traffic counts. 

The upper-level formulation with deviations of traffic counts and macro structural OD 

comparison is shown in Equation (4). The macro structural comparison of 𝐛̃ and 𝐛 is a scalar 

value between -1 and 1 and is considered as a penalty/scaling factor to the deviations of 

observed (𝐲̃) and estimated (𝐲) link flows. The Equation (4) has two objectives to be optimised 

and is same as the formulation presented in the study by Behara et al. (2021).  

min
𝐱

Z(𝐱) = min
𝐱

1

2
((c1 + (𝐲 − 𝐲̃)T(𝐲 − 𝐲̃))) ((c2 + 𝑓(𝐛, 𝐛̃))

T
(c2 + 𝑓(𝐛, 𝐛̃))) 

 (4) 

𝑓(𝐛, 𝐛̃) =
1 − ρ(𝐛, 𝐛̃)

2
 

(4a) 

such that 𝐲 = 𝐏𝐱 ;  𝐛 = 𝐈𝐱 (4b) 
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  ρ(𝐛, 𝐛̃) =
(𝐛̃−𝛍𝐛̃)

T
(𝐛−𝛍𝐛)

√(𝐛̃−𝛍𝐛̃)
T

(𝐛̃−𝛍𝐛̃)√(𝐛−𝛍𝐛)T(𝐛−𝛍𝐛)

 
 (4c) 

In Equation (4), 𝐏 is the link proportion matrix with dimensions L x N where L and N indicate 

number of selected links and total number of OD pairs, respectively. The incidence matrix I 

maps the OD pairs for which partial OD flows are known a-priori. 

To include an additional micro structural information of sub-OD flows, we propose Equation 

(5) where the sub-OD flows estimated using a known ratio of OD flows are matched with their 

observed counterparts. The Equation (5) has three objectives to be optimised compared to two 

in Equation (4). 

min
𝐱

𝑍(𝐱) = 

min
𝐱

𝛼 ((c1 + (𝐲 − 𝐲̃)T(𝐲 − 𝐲̃)) (c2 + 𝑓(𝐛, 𝐛̃))
T

(c2 + 𝑓(𝐛, 𝐛̃))) + 

(1 − 𝛼)((𝐅𝐛)T(𝐅𝐛)) 

 (5) 

In Equation (5), 𝑓(𝐛, 𝐛̃), 𝐲 and 𝐛, and ρ(𝐛, 𝐛̃) are same the previous Equations 4(a), 4(b), and 

4(c), respectively. The dimension of 𝐅 is |𝐛| x |𝐛|  where |𝐛|  is the number of OD pairs for 

which ratio of OD flows is known a-priori. The matrix 𝐅 multiplied with estimated OD vector 

𝐛 calculates the deviation between two estimates of partial OD demands. The first estimate is 

calculated using known a-priori ratio of sample OD flows, and the second estimate is an output 

from an iterative traffic assignment. For example, if b̃i1j1
 and b̃i1j2

 are the observed partial OD 

flows between 𝑖1  and  𝑗1 , and 𝑖1  and  𝑗2 ; and  ϔ𝑖1𝑗1𝑗2
 is 

b̃i1j1

b̃i1j2

; then ϔ𝑖1𝑗1𝑗2
𝑏𝑖1𝑗2

 is an another 

estimate of  𝑏𝑖1𝑗1
 The difference between  𝑏𝑖1𝑗1

 (from simulation) and ϔ𝑖1𝑗1𝑗2
𝑏𝑖1𝑗2

 is an element 

in the matrix, 𝐅𝐛. In other words,  𝑏𝑖1𝑗1
∈  𝐛 and 1 −

ϔ𝑖1𝑗1𝑗2𝑏𝑖1𝑗2

 𝑏𝑖1𝑗1

 ∈  𝐅 . The condition for using 

 ϔ𝑖1𝑗1𝑗2
 is that  𝑏𝑖1𝑗1

 and 𝑏𝑖1𝑗2
 should originate from the same origin and end into similar 

destinations.  

The terms c1  (<<1) and c2  (<<1) in the Equations (4) and (5) are the constants meant to 

stabilise the objective function when (𝐲 − 𝐲̃)T(𝐲 − 𝐲̃) or 𝑓(𝐛, 𝐛̃) becomes zero. 

2.3 Procedure to implement the proposed methodology 

To execute the framework illustrated in Fig. 2 under controlled environment, we need to run 

upper-level and lower optimisations iteratively. For the current analysis, the codes for the 

optimisation are written in Matlab, and lower level traffic assignment is optimised using 

Aimsun next (2019). A Python script is written to integrate the optimisation model (in Matlab) 

with the traffic assignment (in Aimsun). However, Matlab is the primary platform that writes 

OD data into Aimsun OD format, runs the simulation, executes the Python script, and reads the 

simulation outputs for further optimisation process. This integration of Aimsun with Matlab is 

similar to the one presented in Antoniou et al., (2016). 

The step-by-step procedure for OD estimation is outlined in the following:
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Step-1: Prior inputs 

Obtain the observed sub-OD flows (𝐛̃), ratio of OD flows (ϔ) , and observed link flows (𝐲̃). 

Set k=1; 𝐱𝐤 = 𝐱̃. 

Step-2: Traffic assignment (lower-level optimisation) 

Load the study network in Aimsun next (2019) with demand, 𝐱𝐤,  and run traffic assignment 

(either stochastic route choice or dynamic user equilibrium). The outputs of the traffic 

assignment process include link flows (𝐲𝐤) , sub-OD flows ( 𝐛𝐤 ), and link-proportion 

matrix (𝐏𝐤).  

Step-3: Minimising the upper-level formulation 

The Equation (6) presents the gradient of 𝑍(𝐱) and is used to minimise the proposed upper-level 

formulation (Equation (5)). The term 𝛼 in Equation (5) is assumed to be 
1

2
 in the Equation (6). 

𝜕𝑍(𝐱)

𝜕𝐱
=

𝜕 (
1

2
((c1 + (𝐲 − 𝐲̃)T(𝐲 − 𝐲̃)) (c2 + 𝑓(𝐛, 𝐛̃))

T
(c2 + 𝑓(𝐛, 𝐛̃))) +

1

2
((𝐅𝐛)T(𝐅𝐛)))

𝜕𝐱
 

 (6) 

Step-4:  Check for convergence 

In this step, we check for termination criterion. If the criterion is not met, we set k = k+1; update 

the demand (𝐱𝐤) for the next iteration using Step-5 (refer Equation 7). Else, go to Step-6. 

Step-5:  OD matrix updating step 

The Equation (7) presents the method to update OD vector from 𝐱k to 𝐱k+1. This updating step 

involves search direction and step-size (λ). The search direction is determined by the gradient 

of 𝑍(𝐱). On the other hand, the step-size (λ) parameter determines the number of iterations 

required for the convergence. Lower values of λ ensure that the path of the gradient is smooth 

but computationally expensive. Higher values of λ can lead to higher values of the objective 

function, and the convergence could be affected.  

 𝐱k+1=  𝐱k ∘ (𝑒 − 𝜆𝑘 ∘
𝜕𝑍(𝐱)

𝜕𝐱
)   (7) 

𝜆𝑘 ∘
𝜕𝑍(𝐱)

𝜕𝐱
< 1 

(7a) 

In the Equation (7), e is vector of 1s and has dimensions same as x. The Hadamard product “∘” 

is used for element wise multiplication between 𝜆𝑘  and the gradient, and 𝐱k  and (𝑒 − 𝜆𝑘 ∘
𝜕𝑍(𝐱)

𝜕𝐱
). The optimum 𝜆𝑘 is calculated as the solution to Equation (6) in every iteration. 

Step-6:  Termination of the OD estimation process 

In this step we terminate the OD estimation process based on maximum relative change in the 

elements of estimated OD flows at successive iterations (Maher et al., 2001), and value of 𝐱𝐤 

is the final estimated OD vector.  

3. Experiments and results 

The study site is for this research is the core of Brisbane city network and chosen from Behara 

et al. (2020c). The number of OD pairs were 210, and number of selected links with detectors 

http://www.atrf.info/
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were 24. The experiments in this study were conducted for four different formulations and four 

different cases as listed below. 

The four different formulations include: 

• Formulation-1: Only link flows were used in the upper-level formulation. This is the 

traditional method of OD estimation 

• Formulation-2: A combination of link flows and micro-OD structural information in 

the upper-level formulation 

• Formulation-3: A combination of link flows and macro-OD structural information in 

the upper-level formulation (refer to Equation (4)) 

• Formulation-4: A combination of link flows, macro-OD, and micro-OD structural 

information in the upper-level formulation (refer to Equation (5)) 

The four different cases represent different percentages of OD pairs for which partial OD flows 

from Bluetooth are available a-priori and they include: 

 

• Case-1: 25% of total OD pairs 

• Case-2: 50% of total OD pairs 

• Case-3: 75% of total OD pairs 

• Case-4: 100% of total OD pairs 

The final OD estimates were assessed by comparing their structural similarity with that of 

true OD using Geographical Window based Structural Similarity Index (GSSI) as shown in 

Equation (8). 

GSSI(𝐱, 𝐱∗)  =   
1

𝑆
∑

(2µ𝐱𝐬
µ𝐱∗

𝐬
+ ϵ1)(2σ𝐱𝐬𝐱∗

𝐬
+ ϵ2)

(µ𝐱𝐬
2 +  µ𝐱∗

𝐬

2 + ϵ1)(σ𝐱𝐬
2 +  σ𝐱∗

𝐬

2 + ϵ2)

𝑠=𝑆

𝑠=1

 

(8) 

Where, S is the total number geographical windows1 for the OD matrices; and 𝐱𝐬 and 𝐱∗
𝐬 are 

group of OD flows in sth geographical window in 𝐱 and 𝐱∗, respectively. Mean and standard 

deviation of 𝐱𝐬 and 𝐱∗
𝐬 are µ𝐱𝐬

, µ𝐱∗
𝐬
, and σ𝐱𝐬

, σ𝐱∗
𝐬
; and covariance of 𝐱𝐬 and 𝐱∗

𝐬 is σ𝐱𝐬𝐱∗
𝐬
, 

respectively. For the present study the number of geographical windows (S) is assumed to be 

1. 

The Figure 4(a) presents GSSI(𝐱, 𝐱∗) for different upper-level formulations provided a-priori 

knowledge about partial OD flows was available for 25% of the OD pairs. It is evident that the 

objective function that included link flows, macro-, and micro-OD structural information 

 
1 

GSSI computes statistics on group of OD pairs belonging to same geographical windows. These windows are 

defined based on higher zonal level boundaries. Refer BEHARA, K. N., BHASKAR, A. & CHUNG, E. 2020b. 

A novel approach for the structural comparison of origin-destination matrices: Levenshtein distance. 

Transportation Research Part C: Emerging Technologies, 111, 513-530. for more details. 
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resulted in a better quality of OD estimates compared to other candidate formulations as well 

as the Prior OD. 

The Figure 4(b) shows that as the percentage of OD pairs with a-priori partial OD flows 

increased from 25% to 50%, the improvement was even better. For instance, the Formulation-

4 resulted in a GSSI(𝐱, 𝐱∗) of 0.8662 which was 2.64% improvement compared to 0.8439 using 

same formulation in Case-1. 

The Case-3 and Case-4 showed further enhancement in the quality of OD estimates as shown 

in Figure 4(c), and 4(d), respectively. Compared to Case-1, the percentage improvement in the 

quality of final OD matrices estimated using Formulation-4 in Case-3 and Case-4 were 5.33% 

and 9.54%, respectively. Therefore, higher the availability of a-priori partial OD flows, higher 

is the improvement in OD estimation. 
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Figure 4: Results from different combination of upper-level formulations and percentages of a-priori 

partial OD structural information 

4. Conclusion 

One of the ways to enhance the quality of OD estimates is to simultaneously improve the 

structure of OD as well as the individual OD flows. The traditional method of matching link 

flows in the upper-level formulation fails to improve the quality of OD structure because 

mathematically the formulation is under-determinate. Other types of traffic information such 

as target OD contains important structural information; however, it is often constructed from 

outdated surveys. Various methods exist in literature to include partial OD flows in the upper-

level formulation but with assumption that their market penetration rates are known. The 

sample rates of partial OD flows are not known in practice. Therefore, to improve the quality 

of OD estimates it is utmost important to exploit the a-priori knowledge of OD structural 

information to the maximum extent possible. To this end, this study introduces the concept of 

macro- and micro-OD structure and integrate them using a new upper-level formulation. The 

macro-OD structure is a high-level information captured using correlation coefficient. The 

micro-OD structure is at a more detailed level and captured through the ratio of OD flows from 

the same origin and ending into destinations with similar trip attraction characteristics. 

Integration of the micro-OD structure into the bi-level OD estimation formulation is the major 

contribution of this study. The proposed methodology was tested on a synthetic Brisbane 

network using partial OD flows (referred as sub-OD flows in this study) from Bluetooth 

observations. The findings revealed that using link flows, macro-OD structure, and micro-OD 

structure together in the upper-level formulation improved the quality of OD estimates 

compared to other candidate formulations. 
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