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Abstract 

We present preliminary results from ongoing research that seeks to estimate the location choice 
model formulated in Ahlfeldt et al. (2015). Using data for six Australian cities with populations 
ranging from 200,000 to over 5 million, we find the effect of commuting costs on location 
choice varies significantly between cities and across specifications. Our preferred model yields 
effects that are approximately 20% larger than conventional specifications. 

1. Introduction 

A growing body of research considers the effect of transport on location choice, or “land use” 
(see, for example, Ahlfeldt et al., 2015; Allen and Arkolakis, 2014). Questions remain, 
however, over the estimation and transferability of model parameters. In this paper, we present 
preliminary results from ongoing research that seeks to estimate the spatial general equilibrium 
(SGE) model of location choice from Ahlfeldt et al. (2015), hereafter “ASRW”. 1 In contrast to 
studies that focus on a single city, we use data for six Australian cities with populations ranging 
from 200,000 to over 5 million. 2 We find the effects of commuting costs on location choice 
vary between Australian cities and across model specifications, with our preferred model 
yielding effects approximately 20% larger than conventional specifications. 

2. Model 
Here, we summarise only the relevant parts of ASRW; readers are referred to the paper for full 
details. In ARSW, workers choose their home and work locations based on prices, such as rents 
and wages; amenities at home and work; and commuting costs. In spatial equilibrium, prices, 
amenities, and commuting costs adjust to leave workers indifferent between locations. 
Formally, the preferences, 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖, of worker 𝑜𝑜 over home and work locations 𝑖𝑖 and 𝑗𝑗 is given by 
 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
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where 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 is a random variable that denotes the idiosyncratic preferences of worker 𝑜𝑜 for home 
and work locations 𝑖𝑖  and 𝑗𝑗 ; 𝐵𝐵𝑖𝑖  denotes the level of residential amenities; 𝑑𝑑𝑖𝑖𝑖𝑖  denotes the 
disutility of commuting between 𝑖𝑖  and 𝑗𝑗 ; 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  denotes a composite consumption good; 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 
denotes residential floor space; and 1 − 𝛽𝛽 denotes the share of housing in total consumption. 

 
1 Lennox and Sheard (2019) use a variant of ASRW to analyse urban transport improvements in Australia. 
2 We present results for Sydney (SYD), Melbourne (MEL), South East Queensland (SEQ), Perth (PER), Adelaide 
(ADL), and Hobart (HOB). Results for Launceston and Canberra will be added in the future. 

http://www.atrf.info/
mailto:s.b.donovan@vu.nl


ATRF 2021 Proceedings 

2 

We assume full-time workers supply one unit of labour and earn wage 𝑤𝑤𝑗𝑗, whereas the price of 
floorspace is given by 𝑞𝑞𝑖𝑖 and the price of the composite good is the numeraire. ASRW assume 
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖  follows a Fréchet distribution given by 𝐹𝐹�𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖� = exp(−𝑇𝑇𝑖𝑖𝐸𝐸𝑗𝑗𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖−𝜀𝜀), where 𝑇𝑇𝑖𝑖 ,𝐸𝐸𝑗𝑗 > 0 are 
scale parameters for the average utility from living and working in 𝑖𝑖 and 𝑗𝑗, respectively, and 
𝜀𝜀 > 1 measures heterogeneity in worker’s preferences over home-work locations. A smaller 
value for 𝜀𝜀 implies more heterogeneous preferences over locations, and vice versa.  
 
Under these assumptions, ASRW integrate over 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖  to derive the following equation to 
describe the probability, 𝜋𝜋𝑖𝑖𝑖𝑖, that an individual worker chooses to live and work in 𝑖𝑖 and 𝑗𝑗: 
 

𝜋𝜋𝑖𝑖𝑖𝑖 =
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. 

 
Where 𝑞𝑞𝑖𝑖 and 𝑤𝑤𝑗𝑗 denote the rents paid and wages earned by workers. Like ARSW, we model 
the disutility of commuting using the exponential function 𝑑𝑑𝑖𝑖𝑖𝑖 = exp 𝜅𝜅𝜏𝜏𝑖𝑖𝑖𝑖 , where 𝜅𝜅  is a 
parameter to be estimated and 𝜏𝜏𝑖𝑖𝑖𝑖 denotes commuting costs, which—in our case—is either car 
travel-time or generalized costs. Below, we focus on estimating the parameters 𝜅𝜅 and 𝜀𝜀. 

3. Methodology 
We adopt a recursive methodology that broadly follows ASRW with some departures. First, 
like ASRW, we re-formulate the location choice model as a gravity equation (Eq. 1) 
 

𝑛𝑛𝑖𝑖𝑖𝑖 = exp�𝛿𝛿𝑖𝑖 + 𝛿𝛿𝑗𝑗 − 𝜈𝜈𝜏𝜏𝑖𝑖𝑖𝑖�  [Eq. 1]. 

 
Where 𝑛𝑛𝑖𝑖𝑖𝑖  denotes the number of workers who live and work in 𝑖𝑖  and 𝑗𝑗 ; 𝛿𝛿𝑖𝑖 =
ln �𝑇𝑇𝑖𝑖𝐵𝐵𝑖𝑖𝜀𝜀𝑞𝑞𝑖𝑖

−𝜀𝜀(1−𝛽𝛽)�  and 𝛿𝛿𝑗𝑗 = ln�𝐸𝐸𝑗𝑗𝑤𝑤𝑗𝑗𝜀𝜀�  denote individual effects that measure the relative 
attractiveness of home and work locations; and 𝜈𝜈 = 𝜀𝜀𝜀𝜀 denotes the semi-elasticity formed from 
the product of 𝜀𝜀 and 𝜅𝜅. We estimate Eq. 1 for each city, yielding six values for 𝜈𝜈. Whereas Eq. 
1 is often estimated as a Poisson model, we instead estimate it as a negative binomial model, 
which has a more flexible specification for variance.  
 
Second, with the estimates for the semi-elasticity 𝜈𝜈, we follow ASRW and use the following 
labour market clearing condition (Eq. 2) to estimate the transformed wages, 𝜔𝜔𝑗𝑗: 
 

𝐻𝐻𝑀𝑀𝑗𝑗 = �
𝜔𝜔𝑗𝑗 exp�𝜈𝜈𝜏𝜏𝑖𝑖𝑖𝑖�⁄

∑ 𝜔𝜔𝑠𝑠 exp(𝜈𝜈𝜏𝜏𝑖𝑖𝑖𝑖)⁄𝑆𝑆
𝑠𝑠=1

𝐻𝐻𝑅𝑅𝑖𝑖
𝑆𝑆

𝑖𝑖=1
 [Eq. 2]. 

 
Where 𝐻𝐻𝑅𝑅𝑖𝑖 and 𝐻𝐻𝑀𝑀𝑗𝑗  denote the number of people who live in 𝑖𝑖 and work in 𝑗𝑗, respectively, and 
𝜔𝜔𝑗𝑗 = 𝐸𝐸𝑗𝑗𝑤𝑤𝑗𝑗𝜀𝜀 denotes the “transformed wages” for location 𝑗𝑗. In equilibrium, there exists a unique 
vector 𝜔𝜔𝑗𝑗  that satisfies Eq. 2 exactly. Given the estimated semi-elasticity, 𝜈𝜈 ; observed 
commuting costs, 𝜏𝜏𝑖𝑖𝑖𝑖; and observed population and employment totals 𝐻𝐻𝑀𝑀𝑗𝑗  and 𝐻𝐻𝑅𝑅𝑖𝑖, we use 
Newton-Raphson’s method to solve Eq. 2 for 𝜔𝜔𝑗𝑗. 
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Third, we use our estimates for ln𝜔𝜔𝑗𝑗 to estimate the worker heterogeneity parameter, 𝜀𝜀: 
 

ln𝜔𝜔𝑗𝑗 = ln𝐸𝐸𝑗𝑗 + 𝜀𝜀 ln𝑤𝑤𝑗𝑗  [Eq. 3]. 

 
Here, we depart from ASRW by observing ln𝜔𝜔𝑗𝑗, is defined by both the individual destination 
effects, 𝛿𝛿𝑗𝑗 = ln�𝐸𝐸𝑗𝑗𝑤𝑤𝑗𝑗𝜀𝜀� = ln𝜔𝜔𝑗𝑗 estimated in Eq. 1 and the transformed wages, 𝜔𝜔𝑗𝑗, estimated in 
Eq. 2. Put another way, Eq. 1 and Eq. 2 provide us with two independent sources of information 
on ln𝜔𝜔𝑗𝑗. In Eq. 3, we use both these estimates, along with data on observed wages, 𝑤𝑤𝑗𝑗, and 
individual effects for each location to capture the average workplace utility, ln𝐸𝐸𝑗𝑗 . To 
understand whether estimates of 𝜀𝜀 derived from observed wages, ln𝑤𝑤𝑗𝑗, are sensitive to sorting, 
we also test a variant of Eq. 3 where we replace ln𝑤𝑤𝑗𝑗 with estimates of the “spatial wage”, 
ln𝑤𝑤𝑠𝑠 (Combes et al., 2008). The spatial wage represents the component of wages that remains 
after controlling for differences in sectoral composition (one-digit), occupational composition 
(one-digit), education, age, and gender between locations. 
 
Finally, we use Bayesian methods to estimate the regression models in Eq. 1 and Eq. 3, which 
generates distributions of parameter estimates for 𝜈𝜈, 𝛿𝛿𝑗𝑗 , and 𝜀𝜀.  

4. Data 
We use two sources of data. Our first source is the Australian Census 2016. 3 From the Census, 
we extract home-work (SA2) flows 𝑛𝑛𝑖𝑖𝑖𝑖 , for full-time workers that commute by car, public 
transport, or active modes. We also extract data on the average wage, 𝑤𝑤𝑗𝑗, at the place-of-work 
and observed characteristics to estimate the spatial wage, ln𝑤𝑤𝑠𝑠, such as education and industry 
sector. Our second source of data is travel demand models operated by Veitch Lister Consulting, 
which provide us with data on commuting costs, 𝜏𝜏𝑖𝑖𝑖𝑖 . From these models, we extract two 
commuting cost measures between SA2s: Car travel-times in the AM peak, 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡  , and the 
generalized costs of travel, 𝜏𝜏𝑖𝑖𝑖𝑖𝑐𝑐 . Whereas 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡  facilitates comparisons to the existing literature, 
𝜏𝜏𝑖𝑖𝑖𝑖𝑐𝑐 , provides a more comprehensive, multi-modal transport cost measure. 4 
 
To this  raw data, we apply two filters: First, we remove observations associated with origins 
and destinations with no residents or jobs, respectively. Second, we remove observations for 
which the car travel-time, 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 , exceeds 240-minutes, which are likely to be associated with non-
regular commutes, such as fly-in-fly-out workers. After applying these filters, we are left with 
500,000 observations, that is, unique SA2-origin, SA2-destination pairs. In Figure 1, we present 
scatter plots of the data for each of the six cities, where we show the logarithm of commuters, 
log𝑛𝑛𝑖𝑖𝑖𝑖, versus travel-time, 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 , on the vertical and horizontal axes, respectively. In all cases, we 
observe an approximately linear, negative relationship between travel-time and the logarithm 
of commuters, as implied by the functional form of Eq. 1. 

 
3 Census data confers both advantages and disadvantages. On the upside, the Census enjoys high response rates 
and avoids issues with sample selection. On the other hand, the Census only records mode choice on one day. 
4 More specifically, generalized costs represent a “log-sum” measure of the disutility of commuting between 
locations, considering both the monetary and non-monetary costs of travel by car, public transport, and active 
modes. As we have models for several time periods in each city, we use the weighted-average costs between 
origins and destinations across all periods, where weights are defined by commute trips in each period. 
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Figure 1: Scatter plots showing the logarithm of commuters, 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏𝒊𝒊𝒊𝒊, versus travel-time, 𝝉𝝉𝒊𝒊𝒊𝒊𝒕𝒕 , on the vertical 
and horizontal axes, respectively, for each of the six cities in our data, excluding observations 𝒏𝒏𝒊𝒊𝒊𝒊 = 𝟎𝟎. 

5. Results 
Table 1 presents estimates of 𝜈𝜈  for three model specifications of Eq. 1 (rows) and city 
(columns). Model A is a conventional specification in which we use car travel-time, 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 , and 
treat 𝛿𝛿𝑖𝑖 and 𝛿𝛿𝑗𝑗 as fixed effects. In Model B, we replace car travel-time, 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 , with generalized 
costs, 𝜏𝜏𝑖𝑖𝑖𝑖𝑐𝑐 . Then in Model C we use generalized costs, 𝜏𝜏𝑖𝑖𝑖𝑖𝑐𝑐 , but treat 𝛿𝛿𝑖𝑖 and 𝛿𝛿𝑗𝑗 as random effects. 
To facilitate model comparisons, Table 1 presents standardised coefficients—where we divide 
𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡  and 𝜏𝜏𝑖𝑖𝑖𝑖𝑐𝑐  by their respective standard deviations prior to estimation. 5 In all models and cities, 
we find 𝜈𝜈 is precisely estimated with small standard errors.  
 

Model City 
HOB ADL PER SEQ MEL SYD 

A 2.27 (0.04) 3.54 (0.02) 2.41 (0.01) 3.76 (0.01) 3.36 (0.01) 3.41 (0.01) 
B 2.02 (0.04) 3.99 (0.02) 2.69 (0.01) 3.83 (0.01) 4.01 (0.01) 3.76 (0.01) 
C 2.18 (0.04) 4.76 (0.02) 2.83 (0.01) 4.38 (0.01) 4.45 (0.01) 4.23 (0.01) 

Table 1: Standardised coefficients for 𝝂𝝂 (c.f. Eq. 1); standard errors in brackets. Models described in text. 
 
In terms of model performance, all models have 𝑅𝑅2 values around 95%, although the PSIS-
LOO information criterion indicates Model C has the best predictive performance. Comparing 
coefficients across models, we find Model C also returns the largest coefficients for all cities 
except Hobart. On average, coefficients for Model C are approximately 20% larger than those 
for Model A, where the latter is more commonly used in the literature. These are, in our view, 
economically meaningful differences. We also find significant differences in estimates between 
cities. The latter implies either (1) the underlying parameters, 𝜀𝜀 and 𝜅𝜅, that make-up 𝜈𝜈 vary 
between cities or (2) endogeneity is biasing estimates of 𝜈𝜈 in ways that vary between cities, or 
both. Future work will consider endogeneity in more detail, although our preliminary results 
indicate it has only small implications for the magnitude of 𝜈𝜈 (NB: This further work will also 
investigate whether endogeneity in Eq. 1 affects estimates for 𝛿𝛿𝑖𝑖 and 𝛿𝛿𝑗𝑗).  

 
5 On the original scale for 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡  our estimates for 𝜈𝜈 in Model A are close to the 0.07 reported in ASRW. 
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With 𝜈𝜈, we then use Eq. 2 to estimate transformed wages, 𝜔𝜔𝑗𝑗, for each city. And finally, we 
estimate Eq. 3 by combining estimates of 𝛿𝛿𝑗𝑗 = ln𝜔𝜔𝑗𝑗 from Eq. 1 with the estimates from Eq. 2. 
In Figure 2, we plot our estimates of ln𝜔𝜔𝑗𝑗 for Eq. 1 and Eq. 2 in the top and bottom panels 
versus raw income and spatial income in the left and right columns, respectively. Note that in 
each of these panels, the slope of the trend line provides an approximate indication of 𝜀𝜀.  
 

 
Figure 2: Scatter plots of 𝐥𝐥𝐥𝐥𝝎𝝎𝒋𝒋 sourced from Eq. 1 (top row) and Eq. 2 (bottom row) on the vertical axes 

versus raw income 𝐥𝐥𝐥𝐥𝒘𝒘𝒋𝒋 (left column) and spatial income 𝐥𝐥𝐥𝐥𝒘𝒘𝒋𝒋
𝒔𝒔 (right column) on the horizontal axes.  

We prefer estimates of 𝜀𝜀 derived from Eq. 1 for both theoretical and empirical reasons. When 
estimating 𝜀𝜀, however, we use the estimates of ln𝜔𝜔𝑗𝑗 from both the top and bottom panels of 
each column of Figure 2. As mentioned above, this provides us with two independent estimates 
of ln𝜔𝜔𝑗𝑗 per location, which in turn enables us to model average workplace utility, ln𝐸𝐸𝑗𝑗, by 
including individual location effects. We estimate Eq. 3 using raw income and spatial income, 
which yields estimates for 𝜀𝜀 of 3.58 (0.68) and 3.93 (1.52), respectively. Our preferred mid-
point estimates for 𝜀𝜀 of 3.6-3.9 is smaller than that used in ASRW, which report 𝜀𝜀 = 6.83, but 
sits within the 1.33-5.62 range reported in Kazunobu et. al (2021).  
 
In summary, using data for six Australian cities, we find the effects of commuting costs on 
location choice vary between cities and across model specifications. In further work, we aim to 
estimate models for Canberra and Launceston, refine the estimation of parameters, estimate 
additional model parameters, and consider implications for policy, such as local amenities, 𝐵𝐵𝑖𝑖. 
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