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1. Introduction 
Route choice set is an essential input in the traffic assignment process. It represents the subset 

of the universal set of the paths that exist between an Origin-Destination (OD) pair. Several 

path generation methods exist that attempt to reproduce the actual routes chosen by the 

individuals. The quality of these methods relies on the principle governing the algorithm and 

its input parameters. It is therefore essential to evaluate these algorithms based on certain 

criteria for practical applications. This paper aims to benchmark these algorithms by providing 

a qualitative and quantitative comparison among the prominent path generation algorithms in 

the literature. This study evaluates the algorithms based on several criteria such as: a) runtime 

complexity; b) heterogeneity of path set; c) flexibility of the algorithm; d) inter-algorithm 

comparison of the path set, and lastly; e) reproduction rate of the observed routes. 

It is essential to have fundamental understanding of the choice set generation algorithms prior 

to actual testing. Accordingly, we provide a literature review summary in Table 1 amongst the 

prominent algorithms in the literature, stating their governing principle, input parameters, 

runtime complexities and the number of paths generated. Interested readers are referred to Prato 

(2009) for a detailed overview of these algorithms. The comparative evaluation provides an 

insight for the analyst, to filter the algorithms based on the available inputs and desired outputs. 

For this study, link labelling approach is avoided in the evaluation process due to unavailability 

of sufficient labels for the selected OD pair.    

Table 1: Literature summary of the algorithms 

Algorithm Principle Parameters Runtime Paths generated 
Link Labelling Define weights for 

the directed graph 

(Length, travel 

time, free flow 

time, road type etc.) 

and extract the 

shortest path. 

Link weights Dependent on 

shortest path 

algorithm used. 

Single path for 

every unique label 

Link Elimination Iteratively removes 

links from the 

network to find new 

paths 

Number of paths, K O(K) where K is the 

number of paths, 

directly dependent 

on the shortest path 

algorithm used. 

Pre-determined K 

number of paths 

Link Penalty Iteratively 

increases link 

impedance on the 

travelled paths to 

generate new paths 

Penalty threshold, 

Number of Paths, K 
Sensitive to the 

definition of 

penalty factor and 

number of paths, K 

and directly 

dependent on the 

Pre-determined K 

number of paths 
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Algorithm Principle Parameters Runtime Paths generated 
shortest path 

algorithm used 
Simulation Extracts link 

impedances from 

their individual 

distributions. 

Random draws may 

or may not generate 

different paths 

Choice of 

Distribution, 

variance, mean 

Sensitive to the 

definition of the 

probability 

distribution and 

variance. Directly 

dependent on the 

shortest path 

algorithm used. 

Dependent on 

number of draws 

and distribution, 

may vary in 

different iterations 

using same 

parameters. 

 
Branch and Bound 

Algorithm (B&B) 
Iteratively searches 

the network tree by 

constraining the 

child nodes based 

on pre-determined 

thresholds 

Linear distance 

threshold, temporal 

threshold, loop 

constraint threshold 

and similarity 

threshold 

Depends linearly to 

the width of the 

connection tree but 

exponentially to the 

depth 

All possible paths 

which are allowed 

by constraints. 

It should be noted that the input parameters affect different aspects of the output such as the 

runtime and the generated choice set. Accordingly, the algorithms should ideally be evaluated 

with different input parameters to test its performance. However, the scope of this study is 

restricted to the most optimal parameters observed in the literature.  

2. Evaluation of the runtime and heterogeneity of the choice sets 
Heterogeneity in the path choice set is essential as travellers do not perceive highly similar 

paths as distinct alternatives. The heterogeneity can be defined as the uniqueness in the 

generated paths and can be measured using Path Size factor (PS) (Ben-Akiva & Bierlaire, 

1999). In this study, we evaluate the algorithms for 20 OD pairs between a south-east 

(Mansfield) and the central suburb (Woolloongabba) of Brisbane city. Trajectories have been 

observed for a period of 11 months (January to November 2019). The shortest path observed 

between the two suburbs is 7.2 Km and a total of 8300 trips have been observed. These trips 

provide a collection of 517 individual paths which have been clustered into 25 unique 

representative paths and outliers have been removed. These OD pairs possess several path 

options, passing through the arterials and the motorway network with suitable heterogeneity in 

it. 

The Path Size factor (PS) is given as: 

PS =∑(
la
Li
)

1

Σj∈cnδaj
a∈Γi

 
(1) 

 

Where PS is the path size, Γi is the set of links in route 𝑖, 𝑙a is the length of link 𝑎, 𝐿i is the 

length of route 𝑖 and 𝛿aj is the link-route incidence variable which equals one if link 𝑎 is on 

route 𝑗 and zero otherwise. The Path Size factor is a measure of spatial similarity of the paths. 

The range of path size factor for a route choice set with n paths is given by [
1

𝑛
, 1]. As PS is 

dependent on n, we propose normalising it using min-max normalisation technique and taking 

an average of normalised PS values. This changes the range of PS to [0,1]. A low value of path 

size indicates high overlap amongst paths (homogeneity), whereas a high value indicates 
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heterogeneity within the choice set. Table 2 provides the runtime and the PS statistics for 

various algorithms based on their optimal parameters.  

Table 2 Route Choice set generation algorithms and the effect of parameters on the outputs 

Algorithm Parameters Runtime per 

OD pair 

(seconds) 

Path Size Factor 

Mean Median Standard 

Dev. 

Link Elimination 

(K = 15) 

K = 15 paths 0.637s 0.335 0.3 0.137 

Link Penalty 

(K = 15) 

Ɛ = 3% 0.234s 0.374 0.385 0.113 

Ɛ = 5% 0.167s 0.40 0.393 0.098 

Ɛ = 7% 0.149s 0.387 0.37 0.07 

Ɛ = 10% 0.094s 0.42 0.452 0.123 

Simulation 

Approach 

48 draws  3.79s 0.35  0.32 0.127 

 

Branch and 

bound 

Time constraint: 1.2 

Distance constraint: 1.1 

Loop constraint: 1.2 

Similarity constraint: 0.8 

89s 0.293 0.268 0.092 

 

It can be evident from Table 2 that link penalty computes paths in least time whereas branch 

and bound technique is the most computationally expensive for the given OD pair. Further, the 

mean path size is observed the highest for the link penalty and the least for the branch and 

bound. This indicates that the link penalty approach can generate paths with higher 

heterogeneity compared to the branch and bound algorithm in much lower runtime. On 

comparing the link penalty with link elimination approach, it can be observed that the link 

elimination method can produce paths with almost similar heterogeneity with a marginal 

increase in the runtime. 

It is observed that an increase in the penalty factor for link penalty reduces the runtime, 

following the principle which governs the algorithm and generates higher heterogeneity. 

However, a penalty factor value too high could also generate some unrealistic routes as the 

better routes get penalised by a much higher rate. Simulation approach, on other hand, uses 

truncated normal distribution of travel time with lower truncation limit of 0.8*(Free Flow time) 

and no upper truncation limit. The paths are generated through 48 draws on this distribution 

and all unique paths are considered in the final choice set. The results show a mediocre set of 

heterogeneous paths with a relatively higher computational cost. All algorithms have been 

implemented on an intel i7-4790 processor with a base frequency of 3.6 GHz and 16GB RAM 

clocked at 2600 MHz 

3. Inter-algorithm choice set evaluation 
The path size factor is a representation of the overall heterogeneity of the choice set. 

Accordingly, two algorithms with similar path size indicates that the choice set possess similar 

variability among their respective paths. However, this does not necessarily certain that the 

algorithms possess similar choice set. Accordingly, it is necessary to evaluate the similarity 

among the choice sets generated by different the algorithms. This study adopts commonality 
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factor (Cascetta et al., 1996) to identify the proportion of similar paths between algorithms. 

The Commonality factor (CF) is given by: 

CF =
Lij

LiLj
 

(2) 

where Lij is the length of common links between paths i and j. Li is the length of path i and Lj 

is the length of path j. The value of CF lies between [0,1], where 0 indicates that the paths are 

completely dis-similar and 1 indicates the path being exactly the same. For a given pair of 

algorithms to be compared, a commonality factor matrix is generated with rows and columns 

corresponding to paths among a pair of algorithms. Accordingly, the commonality is evaluated 

for each path in a particular algorithm with the corresponding path in the other algorithm. For 

each path in a choice set, the maximum value across the rows and columns corresponds to the 

maximum capture rate of that path by the other algorithm. These maximum values for all the 

paths in a choice set can be used to get an average capture rate (Cr). A lower value of Cr for 

algorithm 1 to algorithm 2 indicates that the algorithm 1 is unable to capture the paths given 

by algorithm 2, while a higher value of Cr would mean that algorithm 1 is able to capture 

majority of the paths covered by algorithm 2. Table 3 shows the average capture rate for all 

pairs of algorithms within this review, where the algorithms in the columns explain the average 

commonality with paths for the algorithm in the row. 

Table 3 Capture rates for all combinations of algorithms 

Algorithm Link Elimination Link Penalty Simulation Branch and bound 

Link Elimination 1 0.87 0.85 0.89 

Link Penalty 0.79 1 0.71 0.91 

Simulation 0.94 0.95 1 0.96 

B&B 0.94 0.95 0.89 1 

 

It can be observed that the link elimination can moderately capture the paths generated from 

another algorithms. Link Penalty, on other hand is able to capture majority of the paths given 

by other algorithms, while also maintaining the lowest runtime. Simulation approach is able to 

efficiently capture most of the paths given by other algorithms, with a higher runtime. The 

B&B algorithm is also able to capture the outputs of other algorithms efficiently. All algorithms 

have a high Cr against B&B which means the paths generated by B&B method can be generated 

using other methods while the runtime of branch and bound is exponentially higher, making it 

less desirable to generate a route choice set. 

4. Reproduction rate of observed routes 
One of the essential aspects to measure the quality of the choice set is by quantifying how well 

it is can reproduce the observed trajectories on the network. For the selected OD pairs, 25 

representative paths were observed from the trajectories extracted using STATER algorithm 

(Advani et al., 2021) and clustered using MLTRACER (Advani, 2021). The commonality 

factor is used to quantify the similarity among the observed path and the paths from the 

algorithms. The clusters are ranked based on the total flow observed over the period of 11 

months and results are presented on two levels, top 12 clusters and top 21 clusters. These both 

levels represent 91% and 98% of the total flow observed, respectively. The results are 

explained in terms of the paths observed for the threshold levels of 80% and 100% overlap. 

For a given pair of paths i and j, belonging to representative paths and generated paths 
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respectively, CFij is calculated. If CFij>δ, the cluster is marked as captured. Results are 

represented as fraction of clusters captured by the respective algorithms. Figure 1 shows the 

accuracy of various algorithms at the stated levels of commonality factor threshold. 

  
(a) (b) 

Figure 1: Accuracy of RCS generation algorithms at (a) 80% and (b) 100% CF 

It can be stated that the all the algorithms perform quite well considering only the paths with 

high flow. Further, the performance of algorithms drops when less travelled paths are also 

considered in the evaluation. Link elimination is able to capture all the paths at both levels of 

the threshold while the Branch and bound algorithm shows worse results on a 100% CF 

threshold.  

5. Conclusion 
The choice sets generated by link penalty, simulation and link elimination show similar 

heterogeneity in the generated path set, whereas B&B generates homogeneous paths compared 

to these methods. On computational based comparison, link penalty and link elimination have 

favourable runtime followed by simulation approach. Accordingly, B&B algorithm is 

undesirable in terms of both heterogeneity and runtime complexity. 

In terms of the flexibility of the algorithm, link elimination and link penalty provide an 

additional advantage of controlling the desired paths, whereas the generated paths cannot be 

controlled for simulation and B&B. However, this flexibility can be a dis-advantage as for the 

controlled algorithms, it will be essential to generate several paths to obtain a realistic choice 

set resulting in higher false positive (unobserved paths) than simulation and B&B algorithm. 

Lastly, in terms of real path reproduction rate, link elimination approach outperforms other 

algorithms, while simulation and link penalty moderately capture the actual paths, while B&B 

performed the worst to fully reproduce observed paths.  

In conclusion, it was observed that the link elimination approach is the most desirable method 

for generating desirable paths as it possesses suitable heterogeneity with lower runtime and the 

ability to capture realistic path choices. This paper is ongoing research, and the extended study 

will analyse the effect of parameters for each algorithm on the outputs. Secondly, a valuable 

analysis of Branch and bound method will be another contribution in the future research as it 

doesn’t exist in literature because of its high computational time. The later will provide a better 
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understanding of this approach and help in avoiding conclusions based on insufficient 

calibration. 
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