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Abstract 
Research findings from a wide range of health studies indicate that engaging in regular 
physical activity (PA) has positive effects on health outcomes. Travel, particularly 
commuting, consumes a significant proportion of the daily activity in which people 
engage. Driving, in general, is the least physically demanding travel mode and 
contributes to modern sedentary lifestyles and the associated health problems. Using 
public transport, as well as walking and cycling, provides opportunities for individuals 
to increase their levels of PA on a regular basis. 
The goal of this exploratory study was to test and evaluate a unique combination of 
data collection instruments and techniques to gain an in-depth understanding of travel-
related PA. This instrument ‘kit’ provided an accurate spatial and temporal account of 
daily activities, as well as supplementary contextual data (e.g. heart rate, conditions 
of the transport infrastructure and services, level of enjoyment) that are not commonly 
collected in travel and health studies. Participants in office-based (sedentary) 
occupations (n=50, data collection still underway) were asked to wear a Garmin 
smartwatch and EDESIX wearable camera (objective measures) and complete a self-
report time-use diary for two days, followed by a reconstruction interview a few days 
later (self-report measures). The combined quantitative (GPS tracks, heart rate, PA, 
distances, activity duration) and qualitative (contextual information from the video 
footage and reconstruction interviews) data enabled us to cross-validate GPS and PA 
data with the diary reports, but also in order to better understand activity scheduling 
and travel mode choices.  

1 Introduction 
The benefits of active travel (AT) represent an important and timely research area, 
because decreasing levels of PA, particularly in developed countries, have led to rising 
levels of obesity and prevalence of chronic conditions such as hypertension, cardio-
vascular diseases, and diabetes (Loveday et al., 2015; Götschi et al., 2015; Mueller et 
al., 2015; Giles-Corti et al., 2016; Panter et al., 2014; Stevenson et al., 2016; Wang et 
al., 2016). The benefits associated with regular moderate-to-vigorous physical activity 
(MVPA) are well-documented, and policy-makers across the world are applying these 
findings when implementing health-promotion programs. 
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A number of studies investigating (AT) report the positive effects of walking and cycling 
on physical health and life satisfaction, as well as associated environmental benefits 
(Saunders et al., 2013; Mueller et al., 2015). Consequently, many studies promote AT 
as part of daily commuting (Olsson et al., 2013; Stevenson et al., 2016) given that it is 
convenient and does not require people to devote additional time to PA during the day.  
Transport researchers employ various technologies to investigate AT, such as GPS 
(Shen & Stopher, 2014a), mobile phones (Bierlaire et al., 2013), wearable cameras 
(Kelly et al., 2011; Doherty et al., 2013; Shen & Stopher, 2014b) and pedometers and 
accelerometers (Steeves et al., 2015), although few studies include multiple devices 
(Panter et al., 2014; Kelly et al. 2015; Lee et al., 2016; Voss et al., 2016).  
Some of the challenges associated with using multiple devices include participant 
burden, a paucity of literature addressing the complexities associated with merging 
and calibrating data from different sources, few ‘proof of concept’ studies, and a lack 
of researchers experienced in the emerging ‘wearables’ research field (Panter et al., 
2014; Handy & Davis, 2016). Moreover, there are relatively few multi-disciplinary 
studies because most of the research to date is specialised within transport, time-use, 
population health and the health sciences – each with well-established approaches to 
research design, methodology and analysis.  
We argue that combining conventional diary methodologies with ‘wearables’ enables 
us to gain a substantially greater understanding and superior prediction of travel 
behaviour beyond the incremental additions of trip-chaining and GPS locations. 
Furthermore, passive data collection devices reduce respondent burden by shifting 
the ‘load’ to the analysts who integrate and calibrate these rich data sources. The 
reconstruction interviews bring insightful narratives on the circumstances and 
motivations for travel decisions. 

2 Instruments and devices for capturing active travel 
Activity-travel diaries and logs, with or without GPS tracking, have long been used for 
transport research (Ortúzar & Willumsen, 2011; Lee et al., 2016). Self-report 
instruments (e.g. travel diaries, where the Origin-Destination (O-D) of each trip are 
included) often fail to provide detailed location information that is temporally valid or 
omit short trips and transfers. Furthermore, respondents often have incomplete spatial 
knowledge, tend to approximate durations and succumb to recall bias (Shen & 
Stopher, 2014a, b). For these reasons, we collected objective measurements using 
smartwatches and wearable cameras that could enhance, or even replace, 
conventional travel surveys.  

2.1 GPS 
GPS studies began in the late 1990s, but studies investigating free-living PA did not 
emerge until the mid-2000s. Although passive recording and spatial and temporal 
precision are the key strengths of GPS, they still have shortcomings such as data loss 
in certain environments (e.g. tunnels, indoor settings) or adverse weather conditions 
(e.g. cloudy or stormy weather). ‘Priming’ issues (the short delay before the GPS 
signal is captured and triangulation completed) and respondent protocol adherence 
are also persisting. As with most wearable devices, limited battery life can restrict data 
collection periods (Loveday et al., 2015).  
As devices are improving rapidly and offer more advanced location measurement 
systems and longer-life batteries, the feasibility of using GPS for transport and health 
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studies has increased considerably. Concomitant advances in data processing have 
made the calibration, synthesis and analysis of ‘big data’ more manageable.  
GPS instruments have often been used in AT research, especially combined with 
travel diaries, in order to study how AT may help to increase commuters’ PA levels 
(Mueller et al., 2015; Voss et al., 2016). Given that many people spend the majority of 
their time indoors, GPS carries limitations for AT research unless used alongside other 
devices, such as accelerometers or smartwatches. 

2.2 Wearable cameras 
Wearable cameras have been used in a number of research fields such as diet and 
nutrition (Gemming et al., 2015), PA (Kerr et al., 2016) and travel (Doherty et al., 2013; 
Kelly et al., 2013, 2015; Oliver et al., 2010). They are worn by the participants on a 
lanyard or clipped to clothing, attached to a bicycle or rear-view mirror. Wearable 
camera images provide valuable contextual information, both indoors and out, in 
domestic, community and environmental settings. Camera footage provide clear 
evidence of sedentary behaviour (e.g. sitting in a bus or train) and PA (e.g. cycling or 
walking to work).  
A few studies have combined wearable cameras and travel diaries to test the reliability 
of self-reported travel durations using objective image data. Kelly et al. (2015) found 
that wearable cameras provided more reliable data on the sequence of travel modes 
and duration than self-report accounts. The trip duration derived from the time-
stamped wearable camera images suggested that participants overestimated their 
self-reported journey time (Kelly et al., 2013, 2015). Wearable cameras (and to an 
extent, smartwatches) have removed one of the main concerns associated with 
accelerometry – the technical difficulties distinguishing the types and domains of PA 
(Carlson et al., 2014; Loveday et al., 2015). 

2.3 Smartwatches 
Smartwatches, now widely available and increasingly affordable, simultaneously 
collect and collate data on the wearer’s heart rate (resting, maximum, mean), step-
count, activity type, PA intensity, sleep duration and quality, and contextual variables 
such as location (GPS) and air temperature (Loveday et al., 2015). As people become 
more familiar and comfortable with self-tracking using smartwatches and apps, 
participant compliance is increasing. 
Smartwatches with GPS can be used to record total trip distance, duration, speed and 
calories/energy expenditure, which, in addition to heart rate, is considered sufficiently 
valid for analysis. Many health researchers choose GPS devices over heartrate (HR) 
monitors, as they are less prone to technical failure. Other limitations of HR monitors 
include higher hygiene requirements, wearer discomfort (e.g. skin irritation) and not 
being waterproof. The capacity for smartwatches to record weather related information 
(e.g. temperature and humidity) is also important for travel analysis, because active 
travellers appear to be more weather sensitive than their sedentary counterparts 
(Böcker et al., 2016).   

3 Sample and data 
Data collection for this study is still underway; 50 participants have completed the two-
day data collection. The volunteer sample includes 34 females, all in sedentary 
occupations, 43 living with somebody, and 21 with children still at home. Forty are 
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highly educated (at least a bachelor degree) and 41 reported good or excellent health 
(36 rated their health above their age group). Participants were free to decide whether 
or not to take part in the study, or to withdraw at any time, and provided signed 
informed consent. The research received approval from the UWA Human Research 
Ethics Committee, without any specific concerns on gathering video footage. At the 
end of the data collection period, participants were offered a gift voucher as a token of 
appreciation for their time (on average 1.5 hours interacting with the researchers, plus 
the two day of data collection period).  
Four types of data were collected from each respondent: 1) quantitative self-report 
data from the time-use diary and a brief questionnaire; 2) quantitative information (HR, 
PA and GPS tracks from Garmin smartwatch); 3) video footage from the EDESIX 
wearable camera; and 4) qualitative data from the reconstruction interview. Images of 
the equipment used for data collection are presented in Appendix 1.  
One of the main goals of the study was to cross-validate passive data collection 
devices with the self-report time-use diary. The incorporated GPS tracked participants’ 
outdoor (and many indoor) locations and all travel episodes, whether active (i.e. 
walking or cycling), motorised (passenger car, taxi, bus or train) or multi-mode.  
The Garmin calculates the total distance and duration of multi-mode trips, with the 
GPS coordinates, allowing different travel modes to be identified. As this model is 
water-resistant, many of the participants wore them continuously. One of the 
limitations of the Garmin is the requirement to activate the GPS manually by selecting 
a widget prior to undertaking the activity (e.g. walking, cycling), waiting for the GPS 
activation icon, then pressing start. A number of participants did not remember to do 
this for every trip, which resulted in missing data. Nevertheless, the available GPS 
location data were imported into Garmin Express for later analysis. 
The video camera captured continuous footage from the wearer's point of view for all 
travel, but no sound was recorded (Figure A1). Some participants reported feeling 
uncomfortable wearing the camera on PT, but overall, compliance was high, with 
relatively little missing data.  
Shortly after the data collection period (no longer than three days), participants were 
invited to a face-to-face ‘reconstruction’ interview. Before the interview, the camera 
data were downloaded into a proprietary Video Manager program. Before viewing the 
image data, participants were asked if there was any footage they did not want to 
share with the researcher. Then using the images as prompts, the participants 
described their commute and other travel episodes. The interview enabled participants 
to learn something about their daily activities and served as a cross-check for the diary 
and smartwatch data. Most of the interviews lasted about between 45-60min.  
The data collection occurred over two consecutive weekdays, with a reasonably even 
distribution across the four combinations (i.e. Mon-Tue, Tue-Wed, etc.). Scheduling 
was quite complex due to the number of different work locations, part-time workers 
and limited research equipment. Each participant received in a research pack: an 
EDESIX wearable camera and quick-charge dock; a Garmin smartwatch and charging 
cable; a paper two-day time–use diary; a detailed information booklet and associated 
Quick Guide, summarising instructions for the devices. Table A1 (Appendix 2) includes 
some specifications for the devices, survey/diary instrument, and their features. 
The detailed image data captured by the wearable camera during travel on public 
transport concerned some participants due to the lack of informed consent of other 
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passengers, particularly on trains, where seats face each other. The ease with which 
the research team could identify the participant's location (e.g. street signs, familiar 
shopping and recreation areas) was less of an issue, as the data were stored on a 
secure university server. We followed the comprehensive framework published by 
Kelly et al. (2013) on appropriate ethical protocols for using wearable cameras to meet 
the stringent requirements of the University Human Ethics Committee. Given that the 
cameras are fully encrypted, only the research team can access the recordings, and 
the footage used only for coding travel episodes and their attributes, no 
adverse/harmful effects to participants were envisaged.  
Finally, the research team recommended that participants check in advance that 
friends, family, and co-workers understood the nature of the study and were happy for 
them to take part and were advised of locations where camera may not be permitted. 

4 Results 
Given the complexity of the data and that the study is not yet complete, we report 
results from different data sources separately, without integration. Moreover, the data 
are collected at various temporal (e.g., heart rate each second, episode level for 
activities and PA; duration and energy level per activity or at daily and individual level) 
and spatial scales, so the results indicate different sample sizes.  
To date quantitative personal data was coded for 49 respondents. The age distribution 
is bimodal (Figure 1), but without significant differences between males and females. 
Figure 1: Age distribution of participants 

 
Five of the participants do not own cars and only four have working-from-home 
arrangements with their employer. Most of them live around 15km from workplace, 
with seven commuting over 40km (Figure 2). 
In terms of travel mode, more than two thirds of the sample use bikes for some travel 
or recreation. The average travel distance per day was 35.6 km and the travel time 
93.6 minutes, 80% of it allocated to commuting.  
Given the sample size and study methodology, there is no inferential intent for the 
results. Rather, these results provide insights into factors influencing activity-travel 
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decisions and inform potential policies/measures aimed at promoting healthier travel 
solutions. 
Figure 2: Distribution of commuting distance  

 
In terms of travel, each respondent undertook one to three trip chains (sequences of 
trips in a tour that is direct to the destination or has intervening stops; they are defined 
for two anchors, home and work) per day, most of them home-based (N=28). Table 2 
provides some descriptive statistics for the sample (N=37), while data collection is 
continuing. Half of the participants organised their daily activities in multimodal chains 
with an average of 3.74 legs, including 42% car travel, 10% PT, 30% cycling, and 18% 
walking. 
Table 2: Sample statistics 

Variable Mean Std. dev. 
Gender (% females) 69.4%  
Av. age (years) 43.73 10.15 
BMI 24.83 3.71 
Self-reported health status (1 to 5 scale) 4.10 (17 reported excellent health) 0.74 
Av. distance home-work (km) 18.39 (males 22.31, females 16.82) 13.39 
Part time workers (%) 20.4%  
Av. working hours/week  36.73 7.27 
HR (beats/min) Garmin – range N = 37  80.16 (53 to 176, resting 61-70) 17.63 
Av. travel distance/day (km/day) Garmin N = 37 35.6 12.77 
Av. energy/day (kJ) Garmin N= 37 395 148.7 
Car only travel (%) 32.6%  
PnR and KnR (%) 22.4%  
Public transport (%) 18.4%  
AT (%) 26.6%  
Duration travel-related PA activity (min) N = 143 20.19  
Duration travel episode (min) N = 247 22.98 7.80 
Duration walking episode (min) N = 108 12.79 8.54 
Duration cycling episode (min) N = 38 27.57 6.98 
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Variable Mean Std. dev. 
Enjoyment driving (reported, average)  
N = 77 (1=low and 7=high) 

5.3 0.98 

Enjoyment walking episodes N = 108 5.44 0.67 
Enjoyment cycling episodes N = 38 5.46 0.55 
Enjoyment PT travel episodes N = 24 5.75 0.82 
Number of travel episodes/day N = 247  4.68 2.02 

Duration travel/day (min)  93.59 38.61 

Duration PT travel episode (min) N = 24 16.5 5.41 
Note: The sample size indicates the number of episodes of various types accounted for in the currently 
coded data.  

These preliminary results suggest that participants interested in the study (thus more 
active travellers and transport professionals) self-selected themselves and the 
average duration of various AT activities is higher than in the general population. 
Although not tested statistically yet, the diaries showed substantial difference in the 
timing of activities (primarily due to the 5-min timeslots and rounding of durations in 
the diary) and omitted short trips (e.g., lunch break trips or to the local park) or transfers 
between modes of transport. We are still estimating the magnitude of these 
differences. 

4.1 Garmin - heart rate data and GPS 
The Garmin watches provided the total distance and duration of trips, with the GPS 
coordinates, allowing for different travel modes. As indicated, one of the shortcomings 
of the smartwatch was the requirement to activate the GPS by selecting a widget prior 
to starting the activity. Many respondents failed to do so for one trip, so not all 
movements have the GPS tracks recorded. For missing GPS, we imputed the routes 
using the camera data and comparing the derived distances and times with those 
reported in the time-use diaries. 
Another important aspect of our data collection was the physical activity, measured in 
steps/distance, energy, and heart rate (HR). These are indicators used in PA research 
and our preliminary results showed significant correlations between the duration of PA 
episodes, energy expenditure (0.58) and HR (0.32) (see Figure 3).  
Figure 3: Example of association between energy expenditure and PA duration  
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As shown in Table 2, the sample has a broad range of individuals with various fitness 
levels and BMIs. The average HR was 80.16 beats/min, and a standard deviation of 
17.63 (N=37), confirming that several participants exercised during the two-day data 
collection. 
Further demonstration of the differences in health/fitness indicators and AT is the 
significant difference between heart rate during travel by various modes. Table 3 
shows considerably higher heartrate and number of calories consumed per travel 
episode if the individual walked or cycled, compared with driving and being a car or 
PT passenger. 
Table 3: Sample statistics 

Variable AT Not AT  
 Mean Std. dev. Mean Std. dev. p 
Av. HR (beats/min) 97.00 15.07 70.98 17.54 <0.001 

Calories 45.54 46.03 11.63 26.06 <0.001 

 
The next step measure is to derive the heart rate variability (HRV), which is broadly 
accepted by health researchers as a good physiological indicator of autonomic 
nervous system activity and is being used routinely for modelling physiological stress 
and recovery reactions (Tonello et al., 2014). Reduced HRV is considered a risk factor 
for negative cardiovascular outcomes, whereas higher HRV is associated with 
reduced morbidity and mortality and improved wellbeing and physical fitness (Tonello 
et al., 2014). While the Garmin does not provide direct HRV measures, we derived this 
from the 1-sec recordings on the heart rate. 
An example of HR data from a participant who has logged her PA with Garmin (in the 
Health app) is shown in Figure 4. Similar line charts are available for all other 
participants, although of a shorter duration and some with interruptions (when the 
widgets were not activated). These data are currently analysed and compared with the 
GPS tracks, an example of which is given in Figure 5. 
Figure 4:  Heart rate (beats per min) from Garmin 
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Figure 5:  Example GPS track, heart rate, and energy expenditure from Garmin 

  

4.2 Camera data processing 
The big data revolution, accompanied by the development and deployment of many 
devices and mobile applications, as well as social media platforms, has enabled the 
research community to apply artificial intelligence (AI) and machine learning 
algorithms to vast amounts of data. One of the applications is pattern and video 
recognition (Zhou et al., 2017; Monford et al., 2019).  
Modelling images is challenging even when using a 10-million places database 
(including people, places, objects, animals, and natural phenomena), as applied by 
Zhou et al. (2017) at MIT. However, capturing the change in scene/events poses 
additional challenges (temporal and auditory). Consequently, at the moment the 
research team is manually coding the segments and extracting information relevant to 
the project (quality of the amenity, traffic conditions, weather, etc.), while searching 
the possibility of future automated coding of the video material (Monford et al., 2019). 
The footage from the respondents was split in scenes and images using an open 
source program (https://github.com/krichter722/video-splitter). 
At the time of writing this paper, data are still being collected and coded. Preliminary 
results indicate a substantial underreporting of all activities, including trips (on average 
2.82 fewer activities and 1.7 trips), but overestimation of the durations of the trips (4.59 
min). Final statistics will be reported at the conference. 

5 Findings 
5.1 Qualitative interviews 
The content analysis of the interview data (not included here) emphasises the 
predominance of car driving for home-based transport chains including commuting 
and that many participants escort children to day care and school before and after 
their paid work program.  
Connections between various public transport modes and the access modes required 
careful scheduling of the daily routine and the quality of the infrastructure. Enablers or 
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deterrents from using AT, even as a part of a multi-chain trip using public transport 
appear to be associated with: the extent and condition of Principal Shared Paths (PSP) 
for cycling; shelters and information booths for PT; the design and aesthetics of the 
built environment (e.g., facades, limited foliage, lack of vibrancy) and; household 
characteristics (e.g. presence of children under 3 years in the family). 
In general, the respondents were split into two main categories: PA enthusiasts, who 
use their commute or any travel as an opportunity to enhance their fitness and/or 
replace the need for PA activities during the non-work hours; and heavily-constrained 
travellers, many full-time employees working longer hours and completing longer trip 
chains, which included accompanying family members to their activities and 
household chores before and after work. Other comments focused on the perceived 
high cost of public transport and the availability of free or discounted parking, which 
encouraged car driving. 
Overall, respondents reported that using the wearable camera was more 
‘demanding’/’challenging’ than completing the two-day diary, and that activating the 
smartwatch was not straightforward, particularly waiting for the GPS signal.  

5.2 Quantitative data 
The results show that most participants’ trips are multimodal, with trip chains including, 
on average, 3.74 segments.  The mean travel distance is 35.6km and duration 94 min 
per day. The sample included individuals who are using more AT than the average 
resident in Perth, and less car-based travel (55%). The sample also included more 
females (70%) who travelled less km than males, but had comparable durations of AT.  
Participants reported enjoyment of 5.43 (out of 7) associated with travel, exceeded by 
travel by PT, perhaps due to the simultaneous activities this enabled and the possibility 
of avoiding road congestion. The comparable enjoyment level for cycling and walking 
was lower than for public transport, because of the poor weather conditions many 
participants experienced during data collection. 
The average duration of each cycling episode was 27.57 min, twice long as for walking. 
This is likely explained by the fact that many cycling episodes were door-to-door, while 
the walking trips were primarily for access and egress to PT. 
When comparing the travel modes, considerably much higher HR and a higher number 
of calories was consumed per travel episode if the individual walked and cycled, as 
compared to driving, being a passenger in a car or public transport mode. 
Our participants were relatively physically active, with an average daily energy 
expenditure of 395kJ, with the majority achieving the recommended 30 minutes of 
daily PA (150 min per week, as per the World Health Organisation, 2018). 
Significant positive correlations were noted between the amount of AT (duration) and 
heart rate, which suggest that promotional programs should continue presenting the 
benefits of active travel. 
In terms of validation, as expected, the camera and smartwatch (when GPS tracks 
were not missing) provided more precise and complete accounts of daily activities, 
including travel. More than half of the participants omitted activities from their time use 
diaries, including trips, which were captured in the video recording. Some 
disagreement was also found in travel durations and timing of activities. The main 
reason for the differences is the rounding to the nearest 5-10 min that affected both 
short and longer trips. On average trip durations were overestimated by 4.59 min. 
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Overall, caution should be exercised when judging these results, which are not 
representative for the population (self-selection bias) and incomplete. 

5.3 Technology-related issues 
Numerous respondents found activating the Garmin widgets when starting activities 
cumbersome, and as a result many travel-related PA information and GPS was 
missing from the Garmin dataset. Alternatives such as Apple Watch and Amazfit 
(https://us.amazfit.com), which are more passive and do not require participant 
intervention, could be tested. Both devices are waterproof, similar to the features of 
Garmin, and Amazfit has reported a longer battery life. 
The VB-320 has a battery life of up to 8h, but the design consequence is a slightly 
bulkier camera body intended to be clipped to clothing, rather than worn on a lanyard 
– something that may deter some participants. 
Other challenges refer to the relatively poor inter-operability between platforms, and 
some of the software does not allow direct raw data exports for further analysis 
(Garmin). This means that a larger time investment for analysis is needed. The other 
time-costly aspect involves the substantial and laborious manual coding required for 
camera data.  
Regardless, it is our conclusion that the precision and enrichment brought by the 
combination of devices outweigh the costs, and that using combined research ‘kits’ 
should be an ongoing line of inquiry. However, current smartwatches and other 
recording devices cannot fully replace the traditional diaries. To address the issue of 
smartwatch widget activation, reminders as instant text messages may be considered 
in the future. 

6 Discussion and conclusion 
This paper reports on a pilot study that tested a combination of data collection 
instruments and techniques to understand travel-related PA.  
As reported by Kelly et al. (2011) and Shen & Stopher (2014b), wearable cameras 
offer the closest alternative to direct observation for a wide range of travel scenarios. 
Objective assessment of travel conditions, locations, durations, as well as contextual 
information (e.g. traffic levels, infrastructure elements, environs, weather and light, 
vehicle occupancy or crowding) also inform decisions on the viability of alternative 
travel modes.  
Another key component of the research ‘kit’ is making use of the smartwatch features 
– geocoding, monitoring steps and calories, HR, sleep duration and quality – all of 
which are associated with wellbeing. This exploratory pilot study shows that AT (even 
as part of multimodal PT travel) could be promoted as a PA intervention for at least 
some commuters. This can work in conjunction with other beneficial practices (e.g., 
nutrition, Ride-to-work Day, etc.). In addition to continuous monitoring, smartwatches 
provide immediate feedback and reporting for wearers (e.g., daily steps, calories, 
attaining a fitness goal) which may increase motivation and reinforcement for PA, as 
well as function as a reminder for maintaining healthy behaviour and practices. 
Yet, participant compliance, cost, and specialised skills and substantial time for testing 
different techniques for harmonising different levels of analysis – spatially and 
temporally – are non-trivial aspects that call for additional research in this space. 
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8 Appendix 1 
Figure A1: EDESIX camera    Figure A2: Garmin smartwatch 
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Figure A3: Screenshot time use diary 

 
Figure A4: Additional kit (iWatch and Amazfit smartwatch) 

 

9 Appendix 2 
Table A1: Kit details and instructions 

Device Features Instructions 

Smartwatch 
Garmin 
VivoActive 3 

Size: 43.4 x 43.4 x 11.7mm. 
Waterproof: Rated for swimming only. 
Screen: Sunlight visible, 1.2” diameter, 
240x240px touchscreen. 
Battery life, GPS mode 13 hours; up to 7 
days in smartwatch mode (with HR)   
2.4 GHz @ 8 dBm nominal  
ANT+® wireless communications protocol  
Bluetooth® 4.2 technology  

Start: Put the smartwatch on before you go to 
bed on the night before the first study day.  
Finish: Take off the smartwatch on the 
morning after the second study day. 
If possible, please wear all the smartwatch all 
day and night, even when showering or 
swimming (it is waterproof). 
If the smartwatch vibrates and says ‘battery 
low’, charge it for 10–15 min. 
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Device Features Instructions 
13.56 MHz @ -40 dBm nominal, NFC 
wireless technology 
(https://www.garmin.com/en-AU/)  

A full recharge of the smartwatch requires 30 
min (before the second study day). 

 
Wearable 
camera 
EDESIX 
Video Badge 
(VB-200) 

Size: 95mm x 62mm x 16mm  
Battery life, up to 48 hours in standby, 8-
hours continuous recording  
Weight 137g with close-fit KlickfastTM  
Recording storage capacity: 16GB, 1GB at 
640 x 368 standard resolution, 2GB at 1280 
x 720 HD resolution  
Sealed unit with no user access to storage 
media or battery   
Download rate: 5min/hour of recording 
(parallel downloading with docking station); 
it requires high-speed Internet access  
Frame rates: 30/25/15/12.5 fps. By default 
VideoBadge records at 25 frames/s 
(https://www.EDESIX.com/downloads/spec-
sheets/ED-002-002-02-VB-200-
SpecSheet.pdf)  

Start: Put on the camera when you are ready 
to leave for work in the morning of the two 
study days. 
Finish: Take off the camera when you have 
finished all travel at the end of each study day. 
To start recording, slide the thumb slider 
button, located on the right-hand side of the 
device downwards. 
To stop recording, slide the thumb slider 
upwards into its original position. 
The camera should record for 8-10 hours. If 
the power LED glows red/orange, the battery 
level is low. Using the quick charging dock 
(supplied), please give the camera a ‘top up’ 
charge for an hour or so. 

 
Time use 
diary 

 

Harmonised European Time-Use Survey 
(HETUS) Guidelines (Eurostat 2009) 
Two-day diary, 5-min time slot 
It records main/primary activity in which 
individual was engaging; any activities 
undertaken at the same time 
(secondary/simultaneous); who was present 
during this activity (co-presence) and; where 
the activity took place (location) or if 
travelling, the mode of transport 
Use of technology 
Level of enjoyment (scale 1 to 7, 1 meaning 
‘did not enjoy it at all’ and 7 ‘enjoyed it very 
much’). 

Start: Start filling in the time-use diary when 
you first get up each morning on each study 
day. 
Finish: When you go to sleep at the end of 
each study day. Fill in the diary for the full 
two data collection days. 
Use an arrow to record activities that take 
longer than 5 minutes. 
Remember to complete all of the diary fields. 
Please indicate how much you enjoyed your 
time in various activities. 

 


