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Abstract 

The NSW Treasury commissioned and collaborated with Veitch Lister Consulting 
(VLC) to explore net public transport expenditure per capita (“net PTE”) in major 
Australian capital cities. The purpose of the research was to identify factors that are 
arguably outside the short-term control of state governments, including—but not 
limited to—geography, density, and congestion. To identify effects on net PTE, VLC 
developed a suite of regression models using detailed micro-data on public transport 
supply and demand. In these models, effects are identified from variation both within 
and between capital cities in Australia. Results identify several factors that give rise to 
relatively large differences in net PTE between Australian cities, which are robust to a 
range of controls, specifications, and controlling for endogeneity. 

1 Introduction 
NSW Treasury commissioned Veitch Lister Consulting (VLC) to assist in reviewing the 
Commonwealth Grant Commission’s (CGC’s) methodology for recurrent transport 
expenditure. In this paper, we consider whether there is evidence that non-policy 
factors affect net public transport expenditure per capita (“net PTE”) in Sydney vis-à-
vis other large capital cities in Australia. This chapter sets out the policy principles of 
the CGC, our methodology and theoretical foundations, as well as the specific non-
policy factors we explore in the remainder of the report. 

1.1 Policy principles and methodology 

The CGC’s approach to funding state governments is designed to deliver on the 
general principle of “horizontal fiscal equalisation” (HFE), which is defined as follows: 
“State governments should receive funding from the Commonwealth such that, if each 
made the same effort to raise revenue from its own sources and operated at the same 
level of efficiency, each would have the capacity to provide services at the same 
standards” (Commonwealth Grants Commission, 2002, p. 5).  

We interpret these concepts in a PT context as: 
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 Fund levels of PT supply per capita that are consistent with underlying 
demand on a policy neutral basis; 

 Not compensate states for differences in PT productivity arising from policy 
choices, such as ticketing systems; and 

 Not compensate states for differences in PT revenue per capita arising from 
policy choices. 

Our work seeks to disentangle the effects of different factors on net PTE, analysing 
supply, productivity, and revenue channels. We distinguish between policy choices 
and non-policy factors. In doing so, we adopt a specific interpretation of “non-policy 
factors” that reflects our focus on the process by which the Commonwealth Grants 
Commission (CGC) allocates GST revenues. In allocating funding for net PT 
expenditure, the CGC and state governments define “non-policy factors” as those that 
are beyond the control of PT planners. In this context, density and congestion are 
deemed to be non-policy factors, even if they are influenced by policies more 
generally. From the perspective of PT planners, causes of density and congestion—
and the associated optimal policy responses, such as road pricing—are irrelevant. 
Over the medium and long term, all parties acknowledge that many of these so-called 
“non-policy” factors are at least partly within the control of state governments. 

We consider three channels through which non-policy factors may affect net PTE, 
namely supply, productivity, and revenue: 

 Supply (or cost) models, which analyse the effects of non-policy factors on 
the quantity of PT services delivered in Australian capital cities, measured at 
the level of SA2s; 

 Productivity models, which analyse the effects of non-policy factors on the 
efficiency with which PT services operate in Australian capital cities, 
measured at the route-level. This model is substantially more complex than 
the other two so it is summarised in the Appendix; and 

 Revenue models, which analyse the effects of non-policy factors on revenue 
from PT services in Sydney, also measured at the level of SA2s. 

Our supply and productivity models capture the effects of non-policy factors on costs 
and use data sourced from General Transit Feed Specifications (GTFS) and the 
Census for the five largest capital cities, as defined by ABS’s Greater Capital City 
Statistical Areas (GCCSA). Our revenue model, in contrast, makes use of 
(confidential) Opal ticketing data for Sydney. 

Finally, we note that the policy context for this work is unique to Australia. The role of 
the CGC in allocating GST revenues to state governments, as well as the focus on net 
public transport expenditure per capita and the definition of non-policy factors, is not 
something that transfers to other jurisdictions. Partly for this reason, we identified 
relatively little literature of direct relevance to our research question.1 The authors 

 
1  The study by Leland and Smirnova (2008) is perhaps the most relevant recent literature. Leland 
and Smirnova (2008) investigate the effects on PT efficiency, e.g. labour productivity, service efficiency, 
and cost efficiency, and effectiveness, e.g. vehicle utilisation, service effectiveness, and cost 
effectiveness. The study includes farebox recovery as a cost efficiency measures, as well as density of 
the service area as an explanatory variable. The latter is found to have a significant (𝑝 < 0.01) positive 
effect on farebox recovery, which aligns with our findings—noting the important distinction between 
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would welcome further direct correspondence from readers who are more familiar with 
the wider literature, especially as it relates to published academic work. 

1.2 Theoretical and empirical underpinnings 

At the most basic level, we treat net expenditure 𝐸  as the result of two semi-
independent (albeit linked) economic outcomes, namely gross costs, 𝐶 , and fare 
revenue, 𝑅. That is, 

𝐸 = 𝐶 − 𝑅 

We can further decompose gross costs into three major resource inputs: 

 Vehicle-hours (ℎ), which capture time-related costs, e.g. driver wages; 

 Vehicle-kilometres (𝑘), which capture distance-related costs, e.g. 
maintenance and fuel; and 

 Vehicles (𝑣), which capture vehicle-related costs, e.g. fleet and depots.  

To arrive at total costs, each resource input is multiplied by its unit cost (𝛾௝ ) and 
summed. Intuitively, resource inputs will increase with demand, 𝐷. Moreover, resource 
inputs will be affected by policy choices, such as the distance between stops, and non-
policy factors, such as geography. We denote policy choices and non-policy factors 
by the vectors 𝑋 and 𝑌, respectively. This implies a gross cost function: 

𝐶 = 𝛾ଵℎ(𝐷, 𝑋, 𝑌) + 𝛾ଶ𝑘(𝐷, 𝑋, 𝑌) + 𝛾ଷ𝑣(𝐷, 𝑋, 𝑌) 

And similarly, 𝑅 = 𝑟(𝐷, 𝑋, 𝑌). Substituting these expressions into net expenditure and 
differentiating with respect to non-policy factor 𝑌௝ allows us to isolate the effect of the 
latter on net expenditure as follows: 

𝜕𝐸

𝜕𝑌௝
= ቈ𝛾ଵ

𝜕ℎ(∙)

𝜕𝑌௝
+ 𝛾ଶ

𝜕𝑘(∙)

𝜕𝑌௝
+ 𝛾ଷ

𝜕𝑣(∙)

𝜕𝑌௝
቉ −

𝜕𝑟(∙)

𝜕𝑌௝
 

This theoretical expression has a simple interpretation: The effect on net PTE, 𝐸, of a 
small change in non-policy factor, 𝑌௝, is the sum of its effects on costs (hours, distance, 
and vehicles) minus its effects on revenue. On this theoretical basis, we proceed by 
estimating the effects of non-policy factors on costs and revenue separately before 
then combining the individual effects to arrive at the estimated total effect. 

This decomposition is convenient for two reasons. First, and unlike the CGC, we do 
not have access to data on net PT expenditure for “Significant Urban Areas” (SUA) 
(Jacobs, 2018). Instead, we estimate cost effects for five cities and revenue effects for 
Sydney. Second, this approach allows us to make use of more granular microdata, 
which provides us with greater statistical power2 and stronger identification3. 

 

farebox recovery and net PT expenditure per capita. Specifically, and as later sections will show, we 
find it is possible for factors to lead to higher recovery as well as higher net PT expenditure. 

2  We have larger samples than the CGC (1,000 SA2s or 100,000 PT services versus 70 SUAs). 

3  We identify the effects of non-policy factors from variation that exists both between and within 
capital cities. As we have variation within cities, we can control for city-specific factors. 
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Our full study considered three model variants and various sensitivity tests (VLC, 
2019).4 Across the different variants and tests, we typically found consistent results. 
In the interests of brevity, this paper reports results for only a single variant for each 
of our supply, productivity and revenue models. 

1.3 Non-policy factors 

We are interested in non-policy factors that are largely beyond the control of state 
governments, at least in the short-run, and which may give rise to differences in net 
PTE. We identified the following non-policy factors as most relevant: 

 Transport outcomes, such as road congestion and travel distances; 

 Economic geography, such density and urban form; and 

 Physical geography, such as barriers arising from water features and terrain. 

Perfect measures for these non-policy factors do not exist. Instead, we developed 
metrics designed to capture the most salient aspects. The supply and revenue models 
in Sections 2 and 3, respectively, include the following two measures: 

 Density, measuring the number of residents or jobs within a certain area, and 

 Congestion, as measured by daily delay hours incurred by vehicles. 

The productivity models presented in the Appendix operate at the level of individual 
PT service trip-IDs. In addition to density (or catchment) and congestion, we also test 
additional non-policy factors, namely: change in elevation and geographical deviation.  

2. Supply Model 

We model the effect of non-policy factors on PT gross costs (supply) for the five largest 
cities in Australia (GCCSAs) using SA2 seat-kilometres as a proxy.  

2.1 Model 

Data on the gross costs of operating PT within capital cities is not publicly available at 
the level of spatial detail (SA2s) required for our model. Instead, we approximate costs 
within and between cities using readily observed data on the supply of PT. 

Our chosen PT supply indicator is total seat-kilometres (seat-km). Seat-kms satisfies 
two criteria: First, it is mode-neutral and, second, it is a reasonable approximation for 
PT supply. 5  To estimate seat-km 𝑆௜  in SA2 𝑖 , we multiply the number of vehicle 
kilometres 𝑘௜

௠ for each mode 𝑚 with the seated vehicle capacity 𝐶௠ of that mode.  

We estimate PT vehicle capacities for each PT mode in each city from VLC’s strategic 
transport models for 2016, as summarised in Table 1. These numbers denote 
approximate averages for each mode and city (NB: sensitivity tests using different 

 
4  Specifically, (1) Ordinary Least Squares (OLS) with robust standard errors (s.e.); (2) OLS with 
cluster-robust s.e.; and (3) Weighted Least Squares with cluster-robust s.e. Refer to the full report for 
further details on alternative model specifications. 

5  In terms of the second criteria, we find an extremely high positive correlation (0.983) between 
seat-hrs and seat-kms at the SA2 level. This correlation, as well as our chosen model specification, 
discussed below, implies non-policy factors will have similar effects on seat-hrs as seat-km. While we 
do not have data on vehicle requirements, which is the third major cost driver noted in Section 1.2, we 
expect they will be determined largely by seat-kms and seat-hrs. 
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assumptions for vehicle capacity—specifically capacities that were consistent across 
cities—indicated that our results were not sensitive to the specific numbers assumed).  

Table 1: Assumptions for Seated Public Transport Vehicle Capacities 

City 
Mode 

Bus Tram Heavy rail 

Sydney 52.5 239 1,165 

Melbourne 50 115 875 

SEQ 55 192 500 

Perth 55 N/A 500 

Adelaide 55 100 280 

With these capacities we calculate our dependent variable 𝑆௜ , and specify a basic 
model of PT supply. To start, we assume PT supply responds to density and 
congestion levels as follows: 

𝑆௜ = ෍ 𝐶௠𝑘௜
௠

௠

 =  𝐹௜
௤

𝑑௜
ఈభ𝑐௜

ఈమ 

Where 𝑑௜ and 𝑐௜ denotes density and congestion, respectively, and 𝛼ଵ and 𝛼ଶ denote 
parameters to be estimated. Taking logs yields an equation that is linear in 
parameters, formally: 

log 𝑆௜ = log 𝐹௜
௤ + 𝛼ଵ log 𝑑௜ + 𝛼ଶ log 𝑐௜ = 𝑓௜ + 𝛼ଵ log 𝑑௜ + 𝛼ଶ log 𝑐௜ 

Our priors are that PT supply increases with density and congestion, that is, 𝛼ଵ, 𝛼ଶ >
0. The constant log 𝐹௜

௤
= 𝑓௜ is a “supply shifter”, or fixed effect, which captures average 

differences in levels of PT supply between the SA2s in area 𝑞. In the models below, 
we define 𝑞 to be SA3s. Put another way, the fixed effects capture differences in 
average levels of PT across SA3s. Including SA3 fixed effects 𝑓௜ means we identify 
effects of density and congestion from variation between SA2s within an SA3. In this 
way, the SA3 fixed effects help to control for unobserved determinants of PT supply, 
such as infrastructure, urban form, and policy choices. 

One of the advantages of using a log-log model is the resulting estimates for 𝛼ଵ and 
𝛼ଶ can be interpreted as “constant elasticities”. These parameters provide a scale-
invariant measure of the effects of explanatory variables that translates readily into 
relative percentage effects, including ultimately on costs. 

2.2 Data 

Our data was generated as follows: 

 First, 𝑆௜ is estimated by assigning route-kilometres by buses, trains and trams 
in GTFS data to individual SA2s (we exclude ferries for reasons of simplicity 
and non-materiality). For each mode and SA2, we then multiplied route 
kilometres by the vehicle seat capacities in Table 1; 

 Second, we excluded extremely large and low density (less than 100 
residents per square kilometre) SA2s from the sample and linked data on 
seat-km to Census data on the density of remaining SA2s, such as 
population, employment, and area (NB: We also estimated unrestricted 
models. Excluding large areas did not affect the estimated magnitude of the 
coefficients, while improving the statistical precision of our estimates); and  
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 Third, we extracted data on SA2 private vehicle delays from VLC’s strategic 
transport models. 

Summary statistics for key variables are summarised in Table 2, where each row 
relates to individual capital cities and the final row presents the average for the sample. 

Table 2: Summary Statistics – Averages for Urban SA2s (minimum 100 residents/km2) 

City n 
PT supply 

(𝑺𝒊) 
Population 

(𝒑𝒊) 
Employment 

(𝒆𝒊) 
Congestion 

(𝒄𝒊) 
Area 

𝑨𝒊 

Sydney 280 10,530,842 16,693 7,455 1,783 11.15 

Melbourne 279 6,337,540 15,301 6,897 1,612 14.12 

SE Qld 267 1,744,157 10,495 4,724 890 13.72 

Perth 141 2,635,053 13,341 5,094 851 15.53 

Adelaide 91 904,045 13,516 5,795 1,351 12.77 

Sample 1,058 5,327,325 14,042  6,161  1,351  13.30 

We emphasise the differences in population and employment in columns 4 and 5 of 
Table 2 are per SA2. That is, they are not densities. To arrive at average densities, 
one must divide by the final column of Table 2, which measures the areas of SA2s. 
The combined effects of differences in levels (columns 4 and 5) and areas (column 7) 
is that Sydney has population and employment densities that are 37% higher, on 
average, than Melbourne. In comparison, we find that PT supply in Sydney is 66% 
higher. The higher supply in Sydney is, we suggest, driven by our calculation of seat-
kms and specifically the high capacity of heavy rail in Sydney. Note that average 
differences in supply are controlled for by our SA3 fixed effects. Hence the fact Sydney 
has higher average supply does not, in of itself, drive our findings. Rather, what 
matters is how supply varies with density between SA2s within SA3s. 

2.3 Results 

In this section we develop our baseline PT supply model. The first question we answer 
is how to define density. We investigated four alternative measures of SA2-level 
density: (1) average population, (2) population-weighted density, (3) average 
employment, (4) employment-weighted density. These were found to be strongly 
positively correlated (as expected), with (3) average employment density ultimately 
being selected as the simplest variable with highly significant results (VLC, 2019) 
(Table 3). 

Table 3: Regression Results – Supply Model SA3 fixed effects 

Parameters Estimates 

log(emp. density) 0.55 (0.06)*** 
log(delays) 0.42 (0.08)*** 

R2 0.53 

Notes: n = 1,058 obs. S.Es in brackets; ***p < 0.001, **p < 0.01, *p < 0.05. Model includes SA3 fixed effects. 

We find elasticities of seat-kms with respect to employment density and car delays of 
0.55 and 0.42, respectively. Both coefficients are significant at the 0.1% level. 

Inspection of model predictions, or “explanatory power”, indications an R-squared 
value of 0.53 and a strong positive association between actual and predicted levels of 
PT supply with no obvious extreme values (Figure 1).  
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Figure 1: Supply Model – Model Fit (V2) 

 

We confirmed the robustness of our results in two broad ways: 

 First, we estimated models using alternative specifications for variables, e.g. 
different vehicle capacities, alternative fixed effects, and different congestion 
measures. We also tested the inclusion of labour and transport variables, 
such as workforce composition and trip length, respectively; and 

 Second, we estimated an instrumental variables (IV) version of our model to 
control for potential endogeneity of our explanatory variables. 

In all cases, we find that our baseline results are largely unchanged (VLC, 2019). 

3. Revenue Model 

We model the effect of non-policy factors on PT revenue in Sydney. Within the Sydney 
GCCSA, we use confidential disaggregated Opal demand and fare data supplied by 
Transport for NSW to estimate PT revenue for individual SA2s.  

3.1 Model 

Our dependent variable is total fare revenue for individual SA2s, 𝑅௜ . We model 𝑅௜ 
using a similar log-log model to that used in Section 2.1: 

log 𝑅௜ = 𝑓௜
ோ + 𝛽ଵ log 𝑑௜ + 𝛽ଶ log 𝑐௜ 

Where: 

 𝑅௜ denotes fare revenue by SA2 𝑖; 

 𝑓௜
ோ denotes SA3 fixed effects for SA2 𝑖; 

 𝑑௜ denotes employment density in SA2 𝑖; 

 𝑐௜ denotes total daily vehicle delay hours that are incurred in SA2 𝑖; and 

 𝛽ଵ and 𝛽ଶ denote parameters to be estimated. 
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Our prior expectations are that revenue increases with employment density and car 
delays. We note here that local differences in average fare levels at a broader level 
are captured by the SA3 fixed effects. This will broadly control for average differences 
in fare revenue at the SA3 level that arise due travel patterns, modes, zones, and 
discounts (e.g. concessions). Hence, our estimated effects of density on fare revenue 
reflect the effects of variation between SA2s within SA3s. 

3.2 Data 

Summary statistics for our revenue data are in Table 4. While we do not have revenue 
data for other capital cities, we can apply the elasticities from our model to estimate 
the effect of non-policy factors on revenue in other cities. This assumes PT revenue 
in other cities responds to non-policy factors in a manner that is similar Sydney.6 

Table 4: Summary Statistics for Revenue Model – Averages by Urban SA2 

City n 
PT revenue 

(𝑹𝒊) 
Population 

(𝒑𝒊) 
Employment 

(𝒆𝒊) 
Congestion 

(𝒄𝒊) 
Area 

𝑨𝒊 

Sydney 280 10,530,842 16,693 7,455 1,783 11.15 

Sample 1,058 5,327,325 14,042  6,161  1,351  13.30 

3.3 Results 

Regression results for the revenue model are summarised in Table 5. Our results 
suggest elasticities of PT revenue with respect to employment density and vehicle 
delays of 0.64 and 0.43, respectively. These coefficients are significant at the 0.1% 
level.  In terms of model fit, we find an R-squared value of 0.59, with actual and 
predicted PT revenues showing a good alignment with no extreme values (Figure 2).  

Table 5: Regression Results – Revenue Model (V2) with SA3 fixed effects 

Parameters Estimates 

log(emp. density) 0.64 (0.10)*** 

log(delays) 0.43 (0.06)*** 

R2 0.59 

Notes: n = 280 obs. S.Es in brackets; ***p < 0.001, **p < 0.01, *p < 0.05. Model includes SA3 fixed effects. 

 

 
6 Readers may wonder if aggregate revenue data could be used to check this assumption. We see two 
problems with such an effort. First, we have defined cities as GCCSAs, which may or may not align with 
reported revenue data. Second, and perhaps more problematic, we have used SA3 fixed effects to 
control for average differences in fares within Sydney. Without having estimated similar fixed effects for 
the cities, we are unsure how to use our results to predict revenue at the SA2 level in other cities. 
Perhaps the best approach would be to estimate a model without fixed effects, although we feel this is 
unlikely to be representative due to potential differences in average fare levels between cities. 
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Figure 2: Revenue Model – Model Fit (V2) 

 

We test the sensitivity of our revenue model to alternative specifications and estimate 
an instrumental variables version (VLC, 2019). Results from these tests were similar 
to those presented above for our baseline model. 

4. Implications and Extensions 

4.1 Implications 

In this section, we work through the fiscal implications of our findings. To summarise, 
the effect of non-policy factors on net PT expenditure per capita is captured using 
three types of models: 

 Supply, as measured in seat-km 

 Productivity, as measured in vehicle-hours (speed) and vehicle-kilometres 
(route-kilometres) 

 Revenue, as measured in monetary terms. 

We examine the implications of these models for net PTE in each of the five cities for 
which we have data. To begin, we ignore productivity effects and instead focus on 
understanding the implications of the supply and revenue models, which consider the 
same non-policy factors, specifically employment density and car delays. Appendix 
A.3 extends this analysis to include productivity effects. 

Whereas the revenue model is estimated in monetary terms, the PT supply is 
estimated in seat-km. For the purposes of our analysis, we assume seat-km exhibit a 
1:1 relationship with costs. That is, a 1% increase in seat-km leads to a 1% increase 
in costs. As well as being simple, this approach has the advantage of being policy-
neutral, in the sense it is unaffected by the costs of different modes.  

Conceptually, our analysis then proceeds by comparing two scenarios: actual values 
in each city and the sample average. In the sample average scenario, the level for 
non-policy factors is defined by the average for our sample. That means all cities face 
the same non-policy factors, in terms of employment density and car delays. By 
extension, in the sample average scenario all cities will have the same net PTE. 
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We then calculate the effects of shifting each city from the sample average to their 
actual values. Differences in net PT expenditure per capita between the actual and 
average scenarios define the estimated effect of non-policy factors. The effects of non-
policy factors on PT supply, or costs, per capita are estimated for each city in the actual 
(𝐴) and sample (𝑆) scenarios as follows: 

𝑆஺

𝑆ௌ
= ൬

𝑑஺

𝑑ௌ
൰

ఈభ

൬
𝑐஺

𝑐ௌ
൰

ఈమ

 

Where: 

 𝑆஺ and 𝑆ௌ denote the supply, or cost; 

 𝑑஺ and 𝑑ௌ denote average employment density; 

 𝑐஺ and 𝑐ௌ denote congestion levels; and 

 𝛼ଵ and 𝛼ଶ denote elasticities for employment density and car delays from our 
supply model.  

Using results from Table 3, we have 𝛼ସ = 0.55 and 𝛼ହ = 0.42.  

Similarly, the fiscal implications of the revenue model for net PT expenditure are 
calculated as: 

𝑅஺

𝑅ௌ
= ൬

𝑑஺

𝑑ௌ
൰

ఉభ

൬
𝑐஺

𝑐ௌ
൰

ఉమ

 

Where:  

 𝑅஺ and 𝑅ௌ denote revenue;  

 𝑑஺, 𝑑ௌ, 𝑐஺, and 𝑐ௌ are as defined above; 

 𝛽ଵ and 𝛽ଶ denote estimated elasticities for employment density and car delays 
from our revenue model.  

Applying the above formulae to results from Table 5 (𝛽ଵ = 0.64 and 𝛽ଶ = 0.43) and the 
first two columns of Table 6, we can then estimate the effects of non-policy factors on 
PT costs and revenue and, by extension, the change in net PTE. For all cities, we set 
the average index for costs and revenues to 100 and 25, respectively (NB: The choice 
of index has no effect, instead what matters is the relative change in costs to revenue 
between cities). 

Table 6: Net PT Expenditure per capita – Effects of Non-policy Factors on Costs and Revenue 

City 𝒅𝒊 𝒄𝒊 Costs Revenues 
Net 
Exp. 

Change from 
Baseline 

Sydney 1,610 1,790 133.31 34.30 99.01 +32% 

Melbourne 1,413 1,624 118.90 30.23 88.67 +18% 

SE Qld 1,013 881 77.16 18.97 58.19 -22% 

Perth 523 854 52.50 12.20 40.30 -46% 

Adelaide 661 1,356 72.49 17.25 55.24 -26% 

Baseline 1,181 1,359 100.00 25.00 75.00 0% 

This exercise shows that non-policy factors add an estimated 32% to Sydney’s net 
PTE compared with the average within the sample. The same factors reduce Perth’s 
net PTE by approximately 46%. 
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In Sydney’s and Melbourne’s cases, higher-than-average densities and congestion 
drive higher costs from additional PT services, which is only partly offset by extra 
revenue from these factors. SEQ has around average levels of density, but 
significantly lower congestion than average, while Adelaide has around average levels 
of congestion but is very low density. The estimated effects on net PT expenditure are 
similar for both cities at around 25% below average. In Perth’s case both density and 
average congestion levels are well below average, resulting in a city that is relatively 
low net cost to service by PT.  

4.2 Extensions 

Our work could be extended in several ways, such as: 

 Develop a revenue model that includes other capital cities. The confidential 
nature of PT ticketing data means that we were unable to estimate our 
revenue model for cities other than Sydney. The revenue model uses 
aggregate revenue by SA2s, so it may be possible for states to share revenue 
data while preserving the confidentiality of the underlying travel patterns. 

 Develop a monetary measure of supply at the SA2 level. In formulating our 
supply model, we developed relatively innovative techniques for assigning PT 
supply (kilometres and hours) to SA2s, which in turn could be converted to 
seat-kms and seat-hrs. Further work could seek to monetise these supply 
measures by applying unit cost rates for each mode and jurisdiction. If this 
data was linked to revenue data at the SA2 level (as per the comment above), 
then it would be possible to model net PT expenditure at the SA2 level. 

 Incorporate ferries into our supply-side model. Ferries were excluded from our 
supply-side model because their vehicle-kms largely fall outside of the SA2 
that they service. Including them would require calculating their seat-kms and 
assigning them to the SA2s where they stop, rather than travel through. 

Finally, we note that addressing the first and second points above presents the 
opportunity to integrate our revenue and supply models into one model of net PTE, 
like that used by the CGC although at a higher level of spatial detail. This approach 
would avoid the need to parse together results from two models and also reduce the 
CGC’s reliance on revenue and cost information supplied and processed by states, 
potentially using different methodologies. 
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Appendix: Productivity models 
In this appendix we present models of the productivity of PT services in each of the 
five largest capital cities. We measure productivity in terms of average speed and route 
length. Our goal is to understand how these outcomes are affected by various non-
policy factors. In the final section, we extend the analysis of the body of this paper by 
attempting to convert productivity impacts into a monetary value to understand the 
overall effect of non-policy factors on cost recovery. 

A.1 Average speed 

We first seek to explain how the speed of bus and tram services vary according to a 
range of policy and non-policy variables trips (we do not model the speed of heavy 
rail, which seems less likely to be affected by non-policy factors).  

We build a dataset of service speeds for bus and tram/light rail services using GTFS 
(generalized transit feed specification) data for the five largest capital cities. We restrict 
our analysis to the relevant GCCSAs defined by ABS. We use scheduled GTFS data, 
rather than real-time data, which is not publicly available for all the cities we analysed.  

We filtered out values that were considered erroneous and/or unrepresentative, 
specifically trip-IDs with: 

 Average speeds in excess of 70 km/hr. Inspection suggests these trips are 
usually incorrectly coded by the agencies/operators. 

 Trip-lengths shorter than 5km or longer than 50km, or that have durations less 
than 20 minutes or more than 2-hours. Inspection revealed that such trips are 
associated with atypical routes, such as inner-city circulators, or shuttles. 

 Two or fewer stops. Many of these trips are short-running and point-to-point 
shuttle services, such as those provided for major sports events. 

 Less than 100m (Euclidean distance) between the start and end stops, which 
were loops that were slow by design rather than due to non-policy factors. 

These filters reduced the number of trip-IDs from 335,168 to 282,225, leaving us with 
84% of the original data. We consider this to be a large and representative sample of 
PT services in the five capital cities. 

A model of these average speeds, 𝑠, of bus or tram service trips 𝑖 is specified as: 

𝑠௜
஻ = 𝛼଴ + 𝛼ଵ ln(𝑙௜) + 𝛼ଶ ln(𝑑௜) + 𝛼ଷ𝑝௜ + 𝛼ସ ln(𝑐௜) + 𝛼ହ

௖𝐷௜
௖ + 𝛼଺

௪𝐷௜
௪ + 𝛼଻

௛𝐷௜
௛ + 𝛼଼

௖௪𝐷௜
௖𝐷௜

௪

+ 𝛼ଽ
௖௛𝐷௜

௖𝐷௜
௛ + 𝛼ଵ଴

௪௛𝐷௜
௪𝐷௜

௛ 

Where: 

 𝑠௜
஻ is the average speed of trip 𝑖 from the GTFS routes and timetables 

 𝑙௜ is the route distance between the start and end of trip 𝑖 [km] 

 𝑑௜ is the average stop-spacing on trip 𝑖 [km per stop] 

 𝑝௜ is the population catchment (sum of the ABS meshblock populations whose 
centroids lie within 750m of stops on the trip, excluding overlaps) 

 𝑐௜ is traffic congestion delays to private vehicles in SA1s that routes traverse 
(taken from VLC’s Zenith transport models of 2016) 

 𝐷௜
௖ is a city categorical variable, where Sydney is the base category 

 𝐷௜
௪ is a weekday/weekend dummy variable (weekday is the base category) 
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 𝐷௜
௛ are 24-four hourly categorical variables (0400-0500 is the base category) 

 α’s are regression parameters to be estimated. 

The categorical variables 𝐷௜
௖ , 𝐷௜

௪ , and 𝐷௜
௛  allow average speeds to vary by city, 

between weekdays / weekends, and by hour of the day. The three pairwise interaction 
terms are interpreted as follows: 

 𝐷௜
௖𝐷௜

௪ allows the average speed in each city to vary between 
weekdays/weekends; 

 𝐷௜
௖𝐷௜

௛, allows the average speed in each city to vary by hour of day; and 

 𝐷௜
௪𝐷௜

௛ allows average speed on weekdays/weekends to vary by hour of day. 

We expect average speed will: 

 Increase with route length, 𝑙௜, because longer routes tend to operate (1) in 
peripheral areas with less congestion or (2) where they have greater priority 
over general traffic, 

 Increase with stop-spacing, 𝑑௜, because longer stop spacing allows vehicles 
to achieve a higher speed, 

 Decline with catchment, 𝑝௜, as catchment is associated with increased PT 
demand. Services that experience greater demand will, on average, be 
expected to run more slowly due to longer dwell time, 

 Decline with car congestion delays, 𝑐௜. We this effect will diminish at higher 
congestion levels, due to proactive policies, such as bus priority infrastructure. 
For this reason, we take the log of congestion. 

Summary statistics show that Sydney operates the second highest number of bus and 
tram trips (services) after southeast Queensland (SEQ), which likely reflects the 
latter’s extensive busway infrastructure (and associated high-frequency services) and 
limited heavy rail network (Table 7).  

Table 7: Summary Statistics for Productivity Model – Bus and Tram Average Speed by SA2 

Market Mode n [trips] 
Average 
speed 

(𝒔𝒊) [km.hr] 

Route 
length 

 (𝒍𝒊) [km] 

Stop-spacing 
(𝒅𝒊) [km/stop] 

Pop. 
Catchment 

(𝒑𝒊) [people] 

Congestion 
(𝒄𝒊) [veh.hr] 

Syd. Bus & Tram 188,587 22.369 17.598 0.528 75,808 1,933 

Mel. 

Bus 149,966 23.458 16.690 0.417 51,336 1,099 

Tram 30,372 16.381 15.061 0.290 111,881 1,643 

Total 180,338 22.266 16.416 0.396 61,533 1,190 

SE Qld Bus & Tram 322,119 24.346 17.788 0.736 46,758 1,504 

Perth Bus 95,598 25.322 15.921 0.443 34,348 741 

Adl. Bus & Tram 49,061 23.077 18.541 0.461 38,812 1,259 

Sample  835,703 23.488 17.280 0.566 54,616 1,431 

After SEQ, the number of trips declines with city size. For average speed, we see that 
Sydney is the slowest of all cities, while Perth is the fastest. Although Sydney and 
Melbourne have similar average speeds, the former operates longer routes with larger 
distances between stops. 

In terms of non-policy factors, the average bus / tram trip in Sydney has higher 
catchment and congestion levels than is found in the other cities. For example, 
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average population catchment is 23% higher in Sydney than in Melbourne, while 
congestion is 29% higher in Sydney than in SEQ. 

Regression results show both population catchment and congestion have the 
expected negative sign and are statistically significant (𝑝 < 0.05 or smaller) (Table 8). 
That is, higher population catchments and increased congestion leads to lower 
bus/tram speeds, which aligns with our priors.  

Table 8: Regression Results for Productivity Model – Bus and Tram Average Speed (V3) 

ln(length) (𝑙௜) [km] 8.39 (0.30)*** 

ln(stop-spacing) (𝑑௜) [km/stop] 4.44 (0.54)** 

Population Catchment (𝑝௜) [per 1,000 people] -0.10 (0.02)** 

ln(congestion) (𝑐௜) [veh.hrs] -1.11 (0.32)* 

R2 0.70 

Notes: n = 282,225. Standard errors in brackets; ***p < 0.001, **p < 0.01, *p < 0.05. All models include City x Weekend x Hour 
terms. Fixed effects are omitted but are available on request; inspection revealed a logical profile for hourly dummies. 

 

To finish, we consider the overall explanatory power of the model. Figure 3 also 
illustrates predicted average speeds (horizontal axis) versus actual average speeds 
(vertical axis). Generally, we find a strong positive linear observation with clustering 
around the diagonal and few apparent extreme values. The model has an R-squared 
value of approximately 0.70. 

Figure 3: Productivity Model – Bus and Tram Actual Speeds Model Fit (V3) 

 
We considered several alternative specifications of the V3 Weighted model, with the 
regression results for these sensitivity tests confirming the lack of sensitivity to variable 
definitions selected; results are summarised in the full paper (VLC, 2019). 

A.2 Route length 

In this section we develop productivity models of route length, applied first for bus and 
tram, then heavy rail.  



ATRF 2019 Proceedings 

16 

We specify a route length model that contains a set of general exogeneous controls, 
as well as our non-policy factors of interest: 

𝑙௜
஻ = 𝛼଴ + 𝛼ଵ𝑙௜̅ + 𝛼ଶ𝑑̅௜ + 𝛼ଷ𝑝௜ + 𝛼ସ log 𝑐௜ + 𝛼ହ𝑔௜ + 𝛼଺𝑧௜ + 𝛼଻

௖𝐷௜
௖ + 𝛼଼

௪𝐷௜
௪ + 𝛼ଽ

௛𝐷௜
௛

+ 𝛼ଵ଴
௖௪𝐷௜

௖𝐷௜
௪ + 𝛼ଵଵ

௖௛𝐷௜
௖𝐷௜

௛ + 𝛼ଵଶ
௪௛𝐷௜

௪𝐷௜
௛ 

Where 𝑙௜
஻  denotes the route distance between the start and end of trip 𝑖  [km]; 𝑙௜̅ 

denotes the Euclidean (or “crow flies”) distance between the start and end of the route; 
and 𝑑̅௜ denotes the number of stops. We also include four non-policy variables:  

 catchment (𝑝௜), defined in Section A.1 

 log of congestion (𝑐௜), defined in Section A.1 

 absolute change in vertical elevation, 𝑧௜, an indicator of hilly terrain. We 
sum the (absolute) changes in vertical elevation between stops along the 
route, where elevation data is sourced from SRTM (NASA). 

 geographical deviation, 𝑔௜, to measure the effect of geographical barriers, 
such as harbours and rivers. We subtract (1) the Euclidean distance from 
(2) the shortest network distance, from the start to the end of the route.  

As in the speed model, 𝐷௜
௖, 𝐷௜

௪, and 𝐷௜
௛ denote categorical variables for city, weekday 

/ weekends, and time of day, respectively. We include all pairwise interaction effects 
between categorical variables. α’s denote regression parameters to be estimated. 

We expect 𝑙௜
஻ will increase with Euclidean distance, 𝑙௜̅, number of stops, 𝑑̅௜,  increase 

with barriers, 𝑔௜  and elevation, 𝑧௜ . We expect 𝑙௜
஻  will decrease with population 

catchment, 𝑝௜, because in dense areas routes do not need to travel as far to reach 
people, and, planners design shorter routes for reliability.  

Summary statistics show that average bus and tram route length, Euclidean distance, 
and number of stops are similar in Sydney to other cities (Table 9). Comparing the 
number of stops across cities, we find that SEQ is the outlier with fewer stops per trip. 
Again, this likely reflects the effects of SEQ’s extensive busways. For our new non-
policy factors, we see that bus and tram routes in SEQ and Sydney tend to face greater 
geographical barriers and larger changes in vertical elevation than the average route. 

Table 9: Summary Statistics for Productivity Model – Bus and Tram Route Length 

Market Mode n [trips] 
Length 
(𝒍𝒊) [km] 

Eu. Dist 

(𝑙௜̅) [km] 

Stops 
(𝒅ഥ𝒊) 

Catchment 
(𝒑𝒊) [people] 

Congestion 
(𝒄𝒊) [veh.hr] 

Deviation 
(𝒈𝒊) [km] 

Elevation 
(𝒛𝒊) [km] 

Syd. Bus & Tram 188,587 17.60 10.29 43.72 75,808 1,933 2.43 0.29 

Mel. 

Bus 149,966 16.69 10.05 43.32 51,336 1,099 1.707 0.22 

Tram 30,372 15.06 12.03 51.65 111,881 1,643 1.609 0.27 

Total 180,338 16.42 10.07 43.41 61,533 1,105 1.71 0.22 

SE Qld Bus & Tram 322,119 17.79 10.87 29.56 46,758 1,505 2.44 0.23 

Perth Bus 95,598 15.92 9.94 38.78 34,348 741 2.125 0.21 

Adl. Bus & Tram 49,061 18.54 12.10 45.55 38,812 1,262 2.02 0.25 

Sample 835,703 17.28 10.59 37.96 54,616 1,432 2.22 0.24 

 

Regression results show geographical barriers and vertical elevation have the 
expected positive effect on route length (𝑝 < 1%), population catchment has the 
expected negative effect (𝑝 < 1%), and congestion is insignificant. 
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Table 10: Regression Results for Productivity Model (V3) – Bus and Tram Route Length 

Euclidean distance 0.94 (0.07)*** 
Number of stops 0.14 (0.01)*** 
Population Catchment (𝑝௜) [per 1,000 people] -0.04 (0.01)** 
ln(congestion) (𝑐௜) [veh.hrs] 0.32 (0.16) 
Deviation (𝑔௜) [km per route] 0.34 (0.06)** 
Elevation (𝑧௜) [Δ height per route] 5.59 (1.21)** 

R2 0.83 
Notes: n = 282,225. Standard errors in brackets; ***p < 0.001, **p < 0.01, *p < 0.05. All models 
include City x Weekend x Hour terms 

The model route length has good explanatory power, with an R-squared value of 0.83. 
Predicted versus actual values show a strong positive association with most values 
clustered around the 45-degree line (Figure 4). We observe more variation on the 
upside, suggesting errors are heteroskedastic, supporting the use of robust standard 
error (V3). 

Figure 4: Productivity Model – Bus and Tram Route Length Extended Model Fit 

 

We use the same underlying data as described above to estimate a heavy rail route 
length model. Summary statistics are presented below in Table 11.  

Table 11: Summary Statistics for Productivity Model – Heavy Rail Route Length 

Market 
n 

[trips] 
Length 

 (𝒍𝒊) [km] 

Eu. Dist 

(𝑙௜̅) [km] 

Stops 
(𝒅ഥ𝒊) 

Catchment 
(𝒑𝒊) [people] 

Congestion 
(𝒕𝒊) [veh.hr] 

Deviation 
(𝒈𝒊) [km] 

Elevation 
(𝒛𝒊) [km] 

Syd. 47,096 39.48 29.18 19.38 138,000 2,819 4.59 0.25 

Mel. 57,240 31.12 25.55 18.75 93,000 2,312 2.60 0.19 

SEQ 4,748 58.07 43.70 26.91 82,000 2,408 7.80 0.20 

Perth 15,627 22.92 19.83 14.53 35,000 1,090 2.45 0.08 

Adl. 3,572 27.53 22.75 17.61 35,000 1,061 2.63 0.17 

Sample 128,283 34.09 26.78 18.73 100,433 2,318 3.50 0.20 

Sydney operates the most kilometres (trips x length) by heavy rail, whereas SEQ 
operates the least. We note that the definition of a PT ‘trip’ (service) varies significantly 
between jurisdictions. For example, in SEQ all rail trips are through-routed across the 
city centre, which effectively halves the number of trips compared to a city like Perth, 
which does not. In terms of average route length, we find that Sydney is slightly longer 
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than the sample average and has slightly more stops. As for non-policy factors, 
Sydney’s population catchment, congestion levels, and elevation are higher than in 
other cities, whereas for deviation Sydney has the second largest after SEQ. While 
Sydney and SEQ appear to be outliers by this measure, most of the difference is 
explained by the length of rail trips in these cities, which are longer than average. 
Indeed, if we divide the deviation by the average route length to calculate deviation 
per kilometre travelled, then we find that the ratios for all five cities are much closer 
together.  

Regression results show that route length tends to increase with Euclidean distance 
and the number of stops, as expected. For our four non-policy factors, coefficients for 
deviation and elevation are positive and statistically significant (𝑝 < 0.1%), whereas 
those for catchment and congestion are not (Table 12).  

Table 12: Regression Results for Productivity Model – Heavy Rail Route Length 

Euclidean distance 0.90 (0.02)*** 
Number of stops 0.17 (0.11) 
Population Catchment (𝑝௜) [per 1,000 people] 0.01 (0.01) 
ln(congestion) (𝑡௜) [veh.hrs] 0.41 (0.75) 
Deviation (𝑔௜) [km per route] 1.00 (0.13)** 
Elevation (𝑧௜) [Δ height per route] 12.80 (1.53)** 

R2 0.97 
Notes: n = 70,745. Standard errors in brackets; ***p < 0.001, **p < 0.01, *p < 0.05. 

In terms of explanatory power, we find both the Basic and Extended heavy rail route 
length V3 models have high R-squared values of 0.94 and 0.97, respectively. Model 
fit is illustrated in Figure 5. This reveals an excellent alignment between the predicted 
and actual values, with no extreme values. 

Figure 5: Productivity Model – Heavy Rail Route Length Extended Model Fit (V3) 

 

A.3 Refining cost recovery to account for productivity 

Here we extend the analysis of cost recovery in Section 4.1 to account for our findings 
on the drivers of PT productivity (speed and route lengths). Using the results presented 
in Section A.1, we calculate the effect of non-policy factors on bus/tram and heavy rail 
productivity in each of our five cities by calculating the percentage change in average 
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performance for bus/tram (speed and distance) and heavy rail route (distance). 
Estimated average productivity effects for each mode are summarised in Table 13. 

Table 13: Bus/Tram and Heavy Rail Productivity – Effect of Non-policy Factors 

City 

Bus and Trams Heavy rail 

Speed (hours) Distance Cost 
Effect 

[%] 

Distance Cost 
Effect 

[%] KM/hr % KM % KM % 

Sydney -2.45 -10.4% -0.39 -2.2% 4.38% 1.73 5.1% 2.54% 

Melbourne -0.49 -2.1% -0.25 -1.5% 0.74% -1.03 -3.0% -1.51% 

SE Qld 0.73 3.1% 0.33 1.9% -1.00% 4.30 12.6% 6.31% 

Perth 2.76 11.7% 0.41 2.4% -4.78% -2.59 -7.6% -3.79% 

Adelaide 1.72 7.3% 0.61 3.5% -2.55% -1.25 -3.7% -1.84% 

To put these effects on a monetary basis, we assume vehicle-hours and vehicle 
kilometres represent 50% and 30% of vehicle operating costs, respectively, based 
loosely on TfNSW (2016). (NB: Implying 20% is attributable to vehicle fleet, which we 
do not consider in our analysis and that is likely to make our estimates relatively 
conservative, in the sense that we underestimate productivity effects). Under these 
assumptions, non-policy factors are predicted to increase Sydney’s bus and tram 
operating costs by 10.4% x 50% - 2.2% x 30% ≈ 4.38%. Similarly, for heavy rail we 
assume vehicle-kilometres represent 50% of total operating costs, such that non-
policy factors are estimated to increase operating costs by 5.1% x 50% ≈ 2.54%.  

We can then combine these productivity effects by assuming bus / tram and heavy rail 
operating costs represent 50% and 45% of total net PT expenditure, respectively, with 
the remainder attributable to ferries. Sydney’s total percentage productivity loss 
attributable to non-policy factors can then be calculated as +3.24% (= 45% x 4.38% 
plus 50% x 2.54%). 

We calculate productivity effects for each city using the same assumptions on relative 
operating cost splits between hours vis-à-vis kilometres and bus/tram vis-à-vis heavy 
rail, where the “productivity factor” (PF) represents the estimated net effect of non-
policy factors on PT productivity. A PF smaller than one implies non-policy factors 
decrease PT productivity, and vice versa for a number greater than one. Our analysis 
suggests non-policy factors lead to PF in Sydney and Perth that are 3.2% and 4.1% 
lower and higher than average, respectively (Table 14). 

Table 14: Calculating productivity factors 

City 
Fiscal effect 

PF 
Bus/Tram Rail Total cost 

Sydney 1.97% 1.27% 3.24% 0.968 

Melbourne 0.33% -0.75% -0.42% 1.004 

SE Qld -0.45% 3.15% 2.70% 0.973 

Perth -2.15% -1.90% -4.05% 1.040 

Adelaide -1.15% -0.92% -2.07% 1.021 

Applying PFs to costs (revenue is left unchanged from that in Table 6), we find 
Sydney’s net PT expenditure per capita is 38% higher than average once productivity 
effects are accounted for (Table 15). In contrast, non-policy factors reduce Perth net 
PT expenditure per capita from 46% to 49%. Taken together, these two results imply 
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non-policy factors drive net PT expenditure per capita in Sydney 87% higher than in 
Perth. Non-policy factors also cause Sydney’s net PT expenditure per capita to be 
20% higher than Melbourne. 

Table 15: Net PT Expenditure per capita – Adding Productivity Effects 

City 
Costs 

Revenues 
Net Expenditure Effect 

No PF +PF No PF +PF No PF +PF 

Sydney 133.31 137.78 34.30 99.01 103.48 +32% +38% 

Melbourne 118.90 118.40 30.23 88.67 88.17 +18% +18% 

SE Qld 77.16 79.31 18.97 58.19 60.33 -22% -20% 

Perth 52.50 50.46 12.20 40.30 38.26 -46% -49% 

Adelaide 72.49 71.02 17.25 55.24 53.78 -26% -28% 

Baseline 100.00 25.00 75.00 0% 

 


