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Abstract 

Many travel behaviour studies have demonstrated a relationship between public 
transport ridership and built environment variables such as density, diversity, urban 
design and accessibility. However, results from past studies show large variability, 
which limits the transferability of findings outside the research setting. Context is 
important in travel behaviour research, encompassing many potential sources of this 
variability. Yet little is known about the link between the social and geographic context 
of the research setting and different impacts of the built environment on transit use. 

In this paper, meta-analysis is used to synthesise evidence relating indicators of the 
built environment to transit use. Results are compared before and after grouping by 
the country in which research is conducted, to determine whether this explains 
variability.   

As expected from previous research, results show indicators of transit-friendly urban 
design, density and accessibility are weakly correlated with increasing transit ridership. 
The average effect size for density showed significant variance between different 
countries. However, the majority of variance cannot be accounted for by differences 
associated with the country of the sample.  

This study is limited by small sample sizes once data is grouped by country. This 
reflects the lack of geographically diverse evidence in the field of land use and travel 
behaviour research. Furthermore, differences in study design were found to impact 
results. Future research that seeks to identify contextual sources of variability in the 
built environment and transit use relationship need to adopt a consistent study design 
across the locations being tested. 

http://www.atrf.info/
mailto:ckmin1@student.monash.edu
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1 Introduction 

Population growth and economic development are putting increasing pressure on 
transport networks. Externalities of car dependence, including urban sprawl, 
congestion and climate change are intensifying. Research has shown the built 
environment can be leveraged to encourage sustainable travel behaviour, by 
promoting the use of modes such as public transport.  Urban planning and design 
theory suggests that mixed land uses in close proximity to transit facilities make it more 
convenient to travel by transit (Litman and Steele, 2017). Recently, research has 
focused on understanding the impact of urban design and land use on attitudes to 
different travel modes. Particular emphasis has been given to walking, which is the 
predominant means by which transit is accessed, finding that “walkable” and diverse 
urban environments can change attitudes toward walking (Cao et al., 2009a). 
However, despite extensive research in this field, mixed results from studies have 
made this line of research less useful as a source for guiding planning practice (Maat 
et al., 2005). 

Meta-analysis and meta-regression are statistical techniques that have been used to 
combine data from multiple studies to gain a generalisable understanding of how the 
built environment influences transit (Ewing and Cervero, 2010, Stevens, 2017). These 
methods have the potential to identify factors causing mixed results, improving the 
value of research for planning practice. 

Factors associated with national or regional transit quality, policy or culture have not 
been explored as potential sources of variability in the built environment and transit 
ridership (BE-TR) relationship. This is despite evidence and frameworks suggesting 
such contextual factors do impact travel behaviour (Haustein and Nielsen, 2016, 
Ajzen, 1991). To address this gap, this study has two aims, to:  

1. Summarise the relationship between transit use and four built environment variables 
(density, diversity, design and accessibility). 

2. Understand whether differences in the BE-TR relationship are associated with the 
country in which the research was undertaken. 

This paper tests two hypotheses to examine differences in built environment impacts 
on transit ridership between countries. The first hypothesis is that there is a meaningful 
difference in average correlations for the BE-TR relationship in different countries. The 
second hypothesis is that segmenting the average correlations by country enables a 
large proportion of variance to be explained. Exploring the relationship on a country 
level will give a clearer understanding of the transferability of built environment and 
transit use research from one location to another.  

The first section of this paper provides an overview of how the BE-TR relationship is 
measured, sources of variability and findings from past studies. Meta-analytic methods 
for exploring differences in empirical results are explained. Average correlations and 
heterogeneity results are presented for all built environment variables, grouped by 
country. The impact of study design is compared to the impact of different sample 
locations on results. Further research is suggested to explore the influence of 
geography and continue to unpack this relationship.  
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2 Literature review 

2.1 Measuring public transport and the built environment 

Travel behaviour is a decision-making process which can be influenced by an 
individual’s needs, resources and lifestyle (Næss, 2005, Litman and Steele, 2017), as 
well as their attitudes, social norms and perceptions (Ajzen, 1991). Transit use is a 
subset of travel behaviour. The desire to increase the use of sustainable alternatives 
to private vehicles has engendered much research into the factors that influence 
transit ridership. The built environment is one factor that has been found to impact 
transit ridership (Ewing and Cervero, 2010). 

The built environment can be embodied by infrastructure and roads, mixes in land use 
and urban design. For this paper, density, diversity, design and accessibility are used 
as the built environment indicators to assess BE-TR: 

• Density measures employment, population or activity per unit area. Higher 
density may allow destinations to be in closer proximity, reducing trip lengths 
and thereby increasing transit use as it’s more feasible for the commuter (Ewing 
and Cervero, 2010).  

• Diversity measures the mixtures of land uses within an area. Increasing the 
mix of land use and housing balance may have a positive correlation with transit 
use as destinations such as jobs, supermarkets and schools are in closer reach 
(Litman and Steele, 2017). 

• Design refers to street characteristics within an area. Design measures such 
as pedestrian, cycling and safety amenities may encourage transit use as it 
allows patrons safer and more convenient access to transit stations and stops 
(De Gruyter et al., 2019). 

• Accessibility refers to the ease with which activities can be reached within the 
public transport network. Improved accessibility to key locations may increase 
transit use by reducing commute distances and thus allow transit use to 
become a more competitive travel option (Boulange et al., 2017).  

Table 1: Built environment - independent variable indicators (adapted from Aston et al. (2019b)1)  

Variable Scale  Measure Examples 

Density  Continuous Gross or net jobs/employment per area, gross or net households, 
dwelling or persons per total area, active floorspace ratio, sum of 
population and jobs, commercial or retail opportunities per area, 
commercial or retail density, number of establishments, commercial 
or retail land use proportion 

Diversity Continuous Mix of land use (floor area), vertical mix of land use, mix of housing 
type, mix of housing affordability, mix of tenure type, ethnic diversity 
of neighbourhood, jobs-housing balance, ratio of trip origins to trip 
destinations 

Design 
 

Continuous Canopy, street furniture, facilities, four-way intersections, lighting, 
perception of safety, curbs, shoulder width, total path length, number 
of pedestrian crossings 

Categorical Building setback, building orientation, neighbourhood type, presence 
of side walk  

Accessibility  
 

Continuous  WalkScore, local living score, count of services/mixed use 
opportunities 

Categorical  Located in CBD, TOD or close to transit, high density, discrete 
categorisation of urbanisation level  



ATRF 2019 Proceedings 

4 

Examples of indicators used are shown in Table 1. The variables included in Table 1 
are hypothesised to have a positive influence on transit use (Ewing and Cervero, 
2010).  

2.2 Sources of variability in built environment and transit research 

Studies report highly variable impacts of built environment variables on transit use, 
which limits the transferability of research into practice. In addition to sampling error, 
regional accessibility and residential self-selection are two sources of variability that 
are increasingly well understood in the field. Contextual sources of variability, linked 
to different sample locations, are less well understood.  

Firstly, some variability from studies may be due to sampling error, which is inevitable 
when observing a sample as opposed to a population. Since each study relies on 
different samples, their results will differ even when investigating the same topic. 
Weighting samples, according to their sample size or standard error, reduces the 
influence of sampling error on meta-averages.   

The accessibility of a given location affects the relative ease of transit use within the 
area. This variable can be considered controlled if a model includes distance to CBD 
or share of jobs within the catchment region (Renne et al., 2016). Another source of 
difference is residential self-selection. Residential self-selection is the idea that people 
choose to live in certain neighbourhoods based on their travel preferences or needs. 
Methodological approaches to control residential self-selection include direct 
questioning, statistical controls, or employing joint discrete choice models (Mokhtarian 
and Cao, 2008). If a study has no controls for self-selection bias, it may spuriously 
attribute increased transit ridership to the built environment.  

Contextual differences present a source of complexity and variability in the BE-TR 
relationship (Hu and Iseki, 2018, Ortúzar and Willumsen, 2011). Case studies on 
different locations have shown examples of geography influencing the BE-TR 
relationship. Loo et al. (2010) compared metro railway systems in New York and Hong 
Kong. Different factors predicted rail patronage in each city, as shown in Table 2.  

Table 2: Factors affecting railway patronage in cities (adapted from Loo et al. (2010))  

New York Hong Kong 
Commercial density (+) 
  

Population density (+) 
Employment over population (-) 
Mixed land use (+) 
Commercial to residential ratio (+) 

More research is needed to understand why such differences in travel occur, even 
when the same study design is used, as in the case of the New York and Hong Kong 
study. 

A study of light rail ridership in Australia, North America and Europe, found a significant 
role for many country-level variables in predicting transit ridership (Currie et al., 2011). 
The study identifies many differences in the operating characteristics of the networks 
in these countries. It finds that in addition to the built environment characteristic of 
employment density, factors such as integrated ticketing, average vehicle speeds and 
the fact of being a network in Europe, account for different rates of ridership.  

Little is known about which contextual features are associated with differences in BE-
TR. Many country- or network-level differences fit within behavioural frameworks that 
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explain travel patterns, such as the theory of planned behaviour (TPB) (Ajzen, 1991). 
TPB posits that behaviours, such as travelling by a particular transport mode, is 
determined by attitudes towards social norms and perceived ability to accomplish the 
behaviour. This theory has been examined predominantly in the context of walking 
behaviour (Dill et al., 2014). Exposure to pedestrian-friendly environments can 
influence people’s attitude toward walking and therefore increase the share of trips 
they make in this way. Differences in regional transit accessibility and population 
density occur at a national level, as summarised in Table 3. The table compares 
countries that feature prominently in this study’s sample.  

Table 3: Country-level differences associated with travel patterns 

Country 
% Urban 

Population 
(millions) 

Motor vehicles/ 
1000 people 

(World Bank, 2017) (NationMaster, 2014) 
Australia  86 24.9 717 

Canada  81 37.1 607 

China  59 1,390 83 

Hong Kong  100 7.45 77 

Netherlands 91 17.2 528 

South Korea 81 51.6 376 

United Kingdom 83 66.5 519 

USA 82 327 797 

Differences in the proportion of city-dwelling people (urbanised), the overall 
population, or population density in occupied land areas, and rates of vehicle 
ownership might mediate the influence of the built environment on attitudes toward 
transit use. Car ownership rates are highly variable between countries, which may 
reflect or contribute to social norms about driving. Highly automobile dependent 
countries like Australia and USA have the highest per capita vehicle ownership rate 
(717 and 797 respectively). Finally, different institutional arrangements for the planning 
and implementation of transit and land use can influence the effectiveness of 
integrating transport and land use (Thomas and Bertolini, 2017). There are valuable 
policy implications of understanding whether if social norms, and the quality- or 
connectivity of transit networks at a regional level impacts the effectiveness of 
transport and land use integration, aimed at reducing unsustainable travel.  

2.3 Meta-analysis in travel behaviour research  

Unlike traditional literature reviews, meta-analysis is a quantitative method of 
synthesis that can increase generalisability of empirical relationships (Borenstein et 
al., 2009). Two recent meta-analyses have been conducted to generalise the BE-TR 
relationship, determining average effects. Characteristics from both studies are 
summarised in Table 4. In 2010, meta-analysis was used to synthesise data points 
representing the relationship of design, diversity and density with transit use (Ewing 
and Cervero, 2010). This study reported positive associations for all independent 
variables, with design as the strongest variable. Similar findings were reported in a 
study that considered a wider geographic sample (Aston et al., 2019b). 
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Table 4: Characteristics of prior meta-analyses  

 (Ewing and Cervero, 2010)  (Aston et al., 2019b) 1 

Density  

Diversity  

Design  

Accessibility 

0.01-0.07 

0.12 

0.23-0.29 

 

0.1-0.14 

0.07 

0.06 

0.19 

Location of 
Samples   

Canada, Hong Kong, USA  Australia, Canada, China, 
Korea, Latin America, 
Netherlands, South Korea, 
United Kingdom, USA 

Stevens (2017) also estimated average elasticities between the built environment and 
automobile use, using meta-regression to identify and correct for any significant 
impacts resulting from specification errors in studies. Meta-regression is simple linear 
regression with study-level differences coded to form the independent variables. The 
dependent or outcome variables are the effect sizes from these studies, such as the 
relationship between a built environment variable and vehicle miles travelled. Study-
level factors that are consistently associated with trends in the effect sizes will be 
detected as significant predictors, in the same way that linear regression identified 
predictors. Meta-regression used in this way enabled Stevens (2017) to identify that 
studies in which individuals’ pre-existing preference for living in areas where they could 
drive less (self-selection) was producing different results to those that did not 

3 Methodology  

To generalise the BE-TR relationship for different countries, this project synthesised a 
database of studies relating to the built environment and transit use through employing 
an established meta-analysis methodology (Borenstein et al., 2009). 

3.1 Sample 

An existing database2 containing statistical and contextual information (effect size, 
sample size, geography) on studies relating to the relationship between built 
environment indicators (independent variable) and transit use (dependent variable) 
was used for this paper. Data were screened for inclusion in the sample through a 
process illustrated in Figure 1. 

 

Comparison between studies requires that the variables measure the same underlying 
phenomenon (Borenstein et al., 2009). Two fundamentally different measures of 
transit use are prevalent in the literature. These include studies that analyse aggregate 
demand (“ridership”), and those that analyse mode choice using discrete choice 
methods (Ortúzar and Willumsen, 2011). While ridership is measured on a continuous 
scale, mode choice measures discrete outcomes. Their different measurement scales 
make them inappropriate for comparison. Similarly, the independent variables of urban 
design and accessibility are often measured using categorical or binary scales. The 
impact of moving from one category to the next is not comparable to moving along a 
numeric (continuous) scale with infinitely small increments. Categorical accessibility 
and design indicators were thus excluded. 
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Figure 1: Process for the selection of primary studies for meta-analysis  

 

In this study, the unit of analysis is a data point rather than a study. Some studies 
contained more than five individual data points for a single variable, while many 
contained just one. Researchers can choose to analyse all datapoints (‘all in’), take 
only the most representative data point (‘best of’) or average the data points for an 
individual study to minimise bias (Stanley and Jarrell, 2005). For the purpose of this 
analysis, an ‘average’ approach was taken. Data points from the same study that were 
identical in the country, sample size, and built environment variable were treated as 
duplicates of a study and therefore averaged. This resulted in the amalgamation of 
345 data points into 148.  

3.1.1 Conversion to common effect sizes 

From the studies included for the meta-analysis, there were four types of formats used 
to report statistical results. These are summarised in Table 5 along with the 
computation strategy for converting them into correlations. In this meta-analysis, the 
effect size is used to describe the strength of the relationship between two variables.  

Table 5: Computation strategy for conversion (adapted from Sharmin and Kamruzzaman (2018)) 

Type n Reported estimate Data  Conversion 

1 6 

Pearson’s correlation coefficient:  
Describes the magnitude of correlation 
between the built environment measures 
and transit use 

- Pearson’s or 
Spearman’s 
correlation coefficient 

- Sample size 

No conversion  

2 3 
Fisher’s Z value: statistical measure of 
strength of relationship 

- Z – value 
- Sample size 

𝑟 =  √
𝑧2

𝑛
 [Eq.1] 

3 284 
t- statistics: used in linear regression 
models to describe calculated 
difference. 

- T – statistic 
- Sample size 
- Degrees of freedom 

of the test 

𝑟 =  √
𝑡2

𝑡2 + 𝑑𝑓
 [Eq.2] 

4 52 
p-values: expresses the significance of 
a relationship 

- p-value 
- tails in t-test 

(assumed: two) 
- sample size 
➔ z-value from 

conversion table 

 [Eq.1] 

132 data points
62 studies

1,312 data points
94 studies

152

756Insufficient information to compute correlation

Outcome variable not measured on continuous scale

59Independent variable not measured on continuous scale

16

345 data points

Outliers
148  average  
data points

 Average  duplicate 
study/sample/country

Data points excludedSample



ATRF 2019 Proceedings 

8 

To combine results from different study designs, conversions to a common effect size 
measure were needed. The chosen metric for this paper is the correlation coefficient, 
r, which can measure the strength and direction of a linear correlation between two 
variables. The results are between -1 and 1, with ±1 indicating total positive or negative 
linear correlation and 0 indicating no linear correlation. The correlations, now of 
comparable form, were checked for outlying values. Extreme outliers were removed 
by inspection. The final sample contained 132 data points from 62 studies (See 
Appendix: Table 8). 

3.2 Meta-analysis: average effects 

Comprehensive Meta-Analysis (CMA) is a software which was used in this study to 
convert, analyse and report the statistical data (Borenstein et al., 2013). Since primary 
studies were performed independently, it was assumed that the studies would not 
have one true effect size. As such, the “random effect” model was used to estimate 
averages, as this model assumes that the true effect size varies from one study to 
another. In contrast, fixed effect analysis would assume the true effect size is the same 
in all studies, and that variation would only be caused by sampling error (Borenstein 
et al., 2009). The random effect model assigns particular weights to individual studies 
to calculate the average correlation. The weights assigned to each study are estimated 
from the standard error of the studies, which itself is calculated from the sample size 
and magnitude of the correlation, as shown in Equation 3 to 5 below (Borenstein et 
al., 2013).  

𝐹𝑖𝑠ℎ𝑒𝑟′𝑠 𝑍 = 0.5 ∗ (
log(1+𝑐𝑜𝑟𝑟)

1
− 𝑐𝑜𝑟𝑟)    [Eq. 3] 

𝑆𝐸𝐹𝑖𝑠ℎ𝑒𝑟′𝑠𝑍 =
1

𝑆√𝑁−3
    [Eq. 4] 

𝑆𝐸𝑐𝑜𝑟𝑟 = 1 − 𝑐𝑜𝑟𝑟2 ∗  𝑆𝐸𝐹𝑖𝑠ℎ𝑒𝑟′𝑠𝑍    [Eq. 5] 

Generally, an effect size of +/- 0.10, +/- 0.30 and +/- 0.50 shows a small, medium and 
large effect size, respectively (Card, 2012). A p-value of less than 0.1 has been used 
throughout this paper as the cut off for reporting statistically significant variables. To 
identify and quantify variance, Q-statistics and I2 statistic were used. Excess variance 
is estimated as the difference between Q and the degree of freedom (Borenstein et 
al., 2009). The I2 statistic was used to describe the percentage of variation across 
studies that is due to heterogeneity rather than chance. 

Subgroup analysis was used to determine whether estimates grouped by geography 
were distinct, and whether this explains some of the variation in the overall mean for 
a variable. A Q-test based on analysis of variance was then used to partition the total 
variance from the built environment variables into variance within subgroups and 
variance between subgroups (Borenstein et al., 2009). Variance explained by 
differences in the country subgroups (total ‘between’ variance) and the unexplained 
variance remaining (total ‘within’ variance) were calculated and compared.  

3.3 Meta-regression: identifying significant sources of variability 

Meta-regression analysis was used to check the impact of country variables on the 
BE-TR relationship while simultaneously accounting for differences in study design. 
Artificial categories were created to represent characteristics suspected of contributing 
to significant differences in the results from study to study. In this particular study, the 
country in which the study was undertaken; and appropriate controls for self-selection 
and regional accessibility, were the study-level differences of interest. The country of 
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a study was treated as a categorical variable, with ‘Australia’ as the references case. 
Studies that included appropriate sociodemographic or attitudinal controls for self-
selection were assigned (1) as controlling for self-selection, compared to the 
references case (0) of studies that did not. Studies that considered the accessibility of 
their sample relative to jobs or employment districts were considered as controlling 
regional accessibility (1) and compared to those that did not (0). Ordinary least 
squares regression was then used to identify significant predictors of the BE-TR 
relationships. This procedure was also conducted using CMA (Borenstein et al., 2013). 
The impact of any significant predictors on the relationship can be observed by 
‘solving’ the regression equation, that is, substituting the coefficients for any significant 
study design factors and re-calculating an effect size (Stanley and Doucouliagos, 
2012). 

4 Results 

4.1 Descriptive analysis 

A total of 132 data points from 62 studies were used for this meta-analysis. In terms 
of country distribution, most data points were conducted in USA (89), followed by 
South Korea (7), China (5), Canada (4), Australia (3), Spain (3), Hong Kong (2), 
Netherlands (2), Taiwan (2), United Kingdom (2), Brazil (1), Denmark (1) and Japan 
(1). Nine studies collected data in multiple countries. This geographic distribution of 
data points shows that the influence of built environment measures on transit use have 
not been widely investigated on a global scale. 

4.2 Meta-analysis of built environment variables  

4.2.1 Overall average effects  

Individual correlations from primary studies were used to compute an average 
correlation (ρ) for BE-TR, for four built environment indicators. The average estimates 
for the four variables are shown in Table 6. 

Table 6 - Estimates of average correlations and variance for BE-TR (*p<0.1, **p<0.05, ***p<0.01) 

Country Density Diversity Design Accessibility 

 N ρ 𝐼2
 N ρ 𝐼2

 N ρ 𝐼2
 N ρ 𝐼2

 

Average 64 0.154*** 0.979 Not significant 24 0.035** 0.899 16 0.145*** 0.902 

Australia 3 0.220** 0.815          

Canada 2 0.360*** 0.497          

China          1 0.312* n/a 

Hong Kong 1 0.407** n/a          

South Korea       2 0.088* 0.0    

Taiwan       1 0.360** n/a    

USA 40 0.156*** 0.983 19 
-

0.032* 
0.882 18 0.030* 0.916 12 0.140*** 0.924 

Within-group 
variance 

2,345*** 151*** 153*** 203*** 

Between-
group 

variance 
21.9* Not significant Not significant Not significant 

𝑰𝟐 denotes the proportion of variance that can be explained by covariates and not by sampling error.  
N denotes the number of error-weighted data points (deriving from unique statistical models) 
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As expected from previous literature, findings from this meta-analysis suggest that 
density, design and accessibility all have a significant, positive correlation to transit 
use. The correlation between indicators of design, accessibility and density show a 
significant, positive association to transit use, aligning with findings from past meta-
analysis. 

The variable with the largest influence on transit use is density, with a correlation of 
0.154. Density is the most commonly analysed built environment variable. 64 unique 
estimates for density and transit ridership were available from the dataset, compared 
to 28 for diversity, 24 for design and 16 for accessibility. Given the reduced sensitivity 
of larger samples to outliers, it is not surprising that the most significant estimates were 
found for density at the country-level. Accessibility showed the second strongest 
average correlation with ridership, with an average estimate of 0.145. A significant 
relationship was also found for design (ρ= 0.035). Diversity, measured in terms of land 
use mix (or entropy), housing diversity and the balance of trip attractors and 
generators, shows inconsistent impacts on ridership, with many studies finding a 
negative association. Its average impact was not significant.  

4.2.2 Country-level estimates and variance 

Correlations between the built environment and transit use, grouped geographically, 
are also included in Table 6. The 𝐼2  statistic, which represents the proportion of 
variance that is not attributable to chance, is shown in the third column for each 
indicator. No obvious patterns in the ranking of the countries across the indicators is 
visible to suggest substantially different patterns of association between the built 
environment and transit use. 

Four country-level estimates for density were significant. Hong Kong yielded the 
largest estimate with a correlation between density and transit use of 0.407, followed 
by Canada (ρ = 0.360), Australia (ρ = 0.220) and USA (ρ = 0.156). The estimate for 
diversity in USA was significant (ρ=-0.032), even though the population average was 
not. This is an unexpected result, however, since diversity was expected to increase 
transit use, although this assumption was primarily based on evidence of the impact 
of diversity on the reduction of automobile travel. This suggests that results emanating 
from the USA, which formed only a subset of the entire sample, were more consistent 
than the sample as a whole. 

Significant correlations between accessibility and ridership were identified for China 
(ρ = 0.312) and USA (ρ = 0.140). The association of design with ridership was 
significant for three countries, the largest being Taiwan, from a single data point (ρ = 
0.360). Estimates from a single data point are not ‘averages’, although they are 
weighted and converted in the same way as the other estimates.  

According to the 𝐼2, the variance explained by sampling error for the four variables is 
minimal, with real variance accounting for 97.9% (density) to 89.9% (design) and 
90.2% (accessibility) of the variance. However, when examined at the level of different 
countries, some of this real variance disappears. Single-data point groups do not have 
an associated 𝐼2 statistic, as more than one estimate is needed to estimate within-
group variance. The within- and between- group variance provide insight to the degree 
to which grouping by country improves consistency in the results. The country 
estimates for one of the variables, density, were distinct from each other. This is 
signified by the total between-group variance of 21.9.  
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4.2.3 Meta-regression of study design and country 

Table 7 summarises the result of meta-regression, which was used to explore the 
impact of three expected sources of variability. These were: the country in which data 
was collected; and the specification issues of regional accessibility and self-selection. 

Table 7: Results of meta-regression of study design factors and country on BE-TR  

 Density Diversity Design Accessibility 

Sample size 64 28 24 16 

Intercept 0.2239 -0.063 0.088 0.296 

Regional accessibility  
(ref: not controlled) 

 0.073***   

Self-selection  
(ref: not controlled) 

  -0.083*** -0.195*** 

UK (ref: Australia) -0.3031*    

R2  0.79 0.62 0.24 

Adjusted correlation -0.079 0.010 0.005 0.101 

In the case of density, meta-regression revealed that significant differences exist 
between the mean of estimates in UK studies, compared to Australia. Other than this 
distinction, represented by the error bars for UK not overlapping the mean correlation 
for Australia in Figure 2, all other estimates had overlapping means.  

Figure 2: Forest plot of density and transit use relationship (random-effect model)

 

Study design was an important predictor of the relationship between transit ridership 
and diversity, design and accessibility. Studies that controlled regional accessibility 
were predicted to find larger BE-TR relationships for diversity. Studies that controlled 
self-selection were predicted to have an inverse BE-TR relationship for design and 
accessibility. Where the average correlation for design was calculated to be 0.035 
without controlling study design, once self-selection was accounted for this was 
predicted to reduce to 0.005. Similarly, the estimate for accessibility corrected for self-
selection impacts reduced from 0.145 to 0.101.  

5 Discussion 

5.1 How well does geography explain variance? 

To explore whether the BE-TR relationship varies according to the geography of the 
sample, results were grouped by the country from which they were sourced. Generally, 
a subgroup explains variance well if large variation exists between subgroups and little 
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variation exists within subgroups (Borenstein et al., 2009). This was not the case in 
the present sample.  

Between group variance was only observed for density. Significant estimates of the 
association between density and ridership for Hong Kong (ρ= 0.407), Canada (ρ = 
0.360), Australia (ρ = 0.220) and USA (ρ = 0.156) were higher than the average for all 
geographies in the sample (ρ = 0.154). The universal average is brought down by 
smaller, and in some cases negative, estimates of the relationships from locations 
including Denmark, Brazil, South Korea and the Netherlands. The country groupings 
for diversity, design and accessibility were not distinct from each other, signified by the 
absence of any between group variance. Therefore, the variance explained by the 
country subgroups is only a small portion of the overall variance.  

Although differences between country groupings were not significant, there were some 
estimates for which the country averages had much less real variability than the overall 
sample. Since 𝐼2 measures variability that is not attributable to chance, the fact that 
the country groupings were smaller does not explain the reduction in the variance. In 
fact, in the case of estimates for USA, the true variance was higher than that of the 
overall sample. The results of meta-regression suggest that the reduction in variance 
when grouped by country might be explained by similar study designs among research 
undertaken in the same country.  

The meta-regression analysis reveals that study design significantly impacts the 
magnitude of findings for built environment indicators and ridership. Specifically, the 
meta-regression results in Table 7 suggest that studies that control regional 
accessibility find higher ridership for increasing diversity. Conversely, studies that 
control self-selection are predicted to negatively impact ridership associations with 
design and accessibility. Similarity in the study design of estimates from a single 
country is more likely to explain the reduction in variance, than country-level 
differences. Attempts to examine country- or network-level factors that mediate the 
built environment and transit use relationship identified by different studies are likely 
to be confounded by the different designs of these studies. 

Synthesising estimates at the country level facilitates comparison of built environment 
and travel behaviour associations. However, it cannot explain why differences occur. 
Although averages appeared to vary across country, this does not say anything about 
whether the role of the built environment differs, or if this is instead a symptom of 
contextual differences between countries. Evidence exists for the ability of cultural 
norms and regional-level accessibility to mediate the built environment and transit 
ridership relationship, via their impact on attitudes and perceptions about travel (Dill et 
al., 2014, Renne et al., 2016). Examining each of the regional attributes that could be 
expected to impact transit use will improve understanding of how, and under what 
conditions, the built environment contributes to the formation of attitudes about 
different travel alternatives. This in turn will make research more transferrable.  

5.2 Limitations and further study suggestions 

The four “D-variables” used in this study, including density, diversity, design and 
destination accessibility are commonly used in the literature to represent the built 
environment (Ewing and Cervero, 2010). However, the relationship for these variables 
and transit ridership has been shown to vary depending on the indicator used to 
represent the variable (Aston et al., 2019b). Therefore, this study’s assumption that 
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‘density’, ‘diversity’, ‘design’ and ‘accessibility’ are homogeneous characteristics of the 
built environment is a simplification. Once again, the need to obtain a large enough 
sample to enable country-level averages to be computed warranted the examination 
at the ‘variable’ rather than ‘indicator’ level. Analysis at the indicator level would reduce 
variance that is caused by the choice of indicator.  

A limitation within this meta-analysis is the lack of studies from diverse locations. This 
is not a failing of our method; all published studies were included, it’s a failing of the 
field since more studies in diverse geographies are needed.  Most studies within this 
paper are from USA and since other groups do not have as many eligible data points, 
the summary effects for the smaller geographical groups are less conclusive. This calls 
for more research in other regions, particularly Asia, Latin America, Africa and Europe.  

6 Conclusion 

This study used meta-analysis to examine the impact of controlling country-level 
differences on the consistency of estimates of the relationship between the built 
environment and transit ridership. Differences in mobility styles, social norms and 
transit network accessibility were theorised to drive country-level differences in the BE-
TR relationship. When results were averaged across all available evidence, 
irrespective of country, the meta-averages showed large variability, and only weak 
correlations between three built environment indicators and transit ridership.  

Large variance within the countries persisted across the indicators. Meta-analysis with 
comparison between results grouped by studies, failed to account for the majority of 
variability. Furthermore, the results of meta-regression analysis suggest that study 
design is a more important source of variability than regional differences. Studies that 
control for regional accessibility find significantly smaller diversity impacts on transit 
use, while studies that control for residential self-selection find a significantly smaller 
role for design and accessibility in predicting ridership. 

Multi-country empirical analysis that adopts a consistent study design might be a more 
effective way to of examining regional factors that impact the built-environment and 
transit use relationship. Such findings would also have broad implications for travel 
behaviour research and policy. 

7 Notes 

1  –    This study references findings from a manuscript that is under review (Aston et al., 2019b)  

2 – The database builds on an existing database and metadata available on figshare at: 
https://doi.org/10.26180/5c3fe01b7fd7e (Aston et al., 2019a) 
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Appendix 1 
 

Table 8: List of studies used for this meta-analysis (n = number of data points) 

Name n Variable Country  
(Aditjandra et al., 2016) 1 Accessibility UK 

(Armbruster, 2010) 1 Density USA 

(Asad, 2013) 1 Density UK 

(Bhattacharya, 2013) 4 Density USA 

(Blumenberg et al., 2009) 2 Density, Diversity USA 

(Brown and Neog, 2012) 3 Accessibility USA 

(Brown et al., 2006) 6 Diversity, Design, 
Accessibility 

USA 

(Cao et al., 2009b) 2 Density, Diversity USA 

(Cardozo et al., 2012) 1 Density Spain 

(Cervero, 2006) 3 Density USA, Canada 

(Cervero and Murakami, 2008) 1 Density Hong Kong 

(Cervero et al., 2010) 1 Density USA 

(Chatman, 2008) 1 Density USA 

(Chen and Zegras, 2016) 3 Density, Accessibility, 
Design 

USA 

(Choi et al., 2012) 3 Density, Design South Korea 

(Currie and Delbosc, 2013) 1 Density Varies 

(Currie et al., 2011) 1 Density Australia, North America, 
Europe 

(de Grange et al., 2012) 1 Density Varies 

(Deng et al., 2013) 1 Density China 

(Dill and Wardell, 2007) 1 Design USA 

(Duggal et al., 2016) 1 Density Canada 

(Durning and Townsend, 2015) 3 Density, Diversity, Design Canada 

(Ewing et al., 2015) 3 Diversity, Design USA 

(Gordon, 2004) 10 Density USA 

(Greenwald, 2003) 12 Density, Diversity, Design USA 

(Guerra et al., 2011) 2 Density USA 

(Gutiérrez et al., 2011) 2 Density, Diversity Spain 

(Hamidi and Ewing, 2014) 3 Diversity, Design, 
Accessibility 

USA 

(Imam and Tarawneh, 2012) 1 Density Europe, Canada, USA 

(Kerkman et al., 2015) 2 Density Netherlands 

(Kim et al., 2016) 1 Density, Diversity USA 

(Kuby et al., 2004) 2 Density USA 

(Lane, 2011) 1 Density USA 

(Lane et al., 2006) 3 Accessibility USA 

(Lawrence Frank & Co. Inc et al., 
2009) 

1 Design USA 

(Lee et al., 2017) 2 Density, Diversity South Korea 

(Lin and Shin, 2008) 2 Density, Diversity Taiwan 

(Liu et al., 2014) 2 Density USA 

(Loo et al., 2010) 1 Diversity Hong Kong 
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Name n Variable Country  
(Mangan, 2013) 2 Design, Diversity USA 

(Næss, 2005) 1 Density Denmark 

(Nawrocki et al., 2014) 2 Accessibility Japan, USA 

(Peterson, 2011) 2 Density, Diversity USA 

(Pitombo et al., 2009) 1 Density Brazil 

(Renne et al., 2016) 4 Density, Diversity, 
Accessibility,  
Design 

USA 

(Ryan and Frank, 2009) 1 Design USA 

(Spears, 2013) 1 Design USA 

(Sun et al., 2016) 1 Diversity China 

(Sung, 2005) 4 Diversity USA 

(Sung et al., 2014) 2 Density, Diversity South Korea 

(Talbott, 2011) 2 Design USA 

(Taylor et al., 2009) 1 Density USA 

(Tracy et al., 2011) 2 Diversity, Design USA 

(Tsai et al., 2012) 3 Density, Diversity, Design Australia 

(Tsai et al., 2014) 2 Density, Diversity Australia, North America, 
Europe 

(van de Coevering and Schwanen, 
2006) 

1 Accessibility Europe, Canada, USA 

(Verbas et al., 2015) 2 Accessibility USA 

(Vergel-Tovar, 2016) 3 Density, Diversity, Design Latin America 

(Woldeamanuel and Kent, 2016) 1 Design USA 

(Zamir et al., 2014) 2 Density, Diversity USA 

(Zhao and Lu, 2011) 2 Density, Accessibility China 

(Zhao et al., 2014) 1 Density China 

 


