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Abstract 

Interest in Automatic Passenger Counting (APC) systems in public transport is rapidly 
growing as transport providers increasingly seek accurate, real-time estimates of 
occupancy to provide better services to their customers. Although several 
technologies have been developed for APC, public transport such as buses are a noisy 
environment that pose unique challenges for passenger counting. In this paper, we 
propose a methodology for empirically evaluating passenger counting technologies in 
public transport. We validate the methodology through a live trial with buses carrying 
members of the public arranged in collaboration with Sydney Trains and Transport for 
New South Wales, supported by iMOVE Cooperative Research Centre. Results and 
outcomes of the trail and an empirical evaluation of multiple APC technologies 
conclude the paper. 

1 Introduction 

Automatic people counting (APC) is attracting increasing interest from public transport 
providers, with many commercial products now on the market (Tattile Automatic 
People Counter (T-APC) 2019; NEC FieldAnalyst 2019; Video Turnstile 2019). While 
the majority of academic studies to date have focused on visual counting (Wang, 
Chang, and Wu 2017; Subburaman, Descamps, and Carincotte 2012; Chen et al. 
2014, Lengvenis et al. 2013), there is growing interest in a range of other technologies 
(sensor modalities), motivating demand for empirical comparisons to evaluate the 
viability of such technologies. The general problem of APC is a well explored, with a 
number of technologies potentially well-suited to the public transport context. 
However, APC on public transport - particularly on buses - poses a unique set of 
challenges that must be considered when evaluating such technologies. Challenges 
include the at-times dense accumulation of people, the varying numbers of people 
between stops, and sensor instability due to jolts and jitters experienced both while in 
motion due to uneven road surfaces, as well as engine vibration when idle at a bus 
stop. Thus, people counting systems in a vehicle do not necessarily produce the same 
quality of estimate as in a stationary environment. While previous studies including 
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study by Myrvoll et al. 2017 have investigated APC systems on long-distance coaches, 
and urban buses studies by Oransirikul et al. 2014; Brandon 2015; Mikkelsen et al. 
2016, there remains a need for a methodology that can provide the foundations to 
conduct thorough empirical comparisons of multiple APC technologies under similar 
real-world conditions. 

Conducting a live APC trial with members of the public as passengers require careful 
planning and consideration. Countries vary in their stringency of privacy laws, and 
local rules have to be satisfied to obtain ethics approval. Sensors require prime 
locations to provide accurate readings, but may not be installed where they can induce 
injury. Third party liability insurance is generally a requirement, and it may be 
necessary to confirm with the insurer that a particular study is covered. Such logistical 
challenges mean studies often only provide theoretical results of their passenger 
counting technologies (C.-H. Chen et al. 2008), or rely on pre-captured datasets 
collected in labs (Escolano et al. 2016). Even when such studies do consider on-bus 
performance (e.g., Yahiaoui, Khoudour, and Meurie 2010; Yang et al. 2010; Lengvenis 
et al. 2013), there is only limited detail given regarding trial design considerations, or 
basis for underlying methodology applied. 

In this paper, we propose and evaluate a methodology for empirically evaluating APC 
technologies in public transport. We highlight some of the key requirements and 
design decisions that needed to be considered during the development of such a 
methodology. In collaboration with Transport for NSW (a statutory authority of the state 
government of the Australian state, hereafter TfNSW) and its rail network operator 
Sydney Trains, and supported by iMOVE Cooperative Research Centre, we 
conducted a live trial with members of the public as passengers where we empirically 
evaluated four APC technologies namely, Video sensing, WiFi sensing, 3D-Infrared 
sensing and Pressure (mat) sensing, under identical conditions for bus services 
operating in and around Sydney’s metropolitan area using the proposed methodology. 
We present comparative results from a trial on live bus services, outlining key insights 
to guide future APC field trials. 

2 Background   

Between July and December 2018, Swinburne’s research team, in partnership with 
TfNSW and Sydney Trains, conducted a comprehensive evaluation and comparison 
of state-of-the-art APC technologies. Specifically, the study aimed to evaluate real-
time automatic passenger counting technologies in buses within Sydney’s 
metropolitan area. The participation of Sydney Trains was motivated by their use of 
buses as a rail replacement service during maintenance. Having access to real-time 
passenger occupancy data addresses a pressing problem faced by all transport 
operators: the need to provide sufficient, but not excessive, numbers of services to 
avoid passenger discomfort and cost blowout.  

Other motivations for APC include the desire to enhance passenger experience 
through the publishing of accurate and near real-time bus occupancy numbers 
(availability), locations and capacity for waiting passengers (wait-times) via a mobile 
device and/or web-based application.  
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Evaluations of APC technologies for bus services must consider a range of criteria. In 
the context of this project, specific points to address were identified in consultation 
with project partners (TfNSW, Sydney Trains). For example, the timeliness of updates, 
with a potential for a real-time data transfer, cost-per-bus, scalability, technology 
security and ease-of-installation were all listed as high priority criteria to address, 
reflecting the practical intent of the study to inform possible deployment choices in the 
near-term. Based on these criteria, the research team was tasked with developing a 
methodology that will help identify viable state-of-the-art technology options and 
conduct a live trial to evaluate the performance of each technology option. 

3 Methodology   

A two-phase evaluation methodology for the comparison of technologies in real bus 
settings is proposed as illustrated by the flowchart in Fig. 1, which shows the pilot trial 
on the left and the live trial on the right. These trial phases are preceded by several 
steps including procurement of relevant components for the specific APC technology 
and integrating and testing them within a lab environment. In the methodology’s 
implementation, both trials were also preceded by visits to the local bus depot of the 
respective bus operator to discuss safety and suitable positioning of the devices. 

3.1 Pilot trial with volunteers 

The pilot trial, a simulated passenger-carrying trial using a chartered bus in Melbourne 
(close to Swinburne University’s campus), aimed at validating each technology’s 
accuracy and viability, as well as evaluating specific installation requirements for each 
technology option. It consisted of two hours of installation/maintenance and two hours 
of data collection over two days, one week apart. This was preceded by a visit to the 

 

Figure 1: Flowchart of methodology. The light blue items are part of the pre- trial, the dark 
blue fields describe the live trial with members of the public. 
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bus depot, where possible installation conditions and restrictions were discussed and 
identified (e.g. the video-based solution had to capture the image of a passenger as 
they were boarding the bus or alighting from it). 

At the start of both days of the pilot trial, a chartered bus was equipped with the devices 
needed for each technology option. Each technology collected data that was captured 
for post-processing and analysis. The bus was parked at a provisional bus stop which 
was not used by active services at the time. At this stop, volunteers boarded and 
alighted as the bus completed multiple circuits, as shown in Fig. 2a where the bus’s 
location is traced from the output of a GPS module installed on the bus. Ground truth 
data for each stop was collected by one team member counting the persons boarding 
and alighting. Between 6 and 15 members of the team and their associates 
volunteered as passengers. 

The Melbourne-based pilot trial was designed to provide the following outcomes: 

 A cost-efficient pre-evaluation of all technology options developed by 
Swinburne, allowing Sydney Trains/TfNSW to select technology options to 
proceed to full prototyping in Sydney; 

 A cost-efficient evaluation of operational requirements for all technology 
options, informing further research and development requirements for the 
Sydney Trial; 

 Refinement of trial design and data analysis needs and 

 Improved familiarity and experience working with buses representative of those 
to be used in the Sydney trial, allowing technologies to be refined, and 
calibration requirements to be better understood. This in turn will greatly reduce 
the risk of unforeseen complications inhibiting data collection in the Sydney-
based trial. 

As Fig. 1 shows, after the data analysis, the accuracy achieved by each technology 
were presented to Sydney Trains/TfNSW and a decision was made whether to discard 
the technology. Insights gained in the pilot trial about installation, positioning, cost and 
related considerations were also presented to Sydney Trains/TfNSW. 

3.2 Live trial on metropolitan bus routes 

The live trial was conducted in Sydney with a bus company that operates several of 
the bus services on routes in central Sydney. The knowledge gained from the pilot 
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helped refine the installations for each of the technology options thus reducing the 
downtimes in data collection. 

The trial was conducted over seven days using two buses. The buses serviced routes 
in and around Bondi Junction, with buses originating from the Waverly bus depot. On 
Saturday and Sunday, the two buses were used to provide a replacement service 
during train line maintenance between Sydney Central and Bondi Junction. Regular 
bus services spend 1 - 2 minutes on a leg between two stops, whereas train 
replacements typically take 7 minutes between stops. 

Every day before the start of the shift of a driver, each of the four technologies were 
installed on each bus. The Swinburne project team members were available in each 

 

Figure 3: Bus route plotted using marker icon captured by GPS probes 

 

 

(a) Route of charted bus obtained from GPS (b) Charted bus 

Figure 2: Route and chartered bus 
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bus for customer queries, counting passengers (capturing ground truth used later for 
analysis) and watched over the devices installed. Sensors collected data between the 
beginning of the shifts around 7.30am and continued until approximately 3.30pm on 
weekdays. 

According to the workflow shown in Fig. 1, based on the data collected in this live trial, 
the technologies were compared according to aspects of performance, cost and 
technical details and the results presented to Sydney Trains/TfNSW. 
Recommendations were made as to the suitability of the technologies for deployment 
on bus services.  

4 Automatic passenger counting technologies 

4.1 Video-based sensing 

Two cameras were mounted per bus, the front one shown in Fig. 4a, providing visual 
coverage of the front and rear door-ways of both buses. RGB image frames were 
captured at 640×480 pixel resolution, and 30 frames per second utilising software 
running on an adjacent Raspberry Pi 3B+ (RPi), powered by a 20,000 MAH 
Powerbank. Data was stored on an SD card mounted in the Raspberry Pi. 

A detection-based vision algorithm was developed in which passengers are initially 
detected, and then tracked to ascertain the direction of their movement. Passenger 
detection is achieved using the pre-trained convolutional neural network, MobileNet 
SSD (Single Shot Detector) [16], chosen on the basis of its accuracy and relative 
efficiency compared with other comparable networks. 

Passenger detections are stored as ’track’ objects, and initialised with the detection 
confidence output of the MobileNet network. Future detections of the same track object 
are established based on a calculation of the Intersection of Union (IoU) between 
bounding boxes in consecutive frames. If a new detection bounding box, when 
compared to an existing track object bounding boxes, achieves an IoU of greater than 
40%, it is considered an update of the pre-existing track object, and thus replaces the 
previous one. Track objects that are not updated at a particular point in time, have 
their confidence progressively reduced each frame, and if below 20% confidence, are 
deleted from the track object list. 

Enter and exit counts for each door are maintained based on movement of tracked 
passengers across two virtual parallel lines positioned within the camera view frame 
during calibration. An enter or exit event is triggered if and only if a track object passes 
both lines in order to reduce false positive responses. Recorded timestamps of 
passenger exchange events allow front and rear door counts to be combined to 
calculate the total passenger exchange at each stop. 

4.2 3D Infrared sensing 

Two Orbbec Persee devices were installed in each bus to cover both of the front and 
rear doors as shown in Fig. 4b. The Orbbec devices were powered by CYGNETT 
27,000 MAH power banks that supply the power needed by these devices. Depth and 
infrared data were collected for 6 days. Each device collected around 70GB of videos 
per day. 
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In order to count number of people from the infrared and depth data, classification 
techniques were trained on four classification training sets, depth and infrared data for 
the front and rear doors. This training aimed to identify the heads of the passengers 
while they were entering or exiting the bus. 

4.3 Mobile WiFi sensing 

The mobile sensing technology counts the number of devices in a defined space 
based on probe request messages the devices send when they are not connected to 
a network. The decision whether a device is inside this space is made using the spatial 
and temporal overlap of the probe requests sent by this device. The spatial overlap is 
achieved by positioning several mobile WiFi sensors around the bus. 4 - 5 sensors 
were used in the live trials, and the variations shown in Fig 5 were explored. 

To count the people on the bus based on their devices (assuming we cannot account 
for people who do not carry them), we relied on the MAC addresses and their 
repetitions across time and sensors to decide whether each MAC address belonged 
to a device inside or outside the bus. 

The most successful algorithm used the following rules: 

1. Remove all probe requests from all sensors’ data that have an RSSI of less 
than -100. 

2. Remove all MAC addresses whose first and last message (regardless of 
sensor) are less than 50% of the leg’s distance apart. 

3. Remove all MAC addresses whose first and last message are 55% of the leg 
time apart (the time between stops). 

4. Remove all MAC addresses which have not been recorded at least 3 times. 

4.4 Sensor mat 

A sensor-grid mat was placed at the rear door of the bus. Data recorded by the sensor 
was computed using an algorithm that calculates the centre of pressure movement 
when passengers step on and off the mat. The calculation of the centre of pressure is 
possible due to the presence of a piezo-resistive material (pressure-sensitive layer) 
divided into a sensor grid. This allows for the detection of the direction of movement 
(on or off the bus) and the achievement of accurate counting of the number of 
passengers boarding and descending the bus. All data were recorded on a SD card, 
then post-processed and compared to the ground truth count as well as the video 
camera count. 

For the live trial, two sensor mats with 24 sensing nodes each, designed and built at 
Swinburne University, were taped down on the entrance floor. Each mat was centred 
on the available floor space in the direction of travel and placed as closely as possible 
to the edge of the bus entrance in the direction orthogonal to travel. Each mat was 
connected to an SD card to record continuous pressure data output from the mat (8-
10 hours of data, approx. 60MB). The SD card for each mat was contained in a box 
and connected by wire to the mat and taped to the vertical surface closest to the door 
in a way that did not interfere with the opening doors as shown in Fig. 4d. To simulate 
a real-life use of the sensor mat, passengers were not made aware of the mat. Sensor 
mats could only be fitted at the rear door of each bus. The mat was initially installed at 
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the front door, however the frame of the doors prevented the doors from opening and 
closing properly. 

5 Results and insights 

The two-phased technology evaluation methodology (Fig 1) we are proposing was 
applied to the evaluation and comparison of the four above-described technologies. 
Below we report key results achieved during each phase of the evaluation, and discuss 
both challenges and insights gained through the implementation of the methodology 
proposed. 

  

    (a) Video sensing (front-door install)       (b) 3D Infrared Sensing 

  

                   (c) Mobile WiFi Sensing              (d) Sensor Mat   

Figure 4: Sensor Installation for all four APC Technologies Evaluated 
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5.1 Pilot results 

The primary motivation of the pilot phase was to provide opportunities to eliminate 
potential causes of error, and better understand the bus operating conditions in 
preparation for live trialling. Of chief concern for both video-based and 3D Infrared 
development teams was the positioning of sensors to best suit processing needs. To 
this end, numerous positions were trialled, with multiple cameras positioned to capture 
data of the front door from varying positions. For video-based, three locations were 
trialled: above the driver, in front of the driver on top of the main console, and behind 
the driver, above the centre aisle of the bus. The latter position proved to be best in 
terms of accuracy (reported in Table 1), and was thus selected for live trialling. 
Positioning of the 3D Infrared sensor was similarly varied throughout the pilot, allowing 
post analysis of the captured data to determine best location for the live trial. 

Key issues to address for the sensor mat development team were the fitting of the mat 
securely and safely to the bus entrance area, and the embedding of associated 
electronics and wiring. The mat’s integration with the bus’s hinged wheel chair access 
ramp also proved a non-trivial issue to be resolved for a live trial with members of the 
public as passengers. 

The WiFi sensing team explored installation options for their sensors, and tested 
power requirements for the sensors. It was found that the AA-based battery banks did 
not provide sufficient power, causing WiFi modules to reset periodically. Thus, higher 
capacity power banks were selected for the live trial. 

Table 1 presents preliminary results that were collected and analysed in the pilot trial. 
As can be seen, all technology options achieved accuracy scores of between 70 and 
90%. Detailed estimates per trip were reported by the sensor mat and WiFi teams, 
while the video-based team distinguished between boarding and alighting events, but 
did not detail the trips. The 3D Infrared sensor team was not able to collect data of a 
quality that could be transformed into meaningful estimates, but gained insights into 
appropriate sensor positions. The sensor mat team discovered an issue arising from 
two persons stepping on the mat at the same time, which led to the estimation 
algorithm misinterpreting either the number of passengers or the direction in which 
they were heading. These issues were remedied before the live trial. 

 

Figure 5: Mobile WiFi Sensing – Installation Configuration Options 
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As shown in Fig. 1, after the data analysis the decision was made whether the results 
warranted further investigation of a technology. Sydney Trains/TfNSW appraised the 
results and decided that the accuracies of all technologies were sufficient for a live 
trial. Installation details, costs and other insights gleaned in the pilot were also 
presented to Sydney Trains/TfNSW. It was decided that none of these details were 
grounds for eliminating a technology from the trial. Consequently, it was decided to 
proceeded with all four technology options for live trials in Sydney. 

Table 1: Accuracy scores of APC technologies from Pilot Trial 

Trip No Passenger numbers on each leg Accuracy 

Actual Sensor 
Mat 

Mobile WiFi 
Sensing 

Video 
Sensing 

Sensor 
Mat 

Mobile WiFi 
Sensing 

1 12 11 8 
Boarding 

– 97% 
Alighting 
– 71% 
Mean – 

84% 

Mean – 
90% 

Mean 80% 

2 10 16 7 

3 13 19 10 

4 13 14 15 

5 16 No data 16 

6 17 No data 14 

7 16 16 No data 

 

5.2 Live trial results 

A live trial of all technology options was performed over the week of December 10-16, 
2018. Normal bus services were used during the weekdays and replacement bus 
services over the weekends. Throughout the trial, at least one research team member 
accompanied each bus to supervise technologies, and obtain passenger counts as 
ground truth data for subsequent analysis. After the trial, manual passenger counts 
were cross-checked with video footage to ensure correctness. The first day of 
operation was designated as a setup day, and any data collected used only to inspect 
and, if needed, adjust operational settings. Days thereafter were official trial days. 

Table 2 presents a summary of accuracy results for each door-based technology 
option (i.e., video-based, 3D Infrared, and Sensor Mat), based on all passenger 
exchanges from across the trial. Here, results are presented using data collected from 
the morning peak period of regular week days, and all day on weekends, showing the 
percentage of boarding and alighting event counts that were correctly identified across 
this period. To assist interpretation, results are broken down to each individual event 
(e.g., Front in, Rear out), as well as combined for each door, and for both doors (i.e., 
Total). As can be seen, results vary between technology options, and also with respect 
to different passenger exchange events. 

WiFi sensing is presented separately due to the fact that it does not estimate bus 
occupancy by counting boarding and alighting events, but directly by sensing devices 
during transit. Thus, Table 3 presents accuracy results for the WiFi sensing option, 
showing accuracy as the percentage of total passengers accounted for on the bus 
between each adjacent bus stop. In this case, results for weekdays and weekend are 
presented separately to highlight a notable difference in accuracy achieved. Clearly, 
the weekend accuracy (75%) significantly out performs the weekday accuracy result 
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of (16%), a likely result of the much shorter intervals between stops on weekday 
services (1-2 minutes) compared to weekends (6-7 minutes on average). Weekday 
bus legs appear to provide insufficient time for the heuristic (described in Section IV.C) 
to ascertain a device is really on the bus, and not in its surroundings. As the weekend 
involved rail replacement services, legs between stops were much longer, thereby 
explaining the large discrepancy in accuracy. 

Conducting trials with members of the public provided new opportunities to discover 
unexpected difficulties for the technologies, such as a WiFi sensor being stolen. For 
each technology, we report below the issues that need preparing for if a technology is 
to be implemented as a people counting solution. 

Table 2: The percentages of boarding and alighting events identified accurately by each of the 
technologies RGB, 3D Infrared and sensor mat. 

 Total Front 
door 

Rear 
door 

Front in Front out Rear in Rear out 

Video 57% 70% 33% 76% 47% 0% 35% 

3D Infrared 55% 74% 20% 93% 0% 100% 20% 

Sensor mat 83% N/A 95% N/A N/A 64% 93% 

 

Table 2: Percentage accuracy of WiFi sensing on weekdays compared to week- ends 

 Transit Weekdays Transit Weekends 

WiFi Sensing 16% 75% 

 

5.2.1 Video-based sensing 

Results from Table 2 indicate that the video-based APC method achieves reasonable 
accuracy on the front door, but a clear decline in accuracy for the rear door. Notably, 
however, passenger detection itself was observed to be reasonably robust, and 
efficient enough to achieve real-time performance on the Raspberry Pi 3B+. Inspection 
of the video data indicated the difference between front and rear door was a likely 
result of passenger crowding within the rear door area between stops (causing false 
positives), as well as more variability in the entry point of alighting passengers within 
the camera’s view, which depended on which part of the bus the passengers 
approached from. Determining a camera position and angle that both satisfied the 
need for sufficient visual coverage and other factors such as sensor security was found 
to be significantly more challenging than the front door. Future work may consider a 
wider fish-eye lens for increased visual coverage. 

Other well documented challenges for video-based people counting were also 
encountered such as multiple passengers entering/exiting too fast or too close 
together, causing loss of tracking. Missed detections due to passengers occluding 
each other was also observed regularly. While improved training of the existing 
network may improve performance, a stronger solution would likely entail a complete 
end-to-end trained CNN architecture specifically targeting bus passenger counting. In 
addition to improved accuracy, efficiency gains are also likely achievable through use 
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of a smaller, more refined network architecture (unlike the more general MobileNet 
architecture). This was not possible to explore in the current study due to time 
constraints, but offers an attractive path for future development. Camera positioning 
may also be revisited, including consideration of a top-down vantage point above door-
ways to remove passenger occlusions, and simplify the calibration of virtual lines for 
counting. Combining RGB video processing with depth sensing (i.e, such as the 
Orbbec Persee utilised by the 3D Infrared APC method) may also be considered to 
improve accuracy and efficiency. 

5.2.2 3D Infrared sensing 

3D Infrared Sensing achieved similar results to video-based overall, with particularly 
strong results for entering passenger counts, but a clear drop off in performance for 
exiting passenger counts on both doors. This is a likely result of a lack of training for 
detecting passengers from behind, as well as issues with occlusions. 

Other issues were also observed during the live trial. Lidar depth sensing and Infrared, 
for example, were observed to be sensitive to the bus vibration, causing blurring of 
object boundaries. Notably, vibration was greatest when the bus was idle (e.g., at bus 
stops), however the Haar feature-based classify was not sufficient to overcome this. 
Like video-based, an end-to-end trained CNN using data collected from the live trial is 
the most likely direction for future work. Sensor stabilisation itself should also be 
addressed in future work for this approach. 

As with video-based, people standing in front of the camera during bus movements 
was observed to impact counting accuracy due to false positive counts. Limiting data 
collection to only when the bus stops is a possible work-around, which may be 
achieved using an acceleration sensor to trigger data collection. 

5.2.3 Mobile sensing 

As is evident from Table 3, mobile sensing accuracy during weekdays is considerably 
lower than during the weekends, a likely result of large differences in travel time (1-2 
minutes during weekdays compared to 7 minutes during weekends). The WiFi solution 
is thus unique compared to other solutions in that its performance depends on the 
travel duration of the bus between stops. To address this issue, the interpretation of 
the data could be changed so as to process probes across the boundaries of stops. 
For example, if a device has been sensed before the current stop, and it is 
encountered again, this points to a high probability of the device (and its owner) being 
on the bus rather than outside. Notably, performance on the weekend rail replacement 
bus services is comparable with other options, and indeed, offers the advantage of a 
direct occupancy count. This is compared with passenger exchange estimating 
technologies (video-based, 3D Infrared and Sensor Mat) in which accumulating error 
over time may impact occupancy estimates if not corrected for. 

In contrast to the pilot trial, it was observed during the live trial that when passenger 
numbers exceeded 40, estimated bus occupancy decreased to very low numbers, 
suggesting high passenger density may attenuate the WiFi signal. Consequently, the 
positioning of devices was varied again during the live trial, and the configurations 
shown in Fig. 5 were explored. Configuration 1 (Fig 5a) led to the best accuracy. This 
was unexpected, as the sensors in the middle of the bus are barely a metre apart. 
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Counteracting the shielding effect of bodies presents a challenging issue, and having 
a dense distribution of sensors all over the bus appears to be a good solution, when 
the algorithm that interprets the data relies on multiple sensors receiving probes from 
the same device. Alternatively, the provision of a WiFi service for the passengers to 
connect to on the bus offers another possibility, however more investigation of this 
issue is required. Notably, the identification of such practical issues for APC 
deployment is testament to the two-phased empirical methodology applied, where the 
contrasting performance between simulated and live trials enables the isolation of 
specific issues to address under real-world conditions. 

5.2.4 Sensor mat 

Sensor mat results were obtained only for the rear-door, and were generally strong. 
Observing rear door boarding and alighting events only was an unavoidable limitation 
due to installation issues with the front door. While easily addressed in future designs 
of the mat, it was not possible to fix this during the live trial in Sydney. Future designs 
will explore reducing the thickness of the mat, and also explore alternative 
configurations to more easily integrate with wheelchair access ramps. 

The greatest impediment to counting accuracy with the Sensor Mat was people 
standing on the mat while the bus was in motion. This was most prominent when the 
bus was full, and standing room was limited. In addition to possible algorithm 
improvements, restricting counting to when the door is open (using, for example, an 
optical sensor to trigger boarding/alighting events) would largely address this issue. 
Unusual events such as dogs, prams, shopping trolleys were also observed to effect 
accuracy. 

6 Future directions 

6.1 Practical implementation 

The ticketing system is not installed on all rail replacement buses, especially in non-
metropolitan areas. Four APC technology options are trialled to fill in these gaps and 
allow operators to better understand customer demand under planned rail disruptions 
and better bus provision planning. The exact technology option to be implemented is 
still to be confirmed, but video sensing and infrared sensors are favoured because 
they have demonstrated a potential to count passengers with good accuracy. 
Capturing passenger numbers in real time is necessary if customers are to be provided 
with improved information for journey planning and trip decisions. The sensor mat 
shows no strength in real-time analysis, as data collected cannot be instantly 
accessed. The accuracy of video sensing and infrared sensors will be further assessed 
in real-time. 

7 Conclusion  

We have presented a methodology for the empirical evaluation of Automatic 
Passenger Counting (APC) systems for possible deployment on public transport bus 
services. With focus on four state-of-the-art APC technology options video-based, 3D 
Infrared, WiFi sensing and a pressure-based Sensor Mat, we have demonstrated how 
the methodology we proposed can be applied to compare technology options in an 
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authentic, real-world operational context, and inform the future development of each 
technology option as a deployable APC option. Central to our approach has been the 
adoption of a two-phased trial methodology, allowing initial piloting to occur in a less 
formal, exploratory manner, before embarking on an authentic live trial with members 
of the public. We have shown that while this methodology is resource-intensive, it 
offers key benefits over more theoretical comparisons, or simulated trials alone. The 
most prominent is the ability to gain an understanding of the practical requirements of 
a fully deployed APC system, not only in terms of technology-specific challenges, but 
also general issues with APC deployment in a given environment. Results for all four 
technology options established their feasibility under specific conditions, but also 
highlighted areas in need of improvement. In addition to counting accuracy, each 
option offers a range of trade-offs associated with cost, ease-of-installation, security 
and scalability. While not all these issues were addressed in this paper, it is clear that 
the proposed methodology provides the scope for evaluating all these factors, allowing 
public transport providers to make informed decisions, appropriate for their context. 
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