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Abstract. Emerging new datasets in the public transit network, such as smart card datasets, 

are changing the transport research area to a data-rich one. While these datasets include a large 

number of passenger trips in the network, they miss the socioeconomic attributes of passengers. 

Estimating the socioeconomic attributes from trip attributes is a way to enrich these datasets. 

To do so, Household Travel Survey (HTS) can be used to learn the relation between trips and 

socioeconomic attributes of passengers. This paper compares the performance of three well-

known classifiers of Naïve Bayes, Random Forest, and Support Vector Machine for estimating 

age and income of passengers in the public transit network using the HTS. The explanatory 

variables are considered as the start time of the trip, activity duration (time period between two 

consecutive trips), land use around the origin, and land use around the destination of trips. The 

target variables are age and income of passengers. HTS data, which include both explanatory 

and target variables, are used to train and validate the classifiers. Three measures including 

Accuracy, F-score, and Informedness are used to evaluate the performance of the classifiers. 

Also, the three classifiers are compared to a random classifier. The case study is the HTS from 

the South East Queensland (SEQ) between 2009 and 2012. Results show that the Naïve Bayes 

classifier is a better classifier for estimating the age and income of passengers from trip 

attributes. 
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1. Introduction 

Emerging datasets in the public transit network are changing the transport research area to a 

data-rich one. These datasets are large in size and include data on public transit passenger trips 

in the network. Big datasets, such as smart card data in the public transit network, are collected 

continuously, passively and usually as a by-product of other applications, such as fare 

gathering. However, these big datasets miss the socioeconomic attributes of the passengers 

(Faroqi et al., 2018b). Thus, inferring socioeconomic attributes from trip attributes of 

passengers can enrich the available datasets. For instance, elderly people usually start their trip 

after the morning peak and take short activities, such as shopping; but, students usually take 

trips in the morning peak and stay at school for around 6 hours. Therefore, available big datasets 

in the public transit network can be enriched by inferring socioeconomic attributes of 

passengers from the trip attributes. 

http://www.atrf.info/
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Enriching the big datasets in the public transit network with socioeconomic attributes of 

passengers would extend the current applications of these datasets. First, emerging big datasets 

in the transportation systems have the potential to support advanced transport models, which 

require trip demand and socioeconomic attributes of individuals. Socioeconomic attributes are 

an inevitable part of these models. Household travel surveys are used to build the transport 

models; while these surveys include both trip demand and socioeconomic attributes of 

individuals, they suffer from couple of issues such as sampling rate, high cost, and inaccurate 

information (Liang et al., 2007; Chen et al., 2010; Bethlehem et al., 2011; Faroqi et al., 2017). 

Hence, the enriched big datasets with the socioeconomic attributes could be considered as an 

alternative data source for the transport models. Second, enriched big datasets with 

socioeconomic datasets can trigger a new generation of targeted applications in the public 

transit network (Faroqi et al., 2018a). These applications help to discover groups of passengers 

with similar attributes such as age or place of work. Especially, these targeting applications 

would be interesting in the field of marketing. Consequently, the enriched datasets can extend 

current applications in the public transit network. 

Classifiers as a subset of machine learning and data mining techniques can learn the relations 

and features of objects in a dataset. Then, the classifiers can predict desired labels for a new set 

of objects based on the learnt relations. Classifiers are basically trained on a training dataset 

and then assign each of the records in the new datasets to one of the identified classes from the 

training dataset. In the case of learning socioeconomic attributes from trip attributes, classifiers 

can learn from a dataset that includes both socioeconomic (target) and trip (explanatory) 

attributes, such as HTS; then, the trained classifiers can assign socioeconomic attributes to any 

set of trip attributes that have similar trip attributes to the HTS (this process is also called as 

data fusion) (El Faouzi et al., 2011). Trip attributes can include, but not limited to, the start 

time of the trip, activity duration, land use around the origin, and land use around the 

destination of trips. Also, socioeconomic attributes can vary from age and income to car 

ownership and household size. Therefore, classifiers can learn from HTS and assign 

socioeconomic attributes to the trip attributes of individuals in the smart card datasets.  

The effect of passenger socioeconomic attributes on travel behaviour has widely been studied 

in the literature (Recker et al., 1985; Giuliano and Dargay, 2006; Limtanakool et al., 2006; 

Pasha et al., 2016). However, estimating socioeconomic attributes of passengers from the HTS 

in a big dataset of the public transit has attracted little attention. An example is the data fusion 

technique explained in El Faouzi et al., 2011. More recently, two research papers in the 

literature estimated the trip purpose in a smart card dataset by fusing it with the HTS using a 

Naïve Bayes classifier (Kusakabe and Asakura, 2014; Alsger et al., 2018). 

This paper compares the performance of three well-known classifiers (Naïve Bayes, Random 

Forest, and Support Vector Machine) for estimating age and income of passengers in the public 

transit network using the HTS. The explanatory variables are the start time of the trip, activity 

duration, land use around the origin, and land use around the destination of trips. Age and 

income are the target variables. HTS data, which include both explanatory and target variables, 

are used to train and validate the classifiers. Three measures of Accuracy, F-score, and 

Informedness are used to evaluate the performance of the classifiers. The case study is the HTS 

from the SEQ between 2009 and 2012.  
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The paper is structured as follows. Upcoming is a section for explaining the classifiers, 

explanatory and target variables. Next, a case study and analysis are discussed in the Results 

section. Finally, the findings of the paper are summarized and discussed in the Conclusions 

section.  

2. Methodology 

This section explains the explanatory and target variables, and classifiers. The purpose of the 

classifiers in this study is to estimate age and income of the passengers based on the start time 

of the trip, activity duration, land use around the origin, and land use around destination of 

trips. The explanatory and target variables are explained first in the next subsection and the 

classifiers are briefly described after the variables.  

2.1. Explanatory and target variables 

Explanatory variables explain the target variables. In other words, target variables are 

dependent variables that can be inferred from the explanatory variables. In this study, the target 

variables are passengers’ age and income, which are expected to be inferred from the 

explanatory variables. Each of the explanatory and target variables can be categorised 

considering specific applications, which is described in the Results section. 

Explanatory variables: 

The start time of the trip: the boarding time of the trip. 

Activity duration: the time spent at the destination to perform an activity. 

Origin land use: The dominant land use around the boarding location. 

Destination land use: The dominant land use around the alighting location. 

Target variables: 

Age: a passenger age. 

Income: a passenger’s household income per week. 

Figure 1 presents the explanatory and target variables in one frame. Age and income are two 

target variables, which are separately inferred from the explanatory variables. Classifiers learn 

the relation between the explanatory and target variables. In simple words, classifiers differ in 

learning the relation among the variables; different methods in learning the relations lead to 

different classifiers.   

 

Fig. 1. Explanatory and target variables 
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2.2. Classifiers 

The classification task is to predict the label or class for a given unlabelled point. Formally, a 

classifier is a model or function M that predicts the class label ˆy for a given input example x, 

that is, ˆy = M(x), where ˆy ∈ {c1, c2, · · ·, ck} is the predicted class label (a categorical attribute 

value). To build the model a set of points with their correct class labels is required (training 

set). After training the model, the class of any new data point can be predicted (Zaki and Meira, 

2014).   

2.2.1. Naïve Bayes 

It is a classification technique based on Bayes’ theorem with an assumption of independence 

between explanatory variables (predictors). In simple terms, a Naïve Bayes classifier assumes 

that the presence of a particular feature in a class is unrelated to the presence of any other 

feature. Equations 1 and 2 presents how a Naïve Bayes classifier calculates the posterior 

probability. In equations 1 and 2, P (c|x) is the posterior probability of class (target) given an 

explanatory variable (predictor); P (c) is the prior probability of class; P (x|c) is the likelihood 

which is the probability of the explanatory variable given the class; P (x) is the prior probability 

of the explanatory variable (Murphy, 2006). 

𝑃 (𝑐|𝑥) =  
𝑃 (𝑥|𝑐) 𝑃 (𝑐)

𝑃 (𝑥)
                  (eq. 1) 

𝑃 (𝑐|𝑥) = 𝑃 (𝑥1|𝑐) ∗ 𝑃 (𝑥2|𝑐) ∗ … ∗ 𝑃 (𝑥𝑛|𝑐)               (eq. 2) 

2.2.2. Random Forest 

Random Forest stands for a group of decision trees. In Random Forest, a set of decision trees 

(so known as “Forest”) together decide for the label of the class. To classify a new data point 

on attributes, every tree gives a “votes” for that class. The Forest chooses the label that has the 

most votes (among all the trees). A decision tree in the Forest draws an axis-parallel hyperplane 

to divide the data space R into two resulting regions, which also create a partition of the input 

data points to two spaces. All these regions are recursively divided via the axis-parallel 

hyperplanes till all the data points within a created partition mostly have the same class label 

(Zaki and Meira, 2014).  

One advantage of using decision trees is that they produce models that are relatively easy to 

interpret. In particular, a tree can be read as a set of decision rules, with each rule’s antecedent 

comprising the decisions on the internal nodes along a path to a leaf, and its consequent being 

the label of the leaf node. Furthermore, since the partitions are all separated and cover the whole 

space, the set of rules can be inferred as a set of disjunctions (Zaki and Meira, 2014). 

2.2.3. Support Vector Machine  

Support Vector Machine (SVM) is a classification method derived from maximum margin 

linear discriminants concept. SVM tries to find the optimal hyperplane that maximizes the 

margin between the classes. This classifier plots each data item as a point in n-dimensional 

space (where n is the number of available explanatory variables) with the value of each feature 

being the value of a particular coordinate. SVM constructs a hyperplane or set of hyperplanes 

in a high- or infinite-dimensional space, which can be used for classification, regression, or 

other tasks like outliers detection. Intuitively, a good separation is achieved by the hyperplane 
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that has the largest distance to the nearest training data point of any class, since in general the 

larger the margin the lower the generalization error of the classifier (Zaki and Meira, 2014). 

Furthermore, the linear SVM approach can be used for datasets with a non-linear decision 

boundary. Conceptually, the idea is to map the original d-dimensional points xi in the input 

space to points φ (xi) in a high-dimensional feature space via some non-linear transformation 

φ. Given the extra flexibility, it is more likely that the points φ (xi) might be linearly separable 

in the feature space. Note however that the linear decision surface in the feature space actually 

corresponds to a non-linear decision surface in the input space (Steinwart and Christmann, 

2008; Zaki and Meira, 2014). 

2.3. Evaluation measures 

Outcomes of each classifier can be summarized in a confusion table that is presented by four 

values including True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN), which are defined as follows. In the case of having more than two classes, each 

of these values is calculated by considering one class against the other classes. 

TP: number of truly predicted objects in the class.  

TN: number of truly predicted objects in the other class(es). 

FP: number of falsely predicted objects in the other class(es).  

FN:  number of falsely predicted objects in the class.  

Three common measures to evaluate the performance of the classifiers are Accuracy, F-Score, 

and Informedness. Accuracy evaluates the number of truly predicted objects in all classes in 

relation to the population. F-Score evaluates the number of truly predicted objects in the class 

in relation to the population. Informedness considers all true and false positive and negative 

values; and is considered as a balanced measure. Informedness can be used even in the case of 

having classes with very different sizes. Each of the mentioned measures is formulated in 

equations 3 to 5. Accuracy and F-Score vary between 0 and 1. Informedness varies between -

1 and +1. In all three measures, values closer to +1 means a better estimation (Powers, 2011). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (eq. 3) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
                   (eq. 4) 

𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
+  

𝑇𝑁

𝑇𝑁+𝐹𝑃
− 1                (eq. 5) 

3. Results 

The HTS was undertaken across the SEQ from 2009 through 2012. The survey includes about 

2,500 public transit trip records, which is used in this study. The dataset is divided into 80% 

for training and 20% for validating the classifiers. This means 2,000 records are used to train 

the classifiers and the rest to validate them. Information from HTS includes origin time and 

location, destination time and location, activity duration, age and income of passengers, which 

are used in this study. Furthermore, the land use data from the Australian Bureau of Statistics 

(ABS) at the mesh block level are used (Alsger et al., 2018). All the computation process is 

undertaken in R version 3.2.2 using the “e1071” library. 
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Details of the trip and passenger attributes in the dataset are as follows. Start hour of the trip 

(origin time) is in between 4 and 24. The activity duration is between less than 1 hour and more 

than 15 hours. The land use around origin and destination is one of Agriculture, Commercial, 

Education, Hospital/Medical, Industrial, Parkland, Residential, and Water types. Also, the age 

and income of the passengers continuously vary between 0 and a maximum value in the 

database. Age and income are then categorised. Age of the passengers is discretised into four 

groups: younger than 21 years old (known as generation z), between 21 and 41 years old 

(known as generation y), between 41 and 61 years old (known as generation x), older than 61 

years (known as baby boomers). Income of passengers is discretised into four groups: less than 

625 A$ per week (low income), between 625 and 1230 A$ per week (medium-low income), 

between 1230 and 2200 A$ per week (medium-high income), more than 2200 A$ per week 

(high income).  

Table 1 presents the heat maps for each of the age and income attributes across the trip 

attributes. Colours at each diagram present the frequency of the age or income, which are 

determined at the bottom right side of the diagram. For instance, the heat map in the first row 

and the second column presents the distribution of age across start hour of the trip and duration 

of the activity; for example, passengers older than 60 years old prefer to have their trip after 9 

am with an activity less than 3 hours. Also, considering the heat map in the seventh row and 

first column, people with a low income start their trip before 6 am and head to industrial areas. 

Diagrams at rows four, five, nine and ten presents the age and income distributions across one 

trip attribute. For example, the diagram at the fourth row and first column presents the 

frequency of age attribute across start hours of the trip. 

Table 1. Heat maps of age and income across the trip attributes 
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Figure 2 presents the accuracy of each classifier for the age and income groups. Overall, 

classifiers have the highest accuracy in estimating members of the age group 4 and income 

group 2. Also, it is seen that all three classifiers have close values of Accuracy for the age and 

income groups.  
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Fig. 2. Accuracy 

Figure 3 shows the F-score values for the age and income groups. Totally, the age group 1 and 

income group 4 have the highest F-score among all other groups. Also, it can be inferred that 

the classifiers have relatively close F-score values for some of the age and income groups. 

However, SVM has relatively lower values for the age group 3 and 4, and income group 2. 

  
Fig. 3. F-score 

Figure 4 demonstrates the Informedness values. Overall, classifiers have the highest 

Informedness in predicting members of age group 1 and income group 1. Also, the three 

classifiers have close values of Informedness for some of the age and income groups. On 

another hand, SVM has relatively lower values for the age group 3 and 4, and income group 2. 
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Fig. 4. Informedness 

To compare the performance of the classifiers, a random (considering age and income 

distribution in the training set) classifier is applied. Portions of age classes 1 to 4 respectively 

are 31%, 34%, 25%, and 10%. Portions of income classes 1 to 4 respectively are 19%, 17%, 

27%, and 37%. This means randomly generated classes for age and income are compared with 

Naïve Bayes, Random Forest, and SVM classifiers in terms of accuracy, F-score, and 

Informedness. According to Table 2 that represents the results for the random classification, 

the random classifier is rejected by all three classifiers regarding the accuracy in all classes, 

but age 4 class; the random classifier is rejected by all three classifiers regarding the F-score in 

all classes, but age 3 and age 4 classes for SVM classifier. However, both accuracy and F-score 

can be biased (especially in the case of different sample sizes) because they do not consider all 

four TP, TN, FP, and FN (Powers, 2011). On the other hand, none of the classifiers is rejected 

by the random classifier in regard to Informedness, which considers all four TP, TN, FP, and 

FN. Therefore, all three classifiers have a better performance than the random classification 

given the Informedness evaluation measure.  

Table 2. Random classifier 

 Accuracy F-score Informedness 

Age1 0.58 0.28 -0.02 

Age2 0.49 0.34 -0.07 

Age3 0.59 0.23 -0.04 

Age4 0.90 0.10 0 

Income1 0.67 0.22 0.03 

Income2 0.72 0.06 -0.07 

Income3 0.58 0.12 -0.06 

Income4 0.55 0.23 -0.07 

Table 3 summarizes the best performance of the classifiers across each evaluation measure for 

each age and income group. Overall, Naïve Bayes (NB) has a better performance than Random 

Forest (RF) and SVM because it appears 13 times (out of 24) in Table 3. RF has the second 

best performance by appearing 8 times in table 3. In the end, SMV just appeared 3 times in the 

table. In addition, considering the Informedness column, NB dominates the RF and SVM 

because NB appears 5 times (out of 8) in the fourth column. Therefore, it can be concluded that 

Naïve Bayes has a better performance than the two other classifiers.  

Table 3. Comparing the classifiers 

 Accuracy F-score Informedness 

Age1 RF NB NB 

Age2 NB RF NB 

Age3 NB RF RF 

Age4 SVM NB NB 

Income1 SVM NB NB 

Income2 NB RF RF 

Income3 NB RF SVM 

Income4 RF NB NB 

Each of the age and income groups represents a specific passenger type. Age group 1 represents 

young people who use the public transit system mostly to go to the schools or universities. Age 

group 2 represents young professionals who use the public transit system mostly to go to the 
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work. Age group 3 represents older professionals who travel mostly due to work. Age group 4 

can represent both older professionals and retired passengers who travel by the public transit 

mostly to work or recreational purposes. As expected, age group 1 has higher values of 

Informedness compare to other groups because education trips are more regulated than work, 

shopping, or recreational trips; diversity of location and time of education groups are more 

regulated than the other trip purposes. In addition, each of the income groups represents a 

specific group of passengers. Income group 1 represents low-income people who usually work 

long hours in the day. Income group 2 and 3 represent medium income people who might have 

a wide diversity in choosing their trips. Income group 4 represents high-income people who 

usually work in a more disciplined way. Therefore, as expected, income groups 1 and 4 have 

more regular trips than income group 2 and 3. 

4. Conclusions 

This research paper compares the performance of three well-known classifiers for estimating 

age and income of passengers in the public transit network using HTS data. The considered 

explanatory variables are the start time of a trip, activity duration, land use around the origin, 

and land use around the destination. Age and income are the target variables. A Household 

travel survey dataset, which includes both explanatory and target variables, is used to train and 

validate the classifiers. Three measures including Accuracy, F-score, and Informedness are 

used to evaluate the performance of the classifiers. The case study is based on HTS data from 

SEQ between 2009 and 2012. Results show that the Naïve Bayes classifier is a better classifier 

for estimating the age and income of passengers based on the trip attributes. 

Overall, the Naïve Bayes classifier has a better performance in all three evaluation measures 

than Random Forest and Support Vector Machine. Also, all three classifiers are better than a 

random (considering age and income distribution in the training set) classifier regarding 

Informedness. In addition, some of the age and income groups have been classified better than 

the others, e.g. age group 1 and income groups 3 and 4 have the highest Informedness values, 

which can be reasoned to more regular trips by the members of those groups. 

The main application of inferring the socioeconomic attributes of the passengers in the public 

transit network is in enriching the emerging big datasets such as smart card datasets. Enriched 

big datasets can run two streams of novel research and applications. First, the enriched datasets 

can replace the conventional travel surveys in developing the transport models. Second, 

developing targeting applications in the public transit network, which focus on discovering 

groups of passengers with the similar trip and socioeconomic attributes. 

Future works can include three main areas. First, evaluating other socioeconomic attributes of 

passengers such as gender or car ownership. Second, comparing other methods such as linear 

regression or Neural Network with the classifiers in this study. Third, investigating the potential 

of replacing conventional travel surveys with the enriched big datasets focusing on the passive 

and dynamic nature. 
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