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Abstract 

In rail infrastructure maintenance management systems, Track Degradation Index (TDI) is 
considered as a representative of quality of rail tracks. This index is usually developed based 
on the deviation rate or standard deviation of track geometry parameters. In this regard, 
prediction of future TDI is an important task as it can be employed to determine when and 
where maintenance and renewal activities must be deployed. In this study, a track geometry 
data set from Melbourne tram network has been used as the case study and gauge deviation 
parameter is selected as the main parameter to develop TDI. For prediction of the future TDI, 
Random Forests (RF) model as a Machine Learning (ML) model is used to predict the future 
TDI of the data set. Since TDI is a continuous variable, Random Forests Regression (RFR) 
model is applied. In this study, RF model has added two algorithms to the basic Decision 
Trees (DT) model including bagging and random subspace method. These algorithms can 
reduce the overfitting problem and over-focus on special features. Based on the results of this 
study, adjusted R2 value of the proposed prediction model is 0.93, which demonstrates that 
the model has the satisfying performance in predicting the TDI. 

Keywords: Melbourne tram, track degradation index, gauge deviation, random forests  

1. Introduction 

In recent years, due to problems related to excessive use of private transportation such as 
road congestion, increase in road accidents and negative environmental impacts, the role of 
public transportation has been highlighted by urban decision makers. In this regard, rail 
systems as an efficient mode of public transport, which are safer, cheaper, and have less 
conflict with traffic flow, are more attractive (Knowles & Ferbrache, 2016). On the other hand, 
in parallel with the increase in using rail transport, their infrastructure is subjected to more 
pressure and dynamic stresses. In other words, more demand of public transport services can 
accelerate the degradation rate of rail infrastructure components. Rate of degradation in rail 
systems is not high but if the gradual degradation of rail systems is not treated properly, they 
can lead to rail failure. Since railway transport systems carry a large number of passengers 
compared to other modes of transport, any rail failure can lead to significant human casualties 
and huge financial loss (Ahac & Lakusic, 2017).  

One of the important rail track failures is due to track geometry defects. Deviation of track 
geometry parameters from the predefined thresholds can potentially contribute to serious 
problems such as rail derailment and drop in passenger ride comfort. Track geometry 
parameters can be divided into five main classifications including gauge, alignment, profile, 
cross-level and twist (Zarembski et al. 2017). In order to maintain rail transport services 
reliable, safe and completive, monitoring the quality and health of rail track geometry is one of 
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the important tasks of rail organisers. To regularly monitor the quality of rail tracks, rail 
organisations employ track degradation indices. These indices are used to quantify the 
condition of rail tracks numerically. In addition, by defining thresholds for these indices, they 
can be used by rail infrastructure maintenance management systems to determine the 
appropriate times of maintenance and renewal operations of rail components (Andrade and 
Teixeira 2015).  

This study aims to develop a model to predict the future value of TDI based on the current 
state over the data of Melbourne tram network. Most studies carried out for predicting TDI 
have focused on the heavy rail track degradation while light rail track degradation has not 
received proper attention and this paper aims to fill this gap. Furthermore, predicting the TDI 
of tram systems can assist tram rail operators in establishing maintenance strategies. In the 
following sections, we first summarise the existing literature on rail track degradation indices 
and prediction models. Section 3 presents the case study of this research, which includes the 
Melbourne tram data. Section 4 explains the development of TDI based on gauge deviation 
variable. Section 5 presents the development of the models to predict track gauge deviation 
index. Section 6 presents the results and discussion of the study. Finally, Section 7 provides 
the conclusions of this study along with directions for future research. 

2. Literature review 

The literature review of this study is divided into two sections. In the first section, several TDIs 
developed and used by different rail operators are discussed. In the second section, a review 
of studies associated with rail track degradation modelling is provided. 

2.1. Existing TDI 

In this section, examples of TDI are represented. Different statistical formulas and 
mathematical equations have been used to construct the track degradation index. 

In Poland, a synthetic track quality coefficient is applied to assess the track geometry condition 
based on the Standard Deviation (SD) of different track geometry parameters. The proposed 
index is represented by (Chudzikiewicz et al. 2017):  

                                                                    𝐽 =
𝑆௭ + 𝑆௬ + 𝑆௪ + 0.5. 𝑆௘

3.5
                                                           (1) 

where, J is the proposed track degradation index, 𝑆௭ denotes the SD of vertical deflections, 𝑆௬ 
denotes the SD of horizontal deflections, 𝑆௘ represents the SD of track gauge and 𝑆௪ is the 
SD of track twist. The chord length of 10 m (determines the length of measure for track 
geometry data collection) is used in this study.  

In the USA, a track roughness index was created by Amtrak for determining the rail track 
condition. This index can be computed by means of taking the average of squared deviation 
over a 20 m chord length as follows (Liu et al. 2015):  

                                                                          𝑟ଶ =
1

𝑛
෍(𝑑௜

௡

௜ୀଵ

)ଶ                                                                         (2) 

where, r2 denotes track roughness index value, n is the number of measurements and 𝑑௜ 
denotes the value of gauge deviation throughout the studied year. The proposed index can be 
applied to gauge, alignment, cross-level and profile.  

In China, the national railroads use the total of SD of track geometry parameters for 
determining overall track quality index as follows (Li et al. 2016).  
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                                                                                     𝑇𝑄𝐼 = ෍ 𝜎௜

௡

௜ୀଵ

                                                                      (3) 

where, TQI denotes the track quality index and 𝜎௜ represents the SD of track geometry 
parameters. In this study, two different lengths for evaluating the overall track quality are 
recommended. In this context, for high speed rail networks, a length of 500 m is proposed and 
for conventional rail networks, a length of 200 m is proposed.  

In Iran, a Track Geometry Index (TGI) for individual parameters and an Overall Track 
Geometry Index (OTGI) based on combination of SD values and the mean values of the track 
geometry parameters have been developed. A chord length of 19 m is applied for collecting 
track geometry parameters. These parameters are track gauge, profile, alignment and twist. 
For instance, the following equation is used for calculating the TGI of alignment parameter 
(Sadeghi, 2010): 

 

                             𝐴𝐼 =
ห𝑥̅஺௟௟௜௚௡௅௘௙௧ห + 3 × 𝑆𝐷஺௟௟௜௚௡௅௘௙௧ + ห𝑥̅஺௟௟௜௚௡ோ௜௚௛ ห + 3 × 𝑆𝐷஺௟௟௜௚௡ோ௜௚௛௧

2
              (4) 

For calculating the OTGI, the following formulate has been proposed: 

                                            𝑂𝑇𝐺𝐼 =

𝑎
2

× 𝐺𝐼ା +
𝑎́
2

× 𝐺𝐼ି + 𝑏 × 𝐴𝐼 + 𝑐 × 𝑃𝐼 + 𝑑 × 𝑇𝐼

𝑎 + 𝑎́
2

+ 𝑏 + 𝑐 + 𝑑
                             (5) 

where 𝑂𝑇𝐺𝐼 represents the overall track geometry index, 𝐺𝐼ି denotes the negative gauge 
index, 𝐺𝐼ା denotes the positive gauge index, 𝑃𝐼, 𝐴𝐼 and 𝑇𝐼 represent, respectively, the profile, 
alignment and twist indices, a, 𝑎́, 𝑏, 𝑐, and 𝑑 are constant parameters which range between 
0.08 and 1.00, depending on track class and density of defects.  

Swedish National Rail Network uses a new track quality index to evaluate the track geometry 
condition. This index is constructed based on SD of track geometry parameters. The chord 
length of 12 m has been used to measure the deviations. This index is formulated by the 
following equation (Odolinski & Smith 2016): 

                                                            𝑄 = 150 −

100 ൤
𝜎ு

𝜎ு೗೔೘

+
𝜎ௌ

𝜎ௌ೗೔೘

൨

3
                                                           (6) 

where 𝑄 represents the index for evaluating track geometry condition, 𝜎ு is the average of 
SDs of left and right profile, 𝜎௦ is the SD of other track geometry parameters including 
horizontal deviation, gauge and cross-level, 𝜎ு೗೔೘

is the allowable limit of 𝜎ு, and 𝜎ௌ೗೔೘
 is the 

allowable limit of 𝜎ௌ.  

Most of the indices disused in this section have simplicity in their development but their 
correlation with last gauge deviation which represent the current condition of rail track is not 
satisfying.  

2.2. Existing rail track prediction models 

In this section, a number of studies based on statistical and ML models applied to predict track 
degradation rates and gauge deviation have been provided. 



ATRF 2018 Proceedings 

4 
 

Exponential regression as a type of non-linear regression technique can produce the best fit 
for a set of data. Sadeghi and Askarinejad (2010) elaborated an exponential regression model 
to estimate the rate of rail track degradation. In their study, changes in the Track Geometry 
Index (TGI) and the Track Structure Index (TSI) were targeted and regarded as dependent 
parameters. The TSI is mainly based on the condition of rails, ballast and sleepers, whereas 
the TGI is mainly based on the condition of gauge, twist, cross-levels and alignment. They 
used time period, passing tonnage in MGT, initial TSI, initial TGI and the average train running 
speed as the predictor variables in their degradation model. Based on analyses of a test zone, 
two equations for predicting future TSI and TGI were utilised. The comparison of the research 
outcomes represented that the sensitivity of TGI to the independent predictor is greater than 
that of TSI. 
Shang & Bérenguer (2014) elaborated a maintenance management framework based on 
hierarchical Petri Nets (PN) to model rail track degradation and develop maintenance 
strategies. PNs are useful graphical-mathematical models consisting of different elements 
including nodes, transitions and places. In this study, the number of identified defects related 
to track gauge deviation was used to predict the track degradation over rail service life. The 
proposed model has the ability and flexibility to work with different inspection methods to 
predict the risk of track failure. Based on the results, the performance and effectiveness of the 
model in both preventive maintenance and reactive maintenance operations was acceptable. 
Multi-stage regression is a class of linear regression models which has the capability to predict 
different stages of degradation process. Ahac and Lakušić (2015) elaborated a tram 
maintenance management framework by applying a multi-stage regression prediction model. 
In this study, data collected from Zagreb tram network were used. The track gauge deviation 
was regarded as the dependent variable and the passing tonnage in MGT, track-fastening 
system and the sum of operating days were considered as the predictor variables. Based on 
the results of the study, for a certain value of passing tonnage, the model calculated accurate 
predictions of gauge deviation. For values above that, the models did not produce reasonable 
predictions.  
Karimpour et al (2018) elaborated an Adaptive Network-based Fuzzy Inference System 
(ANFIS) model to predict rail track degradation based on the gauge parameter. ANFIS is an 
Artificial Intelligence (AI) model developed based on Artificial Neural Networks (ANN) and 
fuzzy logic principles. The inference engine of the model is based on IF-THEN rules and ANN 
method is utilised to optimise the membership function of the model. In this study, data set of 
Melbourne tram network has been used. This study suggested that an accurate model is able 
to play a significant role in predicting the long-term performance of rail tracks. Gauge deviation 
parameters associated with the previous year and two years ago were among the main 
parameters in the model development. The results show that the model can predict the gauge 
deviation for coming year with acceptable accuracy. 
Moridpour et al. (2017) elaborated an ANN model for predicting the tram track degradation 
using track maintenance data and addressing the curved sections only. In this research, 
Melbourne tram network was used as the case study. A multilayer feed-forward ANN model 
with three layers was applied in the research to predict the target variable. Different variables 
such as rail type, rail profile, passing tonnage in MGT and the instalment year have been 
included to predict the deviation of track gauge parameter. Based on the results of this study, 
the type of tracks and last gauge measurement, have a significant impact on the track 
geometry devotion. The developed model presented a reasonably good prediction accuracy. 
Current indices developed in rail infrastructure are related to heavy rail and the behaviour of 
rail track degradation in last several years is not well addressed, which is important for 
developing a rail infrastructure maintenance management system.    

3. Case study 

In this study Melbourne tram network, as the longest tram network in the world, which includes 
25 routes, over 1700 stops and 250 km of double tracks, is represented as the case study. In 
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2017, by organising more than 450 tram cars, almost 204 million passengers have been 
carried by the services provided by Melbourne tram system. The statistics demonstrates more 
than four hundred thousand increase in passenger growth compared to 2016 (PTV, 2017). 
Data set of this study is collected by Yarra Trams, which is the main operator of Melbourne 
tram network. The data set investigated in this research is composed of different track types 
including straights, curves, crossovers and H-crossings. This data set covers different track 
geometry parameters along with total traffic volumes and other rail structural parameters such 
as rail profile, track surface, rail support and rail type. The current data set comprises six 
consecutive years (from 2010 to 2015) and a chord length (the measuring distance for 
collecting track geometry parameters) of 10 m is used. In this study, a large number of track 
records (each track record consists of various information including track code, the place of 
gauge measurement, gauge deviation value, track structural properties) needed to be 
analysed in order to derive the gauge deviation of rail track sections. Data set preparation is 
done in two stages including data filtering and data segmentation.  
In data filtering process, noisy and out of range data are removed in order to increase the 
accuracy and reliability of the index development. Determining distribution patterns of the 
current data is among common data filtration approaches. If the distribution of the data set 
follows the normal distribution, the value of 𝑥̅ ±3×SD cover 99.7% of the data set. 𝑥̅ represents 
the mean value of data and SD is the standard deviation of data (DeGroot & Schervish, 2012). 
In this research, Shapiro-Wilk tests have been conducted to check the normal distribution 
possibility of the data set. By analysing different track sections, it has been revealed that the 
changes in gauge deviation mainly follow normal distribution (Shapiro-Wilk test: p-
value=0.819). Therefore, records deviating from the 𝑥̅ ±3×SD are recognised and removed 
from the data set. In the next step data segmentation is applied.  
Data segmentation is the process of converting track sections, consisting of track records, into 
different track segments which improve the process of data matching and data analysis. Based 
on the place of gauge measurement related to each track record and the chord length, track 
records are sorted out and track segments have been created. Each track segment contains 
an identification code (combination of the location details and track code). This unique code 
is then utilised to connect same track segments of six consecutive years with each other. 
Ultimately, by applying this code, gauge deviation values of each track segment for six 
consecutive years are determined and the multi-year data set is prepared. 

4. Development of degradation index for Melbourne tram 
network 

In this study, the conditions of rail track have been analysed with regard to gauge deviation 
for both positive gauge (rail heads divergence from the track centreline) and negative gauge 
(rail heads convergence toward the track centreline). TDI values can assist rail infrastructure 
decision makers in addressing efficient maintenance strategies. For this purpose, calculating 
TDI over the case study has been targeted.  

In this study, the following formulate for determining track gauge degradation index has been 
used (Falamarzi et al. 2018). 

                                                                                      𝑇𝐷𝐼௜=𝜇௜+ 𝜆௜                                                                  (7) 

where, 𝑇𝐷𝐼௜ represents the track deterioration index based on the gauge deviation value for 
segment i, 𝜇௜ is the mean value of gauge deviation values for the ith track segment and 𝜆௜ 
represent the differential gauge deviation in the ith segment. 

The proposed index contains two terms. Mean value of gauge parameter (𝜇௜) is an essential 
factor for constructing the deterioration index as larger values represent more deviation from 
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the primary gauge value and eventually more risk of degradation to the rail tracks. 𝜇௜ is 
calculated as follows: 

                                                                        𝜇௜ =
1

𝑚
෍ 𝐺ௗ௘௩௧

௠

௧ୀଵ

                                                                     (8) 

where, 𝐺ௗ௘௩௧
 represents the gauge deviation in year t, and 𝑚 denotes the number of years that 

data has been collected. 

In addition, the differential gauge deviation (𝜆௜) is introduced into the index formulation. It 
should be noted that different track segments can have an incidentally identical mean value 
of gauge deviation but the ones with greater differential gauge deviation may reflect the 
quicker rate of deterioration in track gauge than the other segments with minor gauge deviation 
rate. Differential gauge deviation can be derived by dividing the sum of absolute value of 
differences between two consecutive gauge deviations by the total number of data collection 
years minus one for the ith segment as follows: 

                                                                      𝜆௜ =
1

𝑚 − 1
෍ ห𝐺ௗ௘௩௧ାଵ

− 𝐺ௗ௘௩௧ห

௠ିଵ

௧ୀଵ

                                         (9) 

To numerically present how the proposed index performs on real data, a specimen track 
section (1000 m in length), which includes 10 track segments, is selected and TDI of the track 
segments are calculated in Table 1. In this table, 𝜇௜ and 𝜆௜ are calculated using Equation 8 
and Equation 9, respectively. Then, TDIs have been computed using Equation 7. 

Table 1: TDI values associated with the track segments of the specimen 

Segment 
No. 

Gauge deviations measured within 6 
years 𝜇௜ 𝜆௜ TDI 

2010 2011 2012 2013 2014 2015 

1 4.93 4.86 3.58 4.82 5.06 7.43 5.11 1.04 6.15 

2 6.43 6.20 5.06 6.41 6.50 9.56 6.69 1.17 7.86 

3 6.57 6.44 5.47 7.06 7.09 9.43 7.01 1.01 8.02 

4 5.98 5.74 4.96 6.81 6.48 8.29 6.38 1.00 7.37 

5 3.00 2.65 1.62 2.41 2.84 4.70 2.87 0.89 3.76 

6 3.19 2.63 1.80 2.72 2.96 4.46 2.96 0.81 3.77 

7 2.54 2.44 1.11 1.98 2.27 4.47 2.47 0.96 3.43 

8 3.14 2.54 1.85 2.84 3.05 4.51 2.99 0.79 3.78 

9 2.36 2.18 0.91 1.76 2.07 4.22 2.25 0.95 3.20 

10 7.42 4.93 5.92 4.08 4.07 5.44 5.31 1.34 6.65 
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5. Development of (Random Forests Regression) RFR 
model 

In this research, future TDI value (TDI௡), is considered as the target variable. In order to 
improve the accuracy of the proposed model, variables, which are effective and important in 
the prediction of the target variable, are analysed. For this purpose, one-way ANOVA analysis 
has been applied to categorical variables and Pearson Correlation test has been applied to 
continuous variables (Guler et al., 2011). Based on the results, the previous TDI (TDI௣), track 
surface (TS) and rail type (RT) are statistically significant to predict the target variable (p-value 
is less than 0.05). Afterward, the other parameters that are less significant are removed from 
the model development. 

Recently, there has been a lot of interest in ensemble learning methods that generate many 
bootstrap samples and aggregate their results. Random Forest (RF) model is an ensemble-
learning algorithm for classification and regression problems. RF models are developed based 
on the DT structure but with adding two additional features including bagging and Random 
Subspace Method (RSM). Bagging is a machine learning optimising algorithm designed to 
improve the accuracy and stability of machine learning models by creating several bootstrap 
samples. It also reduces variance during the problem solving and helps the model to avoid 
overfitting. RSM tries to reduce not over-focus on features that seems to be highly predictive 
or descriptive in the training data set. Ultimately, this method decreases the correlation 
between estimators in each bootstrap by training them randomly on a sample of features 
rather than the whole feature set (Hua et al. 2017; Toran Pour et al. 2017).  

The development of RF model can be summarised in three main steps. In the first step, based 
on bagging method, a number of bootstrap samples (or trees) derived from the training data 
set are independently created. Each bootstrap randomly contains sample records of training 
data set with replacement. On average, each bootstrap sample approximately consists 63% 
of the training data set. In the second step, RSM method is applied. In basic DT, in each tree, 
each node is split by using the best split among all predictors. While in the RF model, each 
node is split using the best feature among a subset of randomly selected predictors at that 
node. Similar to the first step, replacement is also applied in this step. In the last step, the 
majority vote mechanism (alternatives or predictions that have more than half the votes are 
the major or final results) is considered for prediction in classification problems. In regression 
problems, the average vote mechanism (the average value of predictions is the major or final 
result) is considered for prediction (Santur et al. 2016; Sharma et al. 2018).  

Calculating the prediction error during the model development is important in ensemble 
learning method. For this purpose, at each bootstrap sample, the data not included in the 
bootstrap or Out of Bags (OOB) are predicted by using the tree developed with the bootstrap 
data. Then OOB predictions are aggregated and the error rate (by comparing the real data 
and the ones predicted by the RF model) is calculated. In this context, the number of variables 
(mtry) which are randomly selected at each node (to be split) and the number of bootstrap 
samples have important roles. In our case as three independent variable are inserted, hence 
the value of mtry can be varied between one and three. By changing the value of mtry as well 
as the number of bootstrap samples (or consequently the number of grown trees), the error 
related to OOB predictions can be adjusted. By modifying the values of mtry and checking 
OBB error, the acceptable number of trees can be determined. In general, by increasing the 
number of trees, the rate of error will decrease (Genuer et al. 2010; Rodriguez-Galiano et al. 
2012). The flowchart in Figure 1 illustrates the process of predicting the data in the RF model 
based on combination of bagging and RSM methods. 
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Figure 1: The process of predicting the data in the RF model 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following section the result of developing the RFR model over the case study data set 
are presented and discussed. 

6. Results and discussion 

In this section, the results of the RF model are presented and the evaluation of the model is 
provided. For conducting evaluation analysis after the model development, total data set 
should be divided into training and testing data sets. In this context, 75% of the data were 
assigned to training, whereas the rest were assigned to testing and validating of the outcomes. 
In the development of the RF model, different values of mtry and different number of trees 
were used to examine the error rate derived from OOB predictions. Figure 2 shows the amount 
of error rate as a function of the number of trees for mtry values of one, two and three. 
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Figure 2: Changes in RF error rate as a function of trees 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

As shown in Figure 2, error rates for different mtries are decreased dramatically as the number 
of trees approaches ~30. Afterward, as the number of trees increases to 300, the error rate 
becomes stable. Hence this graph shows that the number of 300 trees is acceptable for 
decreasing the OOB error rate and, consequently, optimising the models.  

Different approaches exist to numerically evaluate the model performance of the model. As in 
this study, the dependent variable is a continuous parameter, R2, which determines the 
goodness of fit between the predicted values and observed values (Equation 10) and the Root 
Mean-Squared Error (RMSE) calculated by Equation 11, has been applied to assess the 
performance of the proposed model as follows:  

𝑅ଶ = 1 −
∑ (𝑦௜

ே
௜ୀଵ − 𝑓௜)ଶ 

∑ (ே
௜ୀଵ 𝑦௜ − 𝑦ത)ଶ 

                          (10)                   

where, 𝑅ଶ is the coefficient of determination, N represents the number of samples, 𝑓௜ is the 
value predicted by the model, 𝑦௜ denotes the observed data and 𝑦ത is mean value of 𝑦௜. 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑁
෍(𝑦௜

ே

௜ୀଵ

− 𝑓௜)ଶ                   (11) 

Model 2 

mtry=2 

No. Trees = 500 

OOB Error ~ 0.65  

Model 1 

mtry=1 

No. Trees= 500 

OOB Error < 2.5  

Model 3 

mtry=3 

No. Trees= 500 

OOB Error < 0.6  
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In the following table, the values of R2 and RMSE of the RFR models derived from the analysis 
of 300 trees are calculated and provided. 

Table 2: The results of the model evaluation 

Model No. 
Predictor variable 

Target 

variable 
Adjusted R2 RMSE 

1 TGI௣, TS, RT TGI௡ 0.90 1.35 

2 TGI௣, TS, RT TGI௡ 0.93 0.72 

3 TGI௣, TS, RT TGI௡ 0.91 0.75 

 

To graphically evaluate the model performance, the correlation between RFR predicted data 
versus observed data for Model 2 has been illustrated in Figure 3. As shown in this figure, real 
data and the data predicted by the model are close to each other and have a high correlation, 
which demonstrates that the model satisfactorily estimates the new data. 

 

 

Figure 3: Real 𝐓𝐃𝐈𝒏 versus RFR predicted 𝐓𝐃𝐈𝒏 

According to the results of Table 1, for Model 1, Adjusted R2 is 0.90 and RMSE value is 1.35. 
For model 2, the values of Adjusted R2 and RMSE are 0.93 and 0.72. For the last model, these 
values are 0.91 and 0.75 respectively. These results demonstrate the good performance of 
the proposed models in predicting the target variable without considerable error. By 
considering the combination of both RMSE and goodness of fit Adjusted R2, Model 2 produces 
better results compared to the other models. 

The results obtained in this analysis are consistent and in line with the previous findings on 
rail degradation models (Kawaguchi et al. 2005; Sadeghi & Askarinejad 2010; Falamarzi et al. 
2018). Based on the previous findings and the current results, it can be expressed that the 
TDI as a representative of track geometry quality and a function of track gauge deviation is 
strongly dependent on the initial condition of track segments during its service life.  

7. Conclusions and future research directions 

In this study, we developed a machine learning method to forecast the future TDI based on 
the previous data. TDI is a useful measure for rail infrastructure maintenance management 
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systems as well as prioritising and ranking rail track segments with maintenance need. The 
TDI formulated in this study is based on the mean value of gauge deviation of ith track segment 
and the differential gauge deviation for the same segment over the past years. As a case 
study, data set from the Melbourne tram network rail was used. In this study, RFR model which 
is an extension of DT was used to predict the future TDI of the case study based on the 
previous TDI, track surface and rail type parameters. For the model development, 75% of the 
data was assigned to training data set and the rest for validating the results. It has been 
revealed that by increasing the number of trees during the model development, the OOB error 
rate was reduced. Evaluation of the proposed model showed that the RFR model is able to 
predict the future TDI and the predicted values approximated the real data very well with an 
acceptable error, RMSE value of 0.72. This is justified by the fact that the gauge deviation as 
the constituent element of TDI greatly depends on the previous states of the track condition 
throughout its service life. For future research directions, in order to compare the performance 
of the proposed model with the existing models, application of other ML methods such as SVM 
and ANN to predict TDI can be useful. Moreover, using different data sets for the model 
validation is suggested. 
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